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Abstract

Gene expression microarrays are the most widely used technique for genome-wide expression profiling. However,
microarrays do not perform well on formalin fixed paraffin embedded tissue (FFPET). Consequently, microarrays cannot be
effectively utilized to perform gene expression profiling on the vast majority of archival tumor samples. To address this
limitation of gene expression microarrays, we designed a novel procedure (39-end sequencing for expression quantification
(3SEQ)) for gene expression profiling from FFPET using next-generation sequencing. We performed gene expression
profiling by 3SEQ and microarray on both frozen tissue and FFPET from two soft tissue tumors (desmoid type fibromatosis
(DTF) and solitary fibrous tumor (SFT)) (total n = 23 samples, which were each profiled by at least one of the four platform-
tissue preparation combinations). Analysis of 3SEQ data revealed many genes differentially expressed between the tumor
types (FDR,0.01) on both the frozen tissue (,9.6K genes) and FFPET (,8.1K genes). Analysis of microarray data from frozen
tissue revealed fewer differentially expressed genes (,4.64K), and analysis of microarray data on FFPET revealed very few
(69) differentially expressed genes. Functional gene set analysis of 3SEQ data from both frozen tissue and FFPET identified
biological pathways known to be important in DTF and SFT pathogenesis and suggested several additional candidate
oncogenic pathways in these tumors. These findings demonstrate that 3SEQ is an effective technique for gene expression
profiling from archival tumor samples and may facilitate significant advances in translational cancer research.
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Introduction

The development of gene expression microarrays in the mid-

1990s represented a significant technical achievement that, for the

first time, permitted the systematic genome-wide evaluation of

gene expression [1,2]. Since their introduction, these technologies

have been widely used for gene expression profiling of cancer

samples, leading to the identification of gene expression patterns

that predict the biological and clinical features of a wide range of

human malignancies [3–16].

Despite the large numbers of gene expression profiling

experiments performed on human cancers, the full potential of

these technologies for impacting the clinical management of

cancer patients has not yet been realized [17–21]. A major

limitation of gene expression microarrays for translational cancer

research is that they rely on the availability of fresh frozen tissue

and show inconsistent performance on formalin fixed paraffin

embedded tissue (FFPET) [22–27]. Consequently, gene micro-

arrays cannot be used effectively on the vast majority of tumor

specimens, since few samples are stored frozen. In contrast,

essentially all tumor samples are stored as FFPET in pathology

laboratories around the world [28]. In an attempt to utilize this

rich source of human tumor samples, investigators have resorted to

measuring the expression of relatively small numbers of known

transcripts from FFPET through the use of a variety of targeted

approaches, including reverse transcriptase-polymerase chain

reaction (RT-PCR) [29,30] and cDNA-mediated annealing,

selection, extension and ligation (DASL) [31,32]. No technique

currently exists for accurate quantitative genome-wide expression

profiling from FFPET.

In the past several years, there have been major advances in

sequencing technologies, resulting in the development of ultra

high-throughput sequencing (UHTS) platforms that have allowed

significant increases in sequencing throughput and decreases in

sequencing cost [33,34]. There is considerable hope in the

scientific community that UHTS will overcome the major

limitations of microarray technology and revolutionize the field

of functional genomics [35,36]. UHTS has been developed in

several platforms, including Roche 454, Illumina Genome

Analyzer, and ABI SOLID. These technologies have been used
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to sequence human genomes [37,38], study the genome wide

binding of transcription factors [39,40] and nucleosomes [41],

characterize genome methylation patterns [42], and have been

recently applied to the sequencing of transcriptomes (RNA-Seq)

[35,36,43–45].

Standard RNA-Seq protocols target the entire gene transcript

by either synthesizing the full-length cDNA using oligo-dT reverse

primers followed by fragmentation of cDNA, or by selecting poly-

A-tailed mRNA followed by RNA fragmentation and cDNA

synthesis using random hexamer oligonucleotides. Since these

techniques attempt to sequence the entire RNA transcript, the

successful application of these methods for expression profiling

depends on the presence of high quality starting total RNA.

No technique currently exists for accurate quantitative genome

wide expression profiling from FFPET in which RNA has been

extensively degraded. We describe here the 3SEQ assay for precise

quantification of genome-wide expression levels on both frozen

tissue and FFPET. In this report, we perform gene expression

profiling on a collection of frozen and FFPET samples from two

soft tissue tumor types (desmoid type fibromatosis (DTF) and

solitary fibrous tumor (SFT)) using both Human Exonic Evidence

Based Oligonucleotide (HEEBO) microarrays (http://microarray.

org/sfgf/heebo.do) and 3SEQ. We assess the performance of these

two gene expression profiling modalities for making reliable gene

expression measurements and for identifying differentially ex-

pressed genes and biological pathways from both frozen tissue and

FFPET.

Results

DTF and SFT Tumor Samples Selected for Gene
Expression Profiling

DTF and SFT are two subtypes of fibroblastic soft tissue tumors,

which show morphologic similarities, but demonstrate distinct

clinical features [46]. The gene expression patterns of DTF and

SFT have been previously studied in our laboratory by microarray

[16,47,48], and these studies have revealed that although DTF

and SFT are both fibroblastic tumors with similar morphologic

features, they show distinct gene expression patterns. These

tumors represent excellent sources of RNA for evaluating a new

gene expression profiling modality, since in contrast to most

carcinomas, DTF and SFT are both composed of a relatively

homogenous population of tumor cells with few contaminating

non-neoplastic cells, resulting in the production of distinct gene

expression patterns.

