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Abstract In a projective plane PG(2,K) defined over an algebraically closed field
K of characteristic 0, we give a complete classification of 3-nets realizing a finite
group. An infinite family, due to Yuzvinsky (Compos. Math. 140:1614–1624, 2004),
arises from plane cubics and comprises 3-nets realizing cyclic and direct products of
two cyclic groups. Another known infinite family, due to Pereira and Yuzvinsky (Adv.
Math. 219:672–688, 2008), comprises 3-nets realizing dihedral groups. We prove that
there is no further infinite family. Urzúa’s 3-nets (Adv. Geom. 10:287–310, 2010)
realizing the quaternion group of order 8 are the unique sporadic examples.

If p is larger than the order of the group, the above classification holds in charac-
teristic p > 0 apart from three possible exceptions Alt4, Sym4, and Alt5.

Motivation for the study of finite 3-nets in the complex plane comes from the study
of complex line arrangements and from resonance theory; see (Falk and Yuzvinsky
in Compos. Math. 143:1069–1088, 2007; Miguel and Buzunáriz in Graphs Comb.
25:469–488, 2009; Pereira and Yuzvinsky in Adv. Math. 219:672–688, 2008; Yuzvin-
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sky in Compos. Math. 140:1614–1624, 2004; Yuzvinsky in Proc. Am. Math. Soc.
137:1641–1648, 2009).
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1 Introduction

In a projective plane a 3-net consists of three pairwise disjoint classes of lines such
that every point incident with two lines from distinct classes is incident with exactly
one line from each of the three classes. If one of the classes has finite size, say n, then
the other two classes also have size n, called the order of the 3-net.

The notion of a 3-net comes from classical differential geometry via the combina-
torial abstraction of the notion of a 3-web. There is a long history about finite 3-nets
in combinatorics related to affine planes, latin squares, loops, and strictly transitive
permutation sets. In this paper we deal with 3-nets in a projective plane PG(2,K)

over an algebraically closed field K that are coordinatized by a group. Such a 3-net,
with line classes A,B,C and coordinatizing group G = (G, ·), is equivalently defined
by a triple of bijective maps from G to (A,B,C), say

α : G →A, β : G → B, γ : G → C

such that a · b = c if and only if α(a),β(b), γ (c) are three concurrent lines in
PG(2,K) for any a, b, c ∈ G. If this is the case, the 3-net in PG(2,K) is said to real-
ize the group G. In recent years, finite 3-nets realizing a group in the complex plane
have been investigated in connection with complex line arrangements and resonance
theory; see [4, 13, 15, 17, 18].

In the present paper, combinatorial methods are used to investigate finite 3-nets
realizing a group. Since key examples, such as algebraic 3-nets and tetrahedron type
3-nets, arise naturally in the dual plane of PG(2,K), it is convenient to work with the
dual concept of a 3-net.

Formally, a dual 3-net of order n in PG(2,K) consists of a triple (Λ1,Λ2,Λ3)

with Λ1,Λ2,Λ3 pairwise disjoint point sets of size n, called components, such that
every line meeting two distinct components meets each component in precisely one
point. A dual 3-net (Λ1,Λ2,Λ3) realizing a group is algebraic if its points lie on a
plane cubic and is of tetrahedron type if its components lie on the six sides (diagonals)
of a nondegenerate quadrangle in such a way that Λi = Δi ∪Γi with Δi and Γi lying
on opposite sides for i = 1,2,3.

The goal of this paper is to prove the following classification theorem.

Theorem 1 In the projective plane PG(2,K) defined over an algebraically closed
field K of characteristic p ≥ 0, let (Λ1,Λ2,Λ3) be a dual 3-net of order n ≥ 4 that
realizes a group G. If either p = 0 or p > n, then one of the following holds.

(I) G is either cyclic or the direct product of two cyclic groups, and (Λ1,Λ2,Λ3)

is algebraic.
(II) G is dihedral, and (Λ1,Λ2,Λ3) is of tetrahedron type.
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(III) G is the quaternion group of order 8.
(IV) G has order 12 and is isomorphic to Alt4.
(V) G has order 24 and is isomorphic to Sym4.

(VI) G has order 60 and is isomorphic to Alt5.

A computer aided exhaustive search shows that if p = 0, then (IV) (and hence (V),
(VI)) does not occur; see [14].

Theorem 1 shows that every realizable finite group can act in PG(2,K) as a pro-
jectivity group. This confirms Yuzvinsky’s conjecture for p = 0.

The proof of Theorem 1 uses some previous results due to Yuzvinsky [18], Urzúa
[16], and Blokhuis, Korchmáros, and Mazzocca [2].

Our notation and terminology are standard; see [8]. In view of Theorem 1, K
denotes an algebraically closed field of characteristic p where either p = 0 or p ≥ 5,
and any dual 3-net in the present paper is supposed to have order n with n < p

whenever p > 0.