The current study included a total of 23 samples, which were

each profiled using at least 1 of the 4 platform-tissue type

combinations (3SEQ-frozen, 3SEQ-FFPET, HEEBO-frozen,

HEEBO-FFPET): the HEEBO-frozen analysis included 17

samples (DTF n = 9, SFT n = 8); the HEEBO-FFPET included

14 samples (DTF n = 6, SFT n = 8); 3SEQ-frozen included 11

samples (DTF n = 5,SFT n = 6); and 3SEQ-FFPET included 14

samples (DTF n = 6, SFT = 8) (Table S1).

3SEQ Sample Preparation and Sequencing
The 3SEQ method is a novel type of RNA-Seq designed for

accurate and quantitative genome wide expression profiling from

both high quality and degraded total RNA by targeting the 39 end

of mRNA. A schematic illustration of the 3SEQ assay is shown in

Figure 1. mRNA is first enriched from total RNA by poly-A

selection to remove the ribosomal RNA and other non-poly-A

RNA. The mRNA from fresh frozen tissue (which is intact and

long) is then fragmented to 100–200 bases. The heat fragmenta-

tion of mRNA is incorporated and combined with the denature

step of 1st strand cDNA synthesis in the presence of Mg contained

in the 1st strand cDNA buffer. In contrast, the short mRNA from

FFPET is converted to cDNA directly without any further

fragmentation. The oligo-dt_P7 RT primer used for 1st strand

cDNA synthesis contains the 25-T P7 sequence at the 59 end. The

double-stranded cDNA is then ligated to the P5 adapter at the 59

end, size selected, and amplified by PCR using primers to P5 and

P7. The resulting directional library is then sequenced from the P5

end using the Illumina Genome Analyzer II.

The primary difference between the 3SEQ protocol described

here and standard RNA-Seq is that standard RNA-Seq attempts

to generate a sequencing library that spans the entire transcript

length. Standard RNA-Seq has been applied to mutation

identification and transcriptional profiling. While sequencing of

the entire transcript provides abundant biological information, a

significant limitation of this technique is it requires high quality

starting RNA. In contrast, the aim of 3SEQ is to perform genome-

wide expression quantification, which can be performed on both

high quality starting RNA as well as degraded RNA. While

standard RNA-Seq targets the entire transcript, 3SEQ creates a

sequencing library with one sequencing primer targeting the poly-

A tail. Therefore, all transcripts amplified during PCR and

incorporated into the sequencing library contain a portion of the

poly-A tail with an upstream sequence of approximately 200 bp in

length. Sequencing is then performed uni-directionally, toward the

poly-A tail. While the priming techniques utilized in standard-

RNA-Seq will typically produce multiple reads per single

transcript (dependent in large part on the transcript length), the

3SEQ protocol is designed to produce a single read per transcript;

therefore, this technique is not susceptible to length-bias, a

problem which significantly complicates attempts at gene

expression profiling using standard RNA-Seq [49]. Performing

appropriate reads-per-gene normalization based on putative

transcript length for transcriptional profiling with standard

RNA-Seq on degraded RNA would be far more difficult than

normalization from high quality starting RNA, since in the setting

of severe RNA degradation putative transcript length is irrelevant;

consequently, the denominator in the reads per kilobase of exon

model per million mapped reads (RPKM) metric, which is a

standard technique for normalization for transcriptional profiling

from RNA-Seq [44], is unknown. 3SEQ, by contrast, gives one

read per transcript molecule, regardless of degradation and

regardless of transcript length. This novel protocol for creating a

directional sequencing cDNA library targeted to a transcript’s 39

end is the primary feature that distinguishes 3SEQ from standard

RNA-Seq and is the feature that allows precise gene expression

profiling from samples with degraded RNA.

Read Mapping, Filtering, and Quantification
For the 3SEQ data, each 25 bp read was mapped to the

genome using Eland. Non-uniquely mapping reads and reads with

.1 mismatch were discarded. Using the final protocol, we

reproducibly obtained just under 50% uniquely mapping reads

(out of the total number of reads that passed the Illumina pipeline

quality filter). The major source of non-uniquely mapping reads

were poly-A sequences, which constituted approximately 20% of

all reads generated by 3SEQ. With improvements in the

sequencing technology and software provided by Illumina

(subsequent to the experiments described in this manuscript), the

total number of reads obtained per 3SEQ run have increased from

,3–6 million in the runs described in this manuscript, to ,10–15

million on our most recent runs. For FFPET samples, an average

of 2 million reads per sample mapped to within 1KB of an

annotated gene on the reference genome, and for frozen samples

3SEQ for Expression Profiling
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Figure 1. 39-end Sequencing for Expression Quantification (3SEQ) schematic. Either intact mRNA from frozen tissue or degraded mRNA
from FFPET is enriched by poly-A selection. The mRNA from frozen tissue is then heat fragmented to approximately 100–200 bases. This heat
fragmentation is incorporated with the RNA heat denature in the 1st strand cDNA synthesis by including the 1st strand cDNA buffer which contains
Mg that is required for fragmentation. The short mRNA from FFPET is converted directly to cDNA without fragmentation. The 1st strand cDNA is
synthesized with an oligo-dT_P7 RT primer that consists of three parts: 25-oligo-dT, P7 sequence linked to oligo-dT at the 59 end and two degenerate
nucleotides NV at the 39 end. The single stranded cDNA is then converted to double stranded cDNA and the P5 linker is ligated to the end of the
cDNA fragment opposite the P7 linker. The linker-ligated cDNA fragments of approximately 250 bp are selected and a PCR reaction is performed with
primers that hybridize to the P5 and P7 linkers. The sequencing library is unidirectional and composed of cDNA, the P7 linker adjacent to the poly-A
tail and the P5 linker on the opposite end of the fragment. The library is sequenced from the P5 end to generate 36 bp reads by a synthesis
procedure using the Illumina Genome Analyzer. The first 25 bp of each read is used to map the reads to the genome. These reads are expected to be
mapped towards to the 39 UTR or the 39 end of the 39-most exon of expressed genes.
doi:10.1371/journal.pone.0008768.g001
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an average of 1.2 million reads per sample mapped to within 1 KB

of an annotated gene on the reference genome. For both FFPET

and frozen samples, the highest proportion of annotated reads

mapped to the 39 untranslated region (50% of annotated FFPET

reads and 41% of annotated frozen reads), followed by the coding

exon (14% FFPET and 22% frozen). The remaining reads

mapped to intergenic or intronic regions or mapped with incorrect

orientation. Transcripts that did not map to intragenic regions

with the correct orientation were not included in this analysis. For

each sample, transcripts that mapped uniquely within 1KB of a

gene annotation on the reference genome were attributed to that

gene symbol, leaving ,27K unique genes with at least 1 read

across the 25 sample-preparation type combinations (14 FFPET

and 11 frozen samples) in the 3SEQ analysis. We removed genes

with less than 25 total reads across the samples, leaving ,18K

genes.

For the HEEBO data, the log base 2 of the normalized red/green

ratio was computed for all microarray spots not flagged as low

quality (45,561 HEEBO biosequenceIDs). Multiple probes from the

same HUGO gene ID were averaged, and HUGO gene IDs with

less than 70% valid data were removed, leaving ,24K genes.

All statistical analyses comparing HEEBO with 3SEQ were

limited to the ,12K common genes included in the filtered 3SEQ

and HEEBO data sets. Prior to performing statistical analyses, the

samples were centered by subtracting out the sample mean and

scaled by dividing by the sample standard deviation. The

distribution of the centered and scaled expression values are

provided as Figure S1.

Correlation of Gene Expression Measurements
To compare the ability of 3SEQ and HEEBO to measure gene

expression on FFPET reliably, we computed the Spearman

correlation of the gene expression measurements from frozen

tissue and FFPET for the 7 samples with matched measurements

from both tissue preparations profiled on both 3SEQ and

HEEBO. In all 7 cases, the 3SEQ measurements showed higher

frozen-FFPET correlation than the HEEBO measurements

(Table 1) [mean Spearman rho with 3SEQ = 0.76 vs. 0.46 with

HEEBO; Wilcoxon p = 0.008]. These findings suggest that 3SEQ

is a more robust platform than HEEBO microarray for gene

expression profiling from FFPET.

The FFPET and frozen samples in our analysis were stored for

varying periods of time prior to RNA extraction. The storage

duration of the FFPET samples ranged from 1 to 8 years, with a

median storage time of 5 years. The frozen samples ranged in

storage time from 0 to 15 years with a median storage time of 4

years. Information on specimen age was unavailable for 4 samples

in the analysis. In our data set, we do not observe any significant

association between storage time of the archival tumor tissue and

the correlation between frozen and FFPET measurements on

either 3SEQ or HEEBO (both p.0.35).

Assessing Differential Gene Expression
A primary goal of gene expression profiling studies in cancer

research is to identify genes differentially expressed between tumor

types [50], and we used this metric as a practical method for

evaluation of the performance of the two platforms. For each gene,

we computed a modified t-statistic in order to quantify the extent

of differential expression between DTF and SFT [51]. We

computed the correlation of the test statistic values obtained from

gene expression profiling on frozen tissue and FFPET for 3SEQ

and HEEBO. This analysis showed a substantially higher

correlation of test statistics generated from frozen tissue and

FFPET on 3SEQ compared with HEEBO (Pearson correla-

tion = 0.82 on 3SEQ vs. 0.54 on HEEBO, Figure 2). These

findings suggest that 3SEQ is superior to HEEBO for obtaining

accurate and robust measurements of differential gene expression

from FFPET.

We used permutations to estimate false discovery rates (FDRs)

for the modified t-statistics obtained from the frozen tissue and

FFPET for 3SEQ and HEEBO, as described in [52]. Similar

FDRs were obtained using 3SEQ on frozen tissue and FFPET.

HEEBO microarray resulted in many fewer genes with a low FDR

on FFPET as compared with frozen tissue (Figure 3). Using

FDR,0.01 as a cutpoint, 9,645 genes were identified as

differentially expressed on 3SEQ-frozen, 8,137 on 3SEQ-FFPET,

4,574 on HEEBO-frozen, and only 69 on HEEBO-FFPET

(Figure 3, Table S2). These findings demonstrate that in terms

of identifying differentially-expressed genes with low FDRs, 3SEQ

is far more effective than HEEBO microarray on FFPET.

Different numbers of samples were used for each of the 4

platform-tissue type combinations assessed in the primary analysis

in this study. Importantly, the 3SEQ analyses were performed with

fewer total samples than the HEEBO analyses. Therefore, we

would expect the differential sample sizes to favour HEEBO over

3SEQ. To confirm this hypothesis, we sampled 5 DTF and 6 SFT

from each of the platform-tissue type combinations and repeated

the analysis with equal sample sizes, and as expected, this showed

similar results to those obtained with the full dataset, with a slight

improvement in the performance of 3SEQ relative to HEEBO

(Figure S2).

Agreement of Differentially Expressed Gene Lists
We next assessed the agreement of the lists of genes differentially

expressed between DTF and SFT (FDR,0.01) (Figure 4). 89% of

the genes identified as differentially expressed by 3SEQ on FFPET

were also identified as differentially expressed by 3SEQ on frozen

tissue. 82% of genes identified as differentially expressed by

HEEBO-frozen were also identified as differentially expressed by

either 3SEQ-frozen or 3SEQ-FFPET.

Table 1. Correlation of Gene Expression Profiling
Measurements From Frozen Tissue and FFPET on Matched
Samples.