2 Some useful results on plane cubics

A nice infinite family of dual 3-nets realizing a cyclic group arises from plane cu-
bics in PG(2,K); see [17]. The key idea is to use the well-known Abelian group
defined on the points of an irreducible plane cubic, recalled here in the following two
propositions and illustrated in Fig. 1.

Proposition 1 [7, Theorem 6.104] A nonsingular plane cubic F can be equipped
with an additive group (F ,+) on the set of all its points. If an inflection point P0 of
F is chosen to be the identity 0, then three distinct points P,Q,R ∈ F are collinear
if and only if P + Q + R = 0. For a prime number d �= p, the subgroup of (F ,+)

consisting of all elements g with dg = 0 is isomorphic to Cd × Cd , while for d = p,
it is either trivial or isomorphic to Cp according as F is supersingular or not.

Fig. 1 Abelian group law on an
elliptic curve
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Proposition 2 [17, Proposition 5.6, (1)] Let F be an irreducible singular plane cubic
with its unique singular point U , and define the operation + on F \ {U} in exactly
the same way as on a nonsingular plane cubic. Then (F ,+) is an Abelian group
isomorphic to the additive group of K or to the multiplicative group of K, according
as P is a cusp or a node.

If P is a nonsingular and noninflection point of F , then the tangent to F at P

meets F in a point P ′ other than P , and P ′ is the tangential point of P . Every
inflection point of a nonsingular cubic F is the center of an involutory homology
preserving F . A classical Lame configuration consists of two triples of distinct lines
in PG(2,K), say �1, �2, �3 and r1, r2, r3, such that no line from one triple passes
through the common point of two lines from the other triple. For 1 ≤ j, k ≤ 3, let Rjk

denote the common point of the lines �j and rk . There are nine such common points,
and they are called the points of the Lame configuration.

Proposition 3 (Lame’s Theorem) If eight points from a Lame configuration lie on a
plane cubic, then the ninth also does.

3 3-Nets, quasigroups and loops

A latin square of order n is a table with n rows and n columns which has n2 entries
with n different elements none of them occurring twice within any row or column.
If (L,∗) is a quasigroup of order n, then its multiplicative table, also called Cayley
table, is a latin square of order n, and the converse also holds.

For two integers k,n both bigger than 1, let (G, ·) be a group of order kn contain-
ing a normal subgroup (H, ·) of order n. Let G be a Cayley table of (G, ·). Obviously,
the rows and the columns representing the elements of (H, ·) in G form a latin square
that is a Cayley table for (H, ·). From G we may extract k2 − 1 more latin squares
using the cosets of H in G. In fact, for any two such cosets H1 and H2, a latin square
H1,2 is obtained by taking as rows (respectively columns) the elements of H1 (re-
spectively H2).

Proposition 4 The latin square H1,2 is a Cayley table for a quasigroup isotopic to
the group H .

Proof Fix an element t1 ∈ H1. In H1,2, label the row representing the element h1 ∈
H1 with h′

1 ∈ H where h1 = t1 · h′
1. Similarly, for a fixed element t2 ∈ H2, label

the column representing the element h2 ∈ H2 with h′
2 ∈ H where h2 = h′

2 · t2. The
entries in H1,2 come from the coset H1 · H2. Now, label the entry h3 in H1 · H2 with
the element h′

3 ∈ H where h3 = t1 · h′
3 · t2. Doing so, H1,2 becomes a Cayley table

for the subgroup (H, ·), whence the assertion follows. �

In terms of a dual 3-net, the relationship between 3-nets and quasigroups can be
described as follows. Let (L, ·) be a loop arising from an embeddable 3-net, and
consider its dual 3-net with its components Λ1,Λ2,Λ3. For i = 1,2,3, the points
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in Λi are bijectively labeled by the elements of L. Let (A1,A2,A3) with Ai ∈ Λi

denote the triple of the points corresponding to the element a ∈ L. With this notation,
a · b = c holds in L if and only if the points A1,B2, and C3 are collinear. In this way,
points in Λ3 are naturally labeled when a · b is the label of C3. Let (E1,E2,E3)

be the triple for the unit element e of L. From e · e = e, the points E1,E2, and E3
are collinear. Since a · a = a only holds for a = e, the points A1,A2,A3 are the
vertices of a (nondegenerate) triangle whenever a �= e. Furthermore, from e · a = a,
the points E1, A2, and A3 are collinear; similarly, a · e = a yields that the points A1,
E2, and A3 are collinear. However, the points A1,A2, and E3 form a triangle in
general; they are collinear if and only if a · a = e, i.e., a is an involution of L.