Sample 3SEQ HEEBO p value

DTF2435 0.81 0.62

DTF2913 0.74 0.58

SFT200 0.41 0.23

SFT3237 0.83 0.64

SFT3524 0.9 0.3

SFT4711 0.85 0.25

SFT4934 0.75 0.57

SFT2162 0.85 N/A

Mean correlation on
matched samples

0.76 0.46 0.008

The table presents the Spearman’s rho statistic as a rank-based measure of
association of gene expression measurements on frozen vs. FFPET. The first 7
samples contained matched frozen and FFPET measurements on both 3SEQ
and HEEBO microarray. The 8th sample contained only matched samples on
3SEQ. The final row of the table shows the mean correlation on matched
samples for 3SEQ and HEEBO with the Wilcoxon test p value to assess the
significance of the observed difference in mean frozen-FFPET correlation on
matched samples profiled with 3SEQ vs. HEEBO.
doi:10.1371/journal.pone.0008768.t001
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Biological Pathways in DTF and SFT
To assess the biological significance of the statistically significant

gene lists, we used the DAVID set of bioinformatics resources [53]

to identify the KEGG biological pathways [54] most significantly

enriched in the top 1000 ranked genes with relatively higher

expression in DTF and the top 1000 genes with relatively higher

expression in SFT. Since far fewer than 1000 genes from the

HEEBO-FFPET analysis yielded FDR,0.01, we selected the top

ranked genes with FDR,0.05 for inclusion in the HEEBO-

FFPET gene lists. We performed this analysis separately for each

of the gene lists generated from the differential gene expression

analysis of each of the 4 platform-tissue type combinations (Table

S3 and Table S4).

Biological pathways with relatively increased expression

in DTF. Functional gene set analysis from all 4 platform-tissue

type combinations identified the KEGG pathway ECM-receptor

interaction as relatively enriched in DTF. This gene set is comprised

of proteins that function in the interaction of cells with extracellular

matrix, including integrins (ITGB1, ITGB5), collagens (COL1A1,

COL1A2, COL5A1, COL6A2), glycoproteins (FN1, THBS2,

SDC1), and other cell-surface-associated components. DTF is a

fibroblastic neoplasm, so it was not surprising that this gene set,

which contains genes known to be expressed in stromal cells and to

play important roles in regulation of the extracellular matrix, was

highly expressed in DTF. The fact that this pathway was identified

Figure 2. Scatter plot of modified t-statistics on FFPET vs. frozen tissue. Each point is a gene plotted by the t-statistic generated on FFPET
vs. the t-statistic generated on frozen tissue. The black line is a line with a slope of 1 and x intercept at 0, corresponding to perfect correlation
between the axes. The grey dotted line is a plot of the first principal component. The left plot shows the HEEBO data, and the right plot shows the
3SEQ data.
doi:10.1371/journal.pone.0008768.g002

Figure 3. False discovery rate vs. number of genes called
significant. The number of genes called differentially expressed
between DTF and SFT is plotted along the x axis and the corresponding
false discovery rate is plotted along the y axis. The 3SEQ-frozen analysis
includes 5 DTF and 6 SFT; the 3SEQ-FFPET includes 6 DTF and 8 SFT; the
HEEBO-frozen includes 9 DTF and 8 SFT; and the HEEBO-FFPET includes
6 DTF and 8 SFT.
doi:10.1371/journal.pone.0008768.g003

Figure 4. Venn diagram of genes called significant in each
platform-tissue type combination at an FDR,0.01. The orange
circle includes the set of genes identified as differentially expressed by
3SEQ-frozen, the green circle by 3SEQ-FFPET, and the lavender circle by
HEEBO-frozen. Only 69 HEEBO-FFPET genes reached significance at this
threshold, and the HEEBO-FFPET gene list was not plotted in the Venn
diagram. The number of genes and percentage of total genes in each
portion of the Venn diagram are labelled.
doi:10.1371/journal.pone.0008768.g004
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by analysis of HEEBO-FFPET data demonstrates that although

very few genes were identified as differentially expressed on

HEEBO-FFPET, the set of genes identified as highly expressed in

DTF represents a coherent gene set that provides insight into DTF

biology. The Wnt signalling pathway is known to play an important

role in DTF [55–60], and we have previously noted that Wnt

pathway genes show increased expression in DTF, based on

microarray data from frozen tissue [47,48]. 2 Wnt-signalling related

KEGG pathways (Wnt signalling and melanogenesis) were

identified as enriched in DTF only on 3SEQ-frozen and 3SEQ-

FFPET, but not on HEEBO-frozen or HEEBO-FFPET in our

current functional gene set analysis. The re-identification of WNT-

signalling pathways by 3SEQ supports the ability of gene expression

profiling by 3SEQ to identify a key oncogenic pathway in DTF not

only on frozen tissue but also on FFPET.

Several other pathways were identified as relatively highly

expressed in DTF by at least 1 of the platform-tissue type

combinations. 3 of these pathways are closely related to and share

multiple genes in common with the ECM-receptor interaction

pathway (cell communication, focal adhesion, regulation of actin

cytoskeleton). 3 other pathways were identified only on HEEBO-

frozen (glycan structures - biosynthesis 1, axon guidance, adherens

junction) and their significance in DTF must be more fully

evaluated in future studies.

Biological pathways with relatively increased expression

in SFT. Analysis of HEEBO-FFPET data identified no

pathways as enriched in SFT. The KEGG pathway ‘‘prostate

cancer’’ was identified as relatively highly expressed in SFT by

3SEQ-frozen, 3SEQ-FFPET, and HEEBO-frozen. The genes

(FGFR1, BCL2, IGF1, PDGFD, TCF7L2) from this pathway

were identified by all 3 platform-tissue type combinations as highly

expressed in SFT. It has recently been shown that insulin

signalling plays an important role in SFT pathogenesis [61,62].

The ‘‘insulin signalling pathway’’ was identified as significantly

enriched in SFT by both 3SEQ-frozen and 3SEQ-FFPET, but

was not identified as enriched by either HEEBO-frozen or

HEEBO-FFPET. Analysis of 3SEQ data from both fresh tissue

and FFPET revealed several additional biological pathways (acute

myeloid leukemia, VEGF signaling pathway, oxidative

phosphorylation), which are known to play important roles in

oncogenesis in other tumors but whose contribution to SFT

pathogenesis has not previously been described. In addition, a

large set of closely related cancer-associated pathways

(endometrial cancer, non-small cell lung cancer, ErbB signalling,

MAPK signalling, melanoma, GnRH signalling) were identified as

enriched in SFT on the 3SEQ-FFPET data only. These gene sets

share multiple genes in common with each other and with the

‘‘prostate cancer’’ set (including: AKT2, BAD, MAP2K2, PTEN,

AKT3, PIK3R1, CREB3L2, CREBBP, ERBB2, EGFR). These

findings further support the ability of gene expression profiling

by 3SEQ to identify coherent biological pathways that may play

key roles in tumor pathogenesis from both frozen and FFPET.

Identification of Genes Expressed Exclusively (or Almost
Exclusively) in DTF or SFT

DTF and SFT are both fibroblastic neoplasms, which may

represent tumors composed of different stromal cell types or

different pathways of tumor differentiation from a common

stromal cell type. To identify additional diagnostic markers and to

better understand DTF and SFT pathogenesis, it would be useful

to identify genes that show at least low or moderate levels of

expression in DTF or SFT with virtually no expression in the other

tumor type. This type of analysis is very difficult to perform using

expression data from microarrays, since the measurements are

complicated by the presence of background hybridization signal

making it very difficult to confidently identify genes that show an

expression level near zero in either tumor type. In contrast, the

data produced by sequencing is discrete with far less background

noise than microarray data, which greatly facilitates the identifi-

cation of genes expressed in only DTF or SFT (Figure 5). For this

analysis (which we limited to the 3SEQ data), we started with the

,18K genes that showed at least 25 reads across all samples. For

each gene, we computed the fraction of the DTF reads in the full

data set that occur in that gene, and divided this by the fraction of

the SFT reads in the full data set that occur in that gene. A high

score indicates that the gene is highly expressed in DTF relative to

SFT, and a score near zero indicates the opposite. We performed

this analysis separately on both the 3SEQ-frozen and 3SEQ-

FFPET data (Table S5).

18 genes showed either completely exclusive expression in DTF

or at least 100 fold increased expression in DTF compared with

SFT on both the 3SEQ-frozen and 3SEQ-FFPET analyses. This

list includes genes known to be expressed in muscle (MB, MYH7,

TNNI1, TNNT1) and genes involved in development (GJB2,

ACAN, DMRT2, SLC5A1, MYOD1, PAX1). These findings

suggest that a myofibroblastic phenotype including increased

expression of genes involved in developmental processes and

expressed in muscle is specific for DTF compared with SFT. In

addition to known genes, the list includes several poorly

characterized transcripts (C20orf58, DFKZp686J02145), which

may provide new insights into DTF pathogenesis.

44 genes showed either completely exclusive expression in SFT

(with at least 100 total reads across the samples) or at least 100 fold

increased expression in SFT as compared with DTF on both the

3SEQ-frozen and 3SEQ-FFPET analyses. This list includes genes

known to be involved in signal transduction (NPW, GRIA2,

KNDC1, and NRGN), as well as glycoproteins and genes

expressed in the extracellular matrix (PCSK2, FGG, CHGA,

MMP3, SFTPB, PYY). In addition, the list contains several poorly

characterized transcripts (including C1orf92, AB058691, and

LOC126520), which may provide insight into SFT pathogenesis

and serve as candidate novel biomarkers.

Identification of biological pathways enriched in genes

identified as differentially expressed in 3SEQ-frozen but

not 3SEQ-FFPET. To identify biological pathways enriched in

the set of ,2300 genes identified as differentially expressed

(FDR,0.01) on 3SEQ-frozen but not 3SEQ-FFPET, we

performed a functional gene set analysis using DAVID [54],

which showed that the cluster of functional annotation groups

most significantly enriched in this gene set were related to

intracellular signalling, suggesting that transcripts encoding

proteins involved in intracellular signalling may show increased

susceptibility to degradation in FFPET.

Discussion

Since the introduction of gene expression microarrays in the

mid-1990s, genome-wide expression profiling has been widely

utilized in cancer research [63,64]. Gene expression profiling

experiments have led to significant advances in our understanding

of a wide range of human malignancies, but clinical research

efforts have been frustrated by lack of specimens. A major

hindrance to the translation of gene expression profiling to the

clinic is the fact that gene expression microarrays are best

performed on fresh frozen tissue, and few samples are stored as

fresh frozen. In contrast, essentially all tumor specimens are stored

as FFPET [28]. This fixation and storage technique results in

extensive RNA fragmentation [29]. Several groups have attempt-
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Figure 5. 3SEQ reads visualized on the UCSC Genome Browser. The top portion of panels A and B show an ideogram of chromosome 20 with
a vertical red bar at cytoband 20q13.33. A small portion of this cytoband is expanded and displays four custom tracks beneath it: DTF2435-FFPET,
DTF2435-Frozen, SFT3524-FFPET, and SFT3524-Frozen. Each of these tracks displays the 3SEQ sequencing reads from a single DTF sample (DTF2435)
and a single SFT sample (SFT3524), whose gene expression was measured from both FFPET and frozen tissue. Each track displays a red or blue block
indicating a 3SEQ read that mapped to the displayed portion of the genome. The blocks are colored according to the read’s directionality with reads
aligned to the genome in the forward (left to right) direction in blue and reads aligned to the genome in the reverse orientation in red. In panel a, two
adjacent genes are displayed on the bottom of the panel with the gene on the left (BIRC7) oriented 59 to 39 from left to right, and the gene on the
right (NKAIN4/C20orf58) oriented 59 to 39 from the right to left. Panel a shows that NKAIN4 is expressed at a moderate level exclusively in DTF (both
FFPET and frozen), while BIRC7 shows a total of 4 reads exclusively in the SFT sample (both FFPET and frozen) with no reads in the DTF sample. In this
example, all reads mapped with the correct orientation to the 39 portion of the transcript. Panel B shows a higher magnification display of a nearby
region on 20q13.33. This genomic region encodes a transcript (AK025855/AK092092) that is expressed exclusively in SFT3524 (FFPET and Frozen) with
no expression in DTF2435. Beneath the display of the piles of reads at the 39 end of the transcript, a higher magnification view of the actual read
sequences from a portion of the pile is displayed.
doi:10.1371/journal.pone.0008768.g005
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ed to use FFPET for gene expression profiling by microarrays