In some cases, it is useful to relabel the points of Λ3 replacing the above bijection
A3 → a from Λ3 to L by the bijection A3 → a′ where a′ is the inverse of a in (L, ·).
Doing so, three points A1,B2,C3 with A1 ∈ Λ1, B2 ∈ Λ2, C3 ∈ Λ3 are collinear if
and only if a · b · c = e with e being the unit element in (L, ·). This new bijective
labeling will be called a collinear relabeling with respect to Λ3.

In this paper we are interested in 3-nets of PG(2,K) that are coordinatized by a
group G. If this is the case, we say that the 3-net realizes the group G. In terms of dual
3-nets where Λ1,Λ2,Λ3 are the three components, the meaning of this condition is
as follows: There exists a triple of bijective maps from G to (Λ1,Λ2,Λ3), say

α : G → Λ1, β : G → Λ2, γ : G → Λ3,

such that a · b = c if and only if α(a),β(b), γ (c) are three collinear points for any
a, b, c ∈ G.

Let (Λ1,Λ2,Λ3) be a dual 3-net that realizes a group (G, ·) of order kn containing
a subgroup (H, ·) of order n. Then the left cosets of H provide a partition of each
component Λi into k subsets. Such subsets are called left H -members and denoted by
Γ

(1)
i , . . . ,Γ

(k)
i , or simply Γi when this does not cause confusion. The left translation

map σg : x 
→ x +g preserves every left H -member. The following lemma shows that
every left H -member Γ1 determines a dual 3-subnet of (Λ1,Λ2,Λ3) that realizes H .

Lemma 1 Let (Λ1,Λ2,Λ3) be a dual 3-net that realizes a group (G, ·) of order
kn containing a subgroup (H, ·) of order n. For any left coset g · H of H in G, let
Γ1 = g ·H , Γ2 = H , and Γ3 = g ·H . Then (Γ1,Γ2,Γ3) is a 3-subnet of (Λ1,Λ2,Λ3)

that realizes H .

Proof For any h1, h2 ∈ H , we have that (g ·h1) ·h2 = g · (h1 ·h2) = g ·h with h ∈ H .
Hence, any line joining a point of Γ1 with a point of Γ2 meets Γ3. �

Similar results hold for right cosets of H . Therefore, for any right coset H · g,
the triple (Γ1,Γ2,Γ3) with Γ1 = H , Γ2 = H · g, and Γ3 = H · g is a 3-subnet of
(Λ1,Λ2,Λ3) that realizes H .

The dual 3-subnets (Γ1,Γ2,Γ3) introduced in Lemma 1 play a relevant role. When
g ranges over G, we obtain k such dual 3-nets, each being called a dual 3-net realiz-
ing the subgroup H as a subgroup of G.

Obviously, left cosets and right cosets coincide if and only if H is a normal sub-
group of G, and if this is the case, we may use the shorter term of coset.
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Now assume that H is a normal subgroup of G. Take two H -members from dif-
ferent components, say Γi and Γj with 1 ≤ i < j ≤ 3. By Proposition 4, there exists
a member Γm from the remaining component Λm, with 1 ≤ m ≤ 3 and m �= i, j , such
that (Γ1,Γ2,Γ3) is a dual 3-net of realizing (H, ·). Doing so, we obtain k2 dual 3-
subnets of (Λ1,Λ2,Λ3). They are all the dual 3-subnets of (Λ1,Λ2,Λ3) that realize
the normal subgroup (H, ·) as a subgroup of (G, ·).

Lemma 2 Let (Λ1,Λ2,Λ3) be a dual 3-net that realizes a group (G, ·) of order kn

containing a normal subgroup (H, ·) of order n. For any two cosets g1 ·H and g2 ·H
of H in G, let Γ1 = g1 · H , Γ2 = g2 · H , and Γ3 = (g1 · g2) · H . Then (Γ1,Γ2,Γ3) is
a 3-subnet of (Λ1,Λ2,Λ3) that realizes H .

If g1 and g2 range independently over G, we obtain k2 such dual 3-nets, each
being called a dual 3-net realizing the normal subgroup H as a subgroup of G.

4 The infinite families of dual 3-nets realizing a group

A dual 3-net (Λ1,Λ2,Λ3) with n ≥ 4 is said to be algebraic if all its points lie
on a (uniquely determined) plane cubic F , called the associated plane cubic of
(Λ1,Λ2,Λ3). Algebraic dual 3-nets fall into three subfamilies according as the plane
cubic splits into three lines, or in an irreducible conic and a line, or it is irreducible.

4.1 Proper algebraic dual 3-nets

An algebraic dual 3-net (Λ1,Λ2,Λ3) is said to be proper if its points lie on an irre-
ducible plane cubic F .

Proposition 5 Any proper algebraic dual 3-net (Λ1,Λ2,Λ3) realizes a group M .
There is a subgroup T ∼= M in (F ,+) such that each component Λi is a coset T +gi

in (F ,+) where g1 + g2 + g3 = 0.