[22–27] with mixed results. Difficulties of gene expression profiling

by microarray on FFPET include the inability to obtain adequate

RNA for gene microarray profiling from most archival samples

[25] and a lack of sensitivity for identifying genes known to be

expressed from frozen tissue in matched FFPET samples [26].

Due to the difficulty of gene expression profiling from FFPET

using microarrays, several groups have utilized RT-PCR to

quantify the expression of targeted sets of genes [29,30,65].

Recently, Hoshida et al. performed DASL for gene expression

profiling from FFPET and identified a gene expression pattern

that correlates with survival in hepatocellular carcinoma [31];

however, this study does not demonstrate the ability for full

unbiased genome-wide expression profiling from FFPET, as the

analysis was limited to only 6,100 genes targeted by the probe set.

3SEQ is sequencing-based and overcomes the major limitations

of hybridization-based expression arrays, allowing more sensitive

and precise quantitative measurements for genome-wide expres-

sion profiling. The primary feature that differentiates the 3SEQ

protocol from standard RNA-Seq protocols is that while standard

RNA-Seq typically generates a non-directional sequencing library

comprised of fragments of RNA that span the transcript length,

the 3SEQ protocol generates a directional sequencing library

comprised predominantly of ,200 bp cDNA fragments with a

poly-A tail, in which sequencing will proceed directionally toward

the poly-A tail. This novel design is essential for performing

accurate transcriptional profiling from severely degraded RNA,

because it ensures that one read per transcript molecule is

produced, regardless of degradation and regardless of transcript

length.

Compared to other existing gene expression profiling methods,

the 3SEQ method facilitates gene expression profiling of degraded

RNA from FFPET. In the current study, we identified similar

numbers of differentially expressed genes between DTF and SFT

on frozen tissue (,9.6K) and FFPET (,8.1K) by 3SEQ. In

contrast, we identified fewer differentially expressed genes on

frozen tissue (,4.6K) and far fewer genes on FFPET (only 69

genes) by HEEBO microarray. These data clearly indicate that, in

contrast to HEEBO microarray, 3SEQ is effective for genome-

wide gene expression profiling on both frozen tissue and FFPET,

with similar performance on the two tissue types.

Functional gene set analysis of 3SEQ data from frozen tissue

and FFPET revealed two key sets of pathways (Wnt signalling-

related pathways, and extracellular matrix-related pathways) to be

enriched in DTF. HEEBO analysis identified the extracellular

matrix-related pathways, but failed to identify significant enrich-

ment in the Wnt signalling pathways, which are known to play a

critical role in DTF [55–60]. In addition, functional gene set

analysis of genes with relatively increased expression in SFT by

3SEQ identified insulin signalling as a significantly enriched

pathway and recent studies suggest that insulin receptor activation

is frequently seen in SFT [61,62]. Analysis of 3SEQ data from

both frozen tissue and FFPET revealed several related cancer-

associated pathways (prostate cancer, VEGF signalling, acute

myeloid leukemia) containing a number of genes known to be

important in carcinogenesis (AKT2, IGF1, BAD, PIK3R1,

CCND1, PML, RARA), whose concerted role in SFT has not

previously been characterized. There were no pathways identified

by HEEBO-FFPET as enriched in SFT. These findings further

suggest that 3SEQ is superior to HEEBO microarray for gene

expression profiling from FFPET.

An additional advantage of 3SEQ data is that it can be utilized

to identify genes expressed in at least low or moderate levels in one

of the tumor types with virtually no expression in the other tumor

type. This type of quantitative analysis, which is very difficult to

perform on microarray data due to background noise and

hybridization artefacts, may facilitate a deeper understanding of

differential pathways of tumor pathogenesis and the identification

of highly specific diagnostic markers.

These findings have significant implications for translational

cancer research. A major goal of translational cancer research is to

identify diagnostic markers, prognostic markers, and markers to

predict response to treatment. Each of these goals requires the

acquisition of large numbers of well-annotated clinical specimens

with long term follow-up [19]. The lack of adequate samples with

detailed clinical information (such as drug response) has been a

major impediment to the translation of gene expression profiling

findings to the clinic [18]. We believe 3SEQ could revolutionize

the field of translational cancer genomics, by allowing investigators

to perform gene expression profiling on large numbers of well-

annotated archival tumor specimens with long term follow-up.

Experiments could then be designed to identify gene expression

signatures to predict specific clinically important phenotypes (such

as drug response, progression/recurrence risk, and survival) and to

gain a deeper understanding of cancer biology.

Methods

Ethics Statement
The soft tissue tumors were collected using HIPAA compliant

Stanford University Medical Center institutional review board

approved written informed consent. Some of the tissues already

existed in tissue banks and fall under exemption 4.

Tumor Samples
The study included a total of 23 samples, which were profiled

using at least one of the 4 platform-tissue type combinations

(3SEQ-frozen, 3SEQ-FFPET, HEEBO-frozen, HEEBO-FFPET)

(Table S1). Overall, the HEEBO-frozen analysis contained 17

samples (DTF n = 9, SFT n = 8), the HEEBO-FFPET contained

14 samples (DTF n = 6,SFT n = 8), 3SEQ-frozen contained 11

samples (DTF n = 5,SFT n = 6), and 3SEQ-FFPET contained 14

samples (DTF n = 6, SFT = 8). The archival samples used in all

analyses were collected from 2000–2007. All cases represented

classic examples of sporadic type DTF and benign SFT.

Additional information on the tumors is provided in Table S1.

RNA Preparation
For total RNA extraction from frozen tissue stored at 280uC,

tissue was homogenized in Trizol reagent (GibcoBRL/Invitrogen,

Carlsbad, USA, CAT#15596-018) and total RNA was prepared.

For total RNA extraction from FFPET, multiple 20 mm sections

were cut from each paraffin block and deparaffinised using xylene

and ethanol. A protease digestion was then performed prior to

nucleic acid isolation, nuclease digestion, and final RNA

purification (Recover All Total Nucleic Acid Isolation kit, Ambion

CAT#AM1975).

Labeling and Hybridization to HEEBO Microarrays
Prior to labelling, the total RNA from frozen samples used for

the HEEBO microarray was subject to a DNAse treatment

(Qiagen RNAse-Free DNAse Set) and RNA clean-up procedure

(RNeasy Mini Kit). The total RNA extracted from FFPET was

amplified using a procedure described elsewhere [66]. The

HEEBO microarrays contain 44,544 70-mer probes designed

using a transcriptome-based annotation of genomic loci (http://

www.microarray.org/sfgf/heebo.do). We performed: indirect la-

belling of the tumor total RNA-derived cDNA (Cy5) and reference
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RNA-derived cDNA (Cy3); microarray hybridization and wash-

ing; and scanning with GenePix 4000 microarray scanner and

GenePix software as previously described [67]. All microarray

data is MIAME compliant and the raw data has been deposited in

the Stanford Microarray Database (http://smd.stanford.edu/) and

the Gene Expression Omnibus (http://www.ncbi.nlm.nih.gov/

geo/) with accession number GSE18209.

Generation of 3SEQ Sequencing Library
mRNA was isolated from 10 mg of total RNA extracted from

either frozen tissue or FFPET by polyA selection using Oligotex

mRNA Kit (Qiagen). For mRNA from frozen tissue, RNA heat

fragmentation was combined with heat denature in cDNA synthesis:

9 ml of mRNA was fragmented to 100–200 bases by incubation with

4 ml of First Strand Buffer and 1 ml of 100 mM oligo-dT_P7 RT

primer at 85uC for 10 minutes; RNA fragmentation was assessed by

gel electrophoresis; the mixture was then cooled down to 50uC and

followed by the 1st strand cDNA synthesis in 20 ml reaction with

Superscript III Reverse Transcriptase (Invitrogen) for 1 hour at

50uC; the 1st strand cDNA was then converted to double-stranded

cDNA and end repaired as described by the manufacture. The

mRNA from FFPET was converted directly to cDNA without any

fragmentation using the procedure as described above for frozen

tissue with the exception that the 4 ml of First Strand Buffer was

added to the reaction after the 85uC denature step and the reaction

has been cooled down to 50uC. After purification with Qiagen

MinElute Kit, the cDNA was ligated to double-stranded P5 Linker

(1 ml of 100 mM) overnight at 16uC. The linker-ligated cDNA was

purified and size selected for 200–300 bp fragment by agarose gel

fractionation. The selected linker-ligated cDNA contains P7

sequence at the 39 end immediately downstream of poly A and

P5 at the 59 end. The final library was generated by PCR

amplification of the Linker-ligated cDNA with two primers of P5

and P7 and Phusion PCR Master Mix (New England Biolab) using a

15 cycle program (98uC for 30 sec; 15 cycles of 98uC for 10 sec,

65uC for 30 sec, 72uC for 30 sec; 72uC for 5 min).

Sequencing and Read Mapping on the Genome
Following generation of the sequencing library, sequencing was

performed using the Illumina Genome Analyzer II.

Gene Filtering, Scaling, and Quantification
For the HEEBO data, the log base 2 of the normalized red/green

ratio was computed for all microarray spots not flagged as low

quality (45,561 HEEBO biosequenceIDs). Multiple probes from the

same HUGO gene ID were averaged, and HUGO gene IDs with

less than 70% valid data were removed, leaving ,24K genes.

For the 3SEQ data, each 25 bp read was mapped to the

genome (Hg18) using Eland software, provided by Solexa. Non-

unique hits and hits with .1 mismatch were discarded. For each

sample, the sum of the unique annotated hits located within 1KB

of a gene annotation on the reference genome was computed,

leaving ,27K genes with at least 1 hit. We removed genes with

less than 25 total hits across 25 samples, leaving ,18K genes.

Statistical analyses comparing 3SEQ and HEEBO were limited

to the ,12K genes included in the filtered 3SEQ data set and

present on the HEEBO microarray platform.

Statistical Analysis
Data centering and scaling. All samples were centered by

subtracting the sample mean and scaled by dividing by the sample

standard deviation. All statistical analyses comparing 3SEQ and

HEEBO were performed separately on the scaled measurements

from the 4 platform-tissue preparation combinations (3SEQ-

frozen, 3SEQ-FFPET, HEEBO-frozen, HEEBO-FFPET).

Correlation of gene expression measurements. To assess

the correlation of gene expression measurements from frozen tissue

and FFPET on 3SEQ and HEEBO, we computed Spearman’s rho

as a rank-based non-parametric measure of correlation. To assess

the correlation of the test statistics generated on frozen tissue and

FFPET, we computed the Pearson’s correlation of the test statistics

on each of the platforms.