Proof We do some computation in (F ,+). Let A1,A2,A3 ∈ Λ1 be three distinct
points viewed as elements in (F ,+). First, we show that the solution of the equation
in (F ,+)

A1 − A2 = X − A3 (1)

belongs to Λ1. Let C ∈ Λ3. By the definition of a dual 3-net, there exist Bi ∈
Λ2 such that Ai + Bi + C = 0 for i = 1,2,3. Now choose C1 ∈ Λ3 for which
A1 + B2 + C1 = 0, and then choose A∗ ∈ Λ1 for which A∗ + B3 + C1 = 0. Now,

A∗ − A3 = −B3 − C1 − (−B3 − C) = C − C1,

A1 − A2 = −B2 − C1 − (−B2 − C) = C − C1.
(2)

Therefore, A∗ is a solution of Eq. (2).
Now we are in a position to prove that Λ1 is a coset of a subgroup of (F ,+). For

A0 ∈ Λ1, let T1 = {A − A0 | A ∈ Λ1}. Since (A1 − A0) − (A2 − A0) = A1 − A2,
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Eq. (2) ensures the existence of A∗ ∈ Λ1 for which A1 − A2 = A∗ − A0 whenever
A1,A2 ∈ Λ1. Hence, (A1 − A0) − (A2 − A0) ∈ T1. From this we have that T1 is a
subgroup of (F ,+), and therefore Λ1 is a coset T + g1 of T1 in (F ,+).

Similarly, Λ2 = T2 + g2 and Λ3 = T3 + g3 with some subgroups T2, T3 of (F ,+)

and elements g2, g3 ∈ (F ,+). It remains to show that T1 = T2 = T3. The line through
the points g1 and g2 meets Λ3 in a point t∗ +g3. Replacing g3 with g3 + t∗ allows us
to assume that g1 + g2 + g3 = 0. Then three points gi + ti with ti ∈ Ti are collinear if
and only if t1 + t2 + t3 = 0. For t3 = 0, this yields t2 = −t1. Hence, every element of
T2 is in T1, and the converse also holds. Hence, T1 = T2. Now, t3 = −t1 − t2 yields
that T3 = T1. Therefore, T = T1 = T2 = T3 and Λi = T + gi for i = 1,2,3. This
shows that (Λ1,Λ2,Λ3) realizes a group M ∼= T . �

4.2 Triangular dual 3-nets

An algebraic dual 3-net (Λ1,Λ2,Λ3) is regular if the components lie on three lines,
and it is either of pencil type or triangular according as the three lines are either
concurrent or they are the sides of a triangle.

Lemma 3 Every regular dual 3-net of order n is triangular.

Proof Assume that the components of a regular dual 3-net (Λ1,Λ2,Λ3) lie on three
concurrent lines. Using homogeneous coordinates in PG(2,K), these lines are as-
sumed to be those with equations Y = 0, X = 0, X − Y = 0, respectively, so that the
line of equation Z = 0 meets each component. Therefore, the points in the compo-
nents may be labeled so that

Λ1 = {
(1,0, ξ) | ξ ∈ L1

}
, Λ2 = {

(0,1, η) | η ∈ L2
}
,

Λ3 = {
(1,1, ζ ) | ζ ∈ L3

}
,

with Li subsets of K containing 0. By a straightforward computation, three points
P = (1,0, ξ), Q = (0,1, η), R = (1,1, ζ ) are collinear if and only if ζ = ξ + η.
Therefore, L1 = L2 = L3, and (Λ1,Λ2,Λ3) realizes a subgroup of the additive group
of K of order n. Therefore, n is a power of p. But this contradicts the hypothesis
p > n. �

For a triangular dual 3-net, the (uniquely determined) triangle whose sides contain
the components is called the associated triangle.

Proposition 6 Every triangular dual 3-net realizes a cyclic group isomorphic to a
multiplicative subgroup of K.

Proof Using homogeneous coordinates in PG(2,K), the vertices of the triangle
are assumed to be the points O = (0,0,1), X∞ = (1,0,0), Y∞ = (0,1,0). For
i = 1,2,3, let �i denote the fundamental line with equation Y = 0, X = 0, Z = 0,
respectively. Therefore, the points in the components lie on the fundamental lines,
and they may be labeled in such a way that

Λ1 = {
(ξ,0,1) | ξ ∈ L1

}
, Λ2 = {

(0, η,1) | η ∈ L2
}
,
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Λ3 = {
(1,−ζ,0) | ζ ∈ L3

}
,

with Li subsets of K∗ of a given size n. With this setting, three points P = (ξ,0,1),
Q = (0, η,1), R = (1,−ζ,0) are collinear if and only if ξζ = η. With an appropriate
choice of the unity point of the coordinate system, both 1 ∈ L1 and 1 ∈ L2 may also
be assumed. From 1 ∈ L1 we have that L2 = L3. This, together with 1 ∈ L2, implies
that L1 = L2 = L3 = L. Since 1 ∈ L, L is a finite multiplicative subgroup of K. In
particular, L is cyclic. �

Remark 2 In the proof of Proposition 6, if the unity point of the coordinate system is
arbitrarily chosen, the subsets L1, L2, and L3 are not necessarily subgroups. Actu-
ally, they are cosets of (the unique) multiplicative cyclic subgroup H , say L1 = aH ,
L2 = bH , and L3 = cH , with ac = b. Furthermore, since every h ∈ H defines a
projectivity σh : x 
→ hx of the projective line, and these projectivities form a group
isomorphic to H , it turns out that Li is an orbit of a cyclic projectivity group of �i of
order n for i = 1,2,3.

Proposition 7 Let (Λ1,Λ2,Λ3) be a triangular dual 3-net. Then every point
of (Λ1,Λ2,Λ3) is the center of a unique involutory homology that preserves
(Λ1,Λ2,Λ3).

Proof The point (ξ,0,1) is the center and the line through Y∞ and the point
(−ξ,0,1) is the axis of the involutory homology ϕξ associated to the matrix

⎛

⎝
0 0 ξ2

0 −ξ 0
1 0 0

⎞

⎠ .

With the above notation, if ξ ∈ aH , then hξ preserves Λ1 while it sends any point in
Λ2 to a point in Λ3, and vice versa. Similarly, for η ∈ bH and ζ ∈ cH where ψη and
θζ are the involutory homologies associated to the matrices

⎛

⎝
−η 0 0
0 0 η2

0 1 0

⎞

⎠ and

⎛

⎝
0 1 0
ζ 2 0 0
0 0 ζ

⎞

⎠ .

�

With the notation introduced in the proof of Proposition 6, let Φ1 = {ϕξϕξ ′ | ξ, ξ ′ ∈
aH } and Φ2 = {ψηψη′ | η,η′ ∈ bH }. Then both are cyclic groups isomorphic to H .
A direct computation gives the following result.

Proposition 8 Φ1 ∩ Φ2 is either trivial or has order 3.

Some useful consequences are stated in the following proposition.

Proposition 9 Let Θ = 〈Φ1,Φ2〉. Then

|Θ| =
{ |H |2, when gcd(3, |H |) = 1;

1
3 |H |2, when gcd(3, |H |) = 3.
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Furthermore, Θ fixes the vertices of the fundamental triangle, and no nontrivial ele-
ment of Θ fixes a point outside the sides of the fundamental triangle.

We prove another useful result.

Proposition 10 If (Γ1,Γ2,Γ3) and (Σ1,Σ2,Σ3) are triangular dual 3-nets such that
Γ1 = Σ1, then the associated triangles share the vertices on their common side.

Proof By Remark 2, Γ1 is the orbit of a cyclic projectivity group H1 of the line �

containing Γ1, while the two fixed points of H1 on �, say P1 and P2, are vertices of
the triangle containing Γ1,Γ2,Γ3.

The same holds for Σ1 with a cyclic projectivity group H2 and fixed points Q1,
Q2. From Γ1 = Σ1 we have that the projectivity group H of the line � generated by
H1 and H2 preserves Γ1. Let M be the projectivity group generated by H1 and H2.

Observe that M is a finite group since it has an orbit of finite size n ≥ 3. Clearly,
|M| ≥ n, and the equality holds if and only if H1 = H2. If this is the case, then
{P1,P2} = {Q1,Q2}. Therefore, for the purpose of the proof, we may assume on the
contrary that H1 �= H2 and |M| > n.

Now, Dickson’s classification of finite subgroups of PGL(2,K) applies to M .
From that classification we have that M is one of the nine subgroups listed as
(1), . . . , (9) in [12, Theorem 1], where e denotes the order of the stabilizer MP of
a point P in a short M-orbit, that is, an M-orbit of size smaller than M . Observe that
such an M-orbit has size |M|/e. There exist finitely many short M-orbits, and Σ1 is
one of them. It may be that an M-orbit is trivial as it consists of just one point.

Obviously, M is neither cyclic nor dihedral as it contains two distinct cyclic sub-
groups of the same order n ≥ 3.

Also, M is not an elementary Abelian p-group E of rank ≥ 2; otherwise, we
would have |E| = |M| > n since the minimum size of a nontrivial E-orbit is |E|;
see (2) in [12, Theorem 1].

From (5) in [12, Theorem 1] with p �= 2,3, the possible sizes of a short Alt4-orbit
are 4 and 6, each larger than 3. On the other hand, Alt4 has no element of order larger
than 3. Therefore, M �∼= Alt4 for p �= 2,3.