Significance testing: Significance testing was performed using

modified two-sample t-statistics in order to identify genes

differentially expressed between DTF and SFT. FDRs were

estimated by permutations. The modified t-statistic was computed

as described in [51] as: d(i)~
�xxSFT (i){�xxDTF (i)

s(i)zs0

, where �xxSFT (i)

and �xxDTF (i) are defined as the average expression levels for gene i
in SFT and DTF respectively, s0 is a small positive constant, which

we set to 0.05, and s(i) is the standard deviation of repeated

expression measurements. To generate an FDR for symmetric cut-

offs of the test statistics, we: permuted the sample class labels for

150 iterations; computed a modified t-statistic (as described above)

for each gene during each iteration; and calculated the FDR for

test statistic c as:

median over the permuted data sets of nperm(abs(t)§abs(c))

� ��
nreal(abs(t)§abs(c))

, where nperm(abs(t)§abs(c)) is the number of genes in each permuted

dataset with a t-statistic greater than or equal to c in absolute value,

and nreal(abs(t)§abs(c)) is the number of genes in the real dataset with

a t-statistic greater than or equal to c in absolute value.

Functional gene set analysis. Functional gene set analysis

was performed using the DAVID set of bioinformatics tools

[53,68]. For the gene set analysis, we ranked the genes by test

statistic and submitted the top 1000 genes in DTF and SFT for

3SEQ-frozen, 3SEQ-FFPET, and HEEBO-frozen. For HEEBO-

FFPET we submitted the genes relatively highly expressed in DTF

(114 genes) and SFT (57 genes) with an FDR,0.05. We identified

the KEGG pathways containing at least 10 genes from the

submitted gene list with a modified Fisher exact p value (EASE

score [53]) less than 0.05.

Supporting Information

Figure S1 Histograms of probability density of scaled and

centered expression values. (A) 3SEQ-FFPET; (B) 3SEQ-frozen;

(C) HEEBO-FFPET; and (D) HEEBO-frozen. The x axis is the

scaled expression value. The y axis is the histogram density.

Found at: doi:10.1371/journal.pone.0008768.s001 (0.34 MB TIF)

Figure S2 False discovery rate vs. number of genes called

significant with equal sample sizes. Since our dataset contained

slightly different numbers of samples in each platform-tissue type

combination (Table S1), we performed the FDR vs. genes called

significant analysis with all platform-tissue type combinations

containing 5 DTF vs. 6 SFT samples. For this analysis, we

performed 50 iterations, in which we selected 5 DTF and 6 SFT

samples from each platform-tissue type combination. We then

took the mean and median of the results across the 50 iterations.

The mean (A) and median (B) results with equal sample sizes of the

FDR vs. number of genes differentially expressed plots are

displayed.

Found at: doi:10.1371/journal.pone.0008768.s002 (0.99 MB TIF)

Table S1 DTF and SFT tumor samples included in the analysis.

The table lists the 23 sample IDs in the first column. The next 3
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columns list the tumor resection year, RNA extraction year, and

RNA yield, respectively. The final 4 columns are labelled 3SEQ-

FFPET, 3SEQ-Frozen, HEEBO-FFPET, and HEEBO-Frozen,

respectively. A cell contains an ‘‘X’’ if the row’s sample was

profiled by the platform-tissue type combination indicated by the

column’s header.

Found at: doi:10.1371/journal.pone.0008768.s003 (0.06 MB

DOC)

Table S2 Test statistics and FDRs. The first column indicates

the gene symbol for the 12,512 genes included in the analysis. The

next 8 columns display the row’s gene’s modified t-statistic and

FDR obtained by 3SEQ-frozen, 3SEQ-FFPET, HEEBO-frozen,

and HEEBO-FFPET, respectively. A negative t-statistic indicates

that the gene showed relatively higher expression in DTF, and a

positive t-statistic indicates that the gene showed relatively higher

expression in SFT.

Found at: doi:10.1371/journal.pone.0008768.s004 (2.37 MB

XLS)

Table S3 Summary of results from functional gene set analysis.

All 25 KEGG gene sets that showed relative enrichment in either

DTF or SFT by 1 of the 4 platform-tissue type combinations is

indicated in the first column. The next 8 columns contain an ‘‘X’’

if the row’s KEGG biological pathway was identified as relatively

enriched in DTF (columns B–E) or SFT (columns F–I) by analysis

on 3SEQ-frozen (columns B and F), 3SEQ-FFPET (columns C

and G), HEEBO-frozen (columns D and H), and HEEBO-FFPET

(columns E and I).

Found at: doi:10.1371/journal.pone.0008768.s005 (0.06 MB

DOC)

Table S4 Detailed results of functional gene set analysis. This

table displays separately the results from 3SEQ-frozen, 3SEQ-

FFPET, HEEBO-frozen, and HEEBO-FFPET for KEGG

biological pathways identified as relatively highly expressed in

DTF or SFT. Each enriched KEGG biological pathway is

indicated in column B, the numbers of genes from the pathway

differentially expressed in DTF or SFT is presented in column C,

the modified Fisher exact p-value (EASE score) for the enrichment

is presented in column D, and the genes from the pathway

identified as highly expressed in DTF or SFT are provided in

column E.

Found at: doi:10.1371/journal.pone.0008768.s006 (0.08 MB

DOC)

Table S5 Genes expressed exclusively (or almost exclusively) in

DTF or SFT. This list presents the 44 genes identified as

exclusively (or almost exclusively) expressed in SFT (A) or DTF (B)

in the analysis of the 3SEQ data. The criteria for inclusion on this

list was the gene must show at least 100 reads across the DTF or

SFT samples and be expressed exclusively in DTF or SFT or show

at least 100 fold increased expression in DTF or SFT.

Found at: doi:10.1371/journal.pone.0008768.s007 (0.07 MB

DOC)
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