Similarly, from (5) in [12, Theorem 1] with p �= 2,3, the possible sizes of a short
Sym4-orbit are 6,8,12, each larger than 4. Since Sym4 has no element of order larger
than 4, we have M �∼= Sym4 for p �= 2,3.

Again, from (6) in [12, Theorem 1] with p �= 2,5, the possible sizes of a short Alt5-
orbit are 10 and 12 for p = 3, while 12,20,30 for p �= 2,3,5. Each size exceeds 5.
On the other hand, Alt5 has no element of order larger than 5. Therefore, M �∼= Alt5
for p �= 2,5.

The group M might be isomorphic to a subgroup L of order qk with k | (q −1) and
q = ph, h ≥ 1. Here L is the semidirect product of the unique (elementary Abelian)
Sylow p-subgroup of L by a cyclic subgroup of order k. No element in L has order
larger than k when h > 1 and p when h = 1. From (7) in [12, Theorem 1], any
nontrivial short L-orbit has size q . Therefore, M ∼= L implies that h = 1 and n = p.
But this is inconsistent with the hypothesis p > n.

Finally, M might be isomorphic to a subgroup L such that either L = PSL(2, q)

or L = PGL(2, q) with q = ph, h ≥ 1. No element in L has order larger than q + 1.
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From (7) and (8) in [12, Theorem 1], any short L-orbit has size either q + 1 or
q(q − 1). For q ≥ 3, if M ∼= L occurs, then n = q + 1 ≥ p + 1, a contradiction
with the hypothesis p > n. For q = 2, we have that |L| = 6, which is smaller than 12.
Therefore, M �∼= L.

No possibility has arisen for M . Therefore, {P1,P2} = {Q1,Q2}. �

4.3 Conic-line-type dual 3-nets

An algebraic dual 3-net (Λ1,Λ2,Λ3) is of conic-line type if two of its three compo-
nents lie on an irreducible conic C and the third one lies on a line �. All such 3-nets
realize groups, and they can be described using subgroups of the projectivity group
PGL(2,K) of C. For this purpose, some basic results on subgroups and involutions
in PGL(2,K) are useful, which essentially depend on the fact that every involution
in PGL(2,K) is a perspectivity whose center is a point outside C and axis is the pole
of the center with respect to the orthogonal polarity arising from C. We begin with an
example.

Example 1 Take any cyclic subgroup Cn of PGL(2,K) of order n ≥ 3 with n �= p that
preserves C. Let Dn be the unique dihedral subgroup of PGL(2,K) containing Cn.
If j is the (only) involution in Z(Dn) and � is its axis, then the centers of the other
involutions in Dn lie on �. We have n involutions in Dn other than j , and the set
of the their centers is taken for Λ1. Take a Cn-orbit O on C such that the tangent
to C at any point in O is disjoint from Λ1; equivalently, the Dn-orbit Q is larger
than O. Then Q is the union of O together with another Cn-orbit. Take these two
Cn-orbits for Λ2 and Λ3, respectively. Then (Λ1,Λ2,Λ3) is a conic-line dual 3-net
which realizes Cn. It may be observed that � is a chord of C and the multiplicative
group of K has a subgroup of order n.

The cyclic subgroups Cn form a unique conjugacy class in PGL(2,K). For a cyclic
subgroup Cn of PGL(2,K) of order n, the above construction provides a unique
example of a dual 3-net realizing Cn. Using the classification of finite subgroups of
PGL(2,K) as in the proof of [2, Theorem 6.1], the following result can be proven.
For details, see the preliminary version [10, 11].

Proposition 11 Up to projectivities, the conic-line dual 3-nets of order n are those
described in Example 1.

A corollary of this is the following result.

Proposition 12 A conic-line dual 3-net realizes a cyclic group Cn.

The result below can be proven with an argument similar to that used in the proof
of Proposition 10. For details, see the preliminary version [10, 11].

Proposition 13 Let (Γ1,Γ2,Γ3) and (Δ1,Δ2,Δ3) be two conic-line-type dual 3-nets
where Γ3 lies on the line � and Δ3 lies on the line s. If Γ1 = Δ1, then � = s.
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4.4 Tetrahedron type dual 3-nets

In PG(2,K), any nondegenerate quadrangle with its six sides (including the two di-
agonals) may be viewed as the projection of a tetrahedron of PG(3,K). This suggests
to call two sides of the quadrangle opposite if they do not have any common vertex.
With this definition, the six sides of the quadrangle are partitioned into three couples
of opposite sides. Let (Λ1,Λ2,Λ3) be a dual 3-net of order 2n containing a dual
3-subnet

(Γ1,Γ2,Γ3) (3)

of order n. Observe that (Λ1,Λ2,Λ3) contains three more dual 3-subnets of order n.
In fact, for Δi = Λi \ Γi , each of the triples below defines such a subnet:

(Γ1,Δ2,Δ3), (Δ1,Γ2,Δ3), (Δ1,Δ2,Γ3). (4)

Now, the dual 3-net (Λ1,Λ2,Λ3) is said to be tetrahedron-type if its components
lie on the sides of a nondegenerate quadrangle such that Γi and Δi are contained in
opposite sides for i = 1,2,3. Such a nondegenerate quadrangle is said to be associ-
ated to (Λ1,Λ2,Λ3). Observe that each of the six sides of the quadrangle contains
exactly one of the point-sets Γi and Δi . Moreover, each of the four dual 3-subnets
listed in (3) and (4) is triangular as each of its components, called a half-set, lies on a
side of a triangle whose vertices are also vertices of the quadrangle. Therefore, there
are six half-sets in any dual 3-net of tetrahedron type.

Proposition 14 Any tetrahedron-type dual 3-net realizes a dihedral group.

Proof The associated quadrangle is assumed to be the fundamental quadrangle of
the homogeneous coordinate system in PG(2,K), so that its vertices are O , X∞, Y∞
together with the unity point E = (1,1,1). By definition, the subnet (3) is triangular.
Without loss of generality,

Γ1 = {
(ξ,0,1) | ξ ∈ L1

}
, Γ2 = {

(0, η,1) | η ∈ L2
}
,

Γ3 = {
(1,−ζ,0) | ζ ∈ L3

}
,

where L1 = aH,L2 = bH,L3 = cH are cosets of H with ac = b; see Re-
mark 2. We fix such triple {a, b, c}. Observe that (a,0,1) ∈ Γ1, (0, b,1) ∈ Γ2, and
(1,−c,0) ∈ Γ3. Furthermore,

Δ1 = {
(1, α,1) | α ∈ M1

}
, Δ2 = {

(β,1,1) | β ∈ M2
}
,

Δ3 = {
(1,1, γ ) | γ ∈ M3

}
,

with M1,M2, and M3 subsets of K \ {0,1}, each of size n. Now, a direct computation
similar to those carried out in Sect. 4.2 gives the result. For details, see the preliminary
version [10, 11].

An alternative approach to the proof is to lift (Λ1,Λ2,Λ3) to the fundamental
tetrahedron of PG(3,K) so that the projection π from the point P0 = (1,1,1,1) on
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the plane X4 = 0 returns (Λ1,Λ2,Λ3). For this purpose, it is enough to define the
sets lying on the edges of the fundamental tetrahedron,

Γ ′
1 = {

(ξ,0,1,0) | ξ ∈ L1
}
, Γ ′

2 = {
(0, η,1,0) | η ∈ L2

}
,

Γ ′
3 = {

(1,−ζ,0,0) | ζ ∈ L3
}
, Δ′

1 = {
(0, α − 1,0,−1) | α ∈ M1

}
,

Δ′
2 = {

(β − 1,0,0,−1) | β ∈ M2
}
, Δ′

3 = {
(0,0, γ − 1,−1) | γ ∈ M3

}
,

and observe that π(Γ ′
i ) = Γi and π(Δ′

i ) = Δi for i = 1,2,3. Moreover, a triple
(P1,P2,P3) of points with Pi ∈ Γi ∪ Δi consists of collinear points if and only if
their projection does. Hence, (Γ ′

1 ∪ Γ ′
2,Γ

′
3 ∪ Δ′

1,Δ
′
2 ∪ Δ′

3) can be viewed as a “spa-
tial” dual 3-net realizing the same group H . Clearly, (Γ ′

1 ∪ Γ ′
2,Γ

′
3 ∪ Δ′

1,Δ
′
2 ∪ Δ′

3) is
contained in the sides of the fundamental tetrahedron. We claim that these sides mi-
nus the vertices form an infinite spatial dual 3-net realizing the dihedral group 2.K∗.

To prove this, parameterize the points as follows:

Σ1 = {
x1 = (x,0,1,0), (εx)1 = (0,1,0, x) | x ∈K

∗},

Σ2 = {
y2 = (1, y,0,0), (εy)2 = (0,0,1, y) | y ∈ K

∗},

Σ3 = {
z3 = (0,−z,1,0), (εz)3 = (1,0,0,−z) | z ∈ K

∗}.

(5)

Then,

x1, y2, z3 are collinear ⇔ z = xy,

(εx)1, y2, (εz)3 are collinear ⇔ z = xy ⇔ εz = (εx)y,

x1, (εy)2, (εz)3 are collinear ⇔ z = x−1y ⇔ εz = x(εy),

(εx)1, (εy)2, z3 are collinear ⇔ z = x−1y ⇔ z = (εx)(εy).

Thus, (Γ ′
1 ∪Γ ′

2,Γ
′

3 ∪Δ′
1,Δ

′
2 ∪Δ′

3) is a dual 3-subnet of (Σ1,Σ2,Σ3), and H is a
subgroup of the dihedral group 2.K∗. As H is not cyclic but it has a cyclic subgroup
of index 2, we conclude that H is itself dihedral. �

5 Classification of low-order dual 3-nets

An exhaustive computer aided search gives the following results. For details, see [14].

Proposition 15 Any dual 3-net realizing an Abelian group of order ≤ 8 is algebraic.
The dual of Urzúa’s 3-nets are the only dual 3-net that realize the quaternion group
of order 8.

Proposition 16 Any dual 3-net realizing an Abelian group of order 9 is algebraic.

Proposition 17 If p = 0, no dual 3-net realizes Alt4.
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6 Characterizations of the infinite families

Proposition 18 Every dual 3-net realizing a cyclic group is algebraic.

Proof For n = 3, we have that 3n = 9, and hence all points of the dual 3-net lie on a
cubic. Therefore, n ≥ 4 is assumed.

Let (Λ1,Λ2,Λ3) be a dual 3-net of order n that realizes the cyclic group (L,∗).
Therefore, the points of each component are labeled by In. After a collinear relabeling
with respect to Λ3, consider the configuration of the following nine points: 0,1,2
from Λ1, 0,1,2 from Λ2, and n − 1, n − 2, n − 3 from Λ3. For the seek of a clearer
notation, the point with label a in the component Λm will be denoted by am.

The configuration presents six triples of collinear points, namely

(i) {01,12, (n − 1)3}, {11,22, (n − 3)3}, {21,02, (n − 2)3};
(ii) {01,22, (n − 2)3}, {11,02, (n − 1)3}, {21,12, (n − 3)3}.
Therefore, the corresponding lines form a Lame configuration. Furthermore, the three
(pairwise distinct) lines determined by the two triples in (i) can be regarded as a to-
tally reducible plane cubic, say F1. Similarly, a totally reducible plane curve, say F2,
arises from the triples in (ii). Obviously, F1 �= F2. Therefore, the nine points of the
above Lame configuration are the base points of the pencil generated by F1 and F2.
Now, define the plane cubic F to be the cubic from the pencil which contains 31.

Our next step is to show that F also contains each of the points (n − 4)3 and 32.
For this purpose, consider the following six triples of collinear points:

(iii) {11,22, (n − 3)3}, {21,02, (n − 2)3}, {31,12, (n − 4)3};
(iv) {11,12, (n − 2)3}, {21,22, (n − 4)3}, {31,02, (n − 3)3}.
Again, the corresponding lines form a Lame configuration. Since eight of its points,
namely 11,21,31,02,12,22, (n − 2)3, (n − 3)3 lie on F , Lame’s theorem shows that
(n−4)3 also lies on F . To show that 32 ∈F , we proceed similarly using the following
six triples of collinear points:

(v) {01,32, (n − 3)3}, {11,12, (n − 2)3}, {21,22, (n − 4)3};
(vi) {01,22, (n − 2)3}, {11,32, (n − 4)3}, {21,12, (n − 3)3}.
To define a Lame configuration that behaves as before, eight of its points, namely 01,

11,21,12,22, (n − 2)3, (n − 3)3, (n − 4)3 lie on F , and by Lame’s theorem, 32 also
lies on F .

This completes the proof for n = 4. We assume that n ≥ 5 and show that (n − 5)3
lies on F . Again, we use the above argument based on the Lame configuration of the
six lines arising from the following six triples of points:

(vii) {11,32, (n − 4)3}, {21,12, (n − 3)3}, {31,22, (n − 5)3};
(viii) {11,22, (n − 3)3}, {21,32, (n − 5)3}, {31,12, (n − 4)3}.
From the previous discussion, eight of these points lie on F . Lame’s theorem yields
that the ninth, namely (n − 5)3, also lies on F . From this we infer that also 41 ∈ F .
To do this, we repeat the above argument for the Lame configuration arising from the
six triples of points



952 J Algebr Comb (2014) 39:939–966

(ix) {21,22, (n − 4)3}, {31,02, (n − 3)3}, {41,12, (n − 5)3};
(x) {21,12, (n − 3)3}, {31,22, (n − 5)3}, {41,02, (n − 4)3}.

Again, we see that eight of these points lie on F . Hence, the ninth, namely 41, also
lies on F by Lame’s theorem.

Therefore, from the hypothesis that F passes through the ten points

01,11,21,31,02,12,22, (n − 1)3, (n − 2)3, (n − 3)3,

we have deduced that F also passes through the ten points

11,21,31,41,12,22,32, (n − 2)3, (n − 3)3, (n − 4)3.

Comparing these two sets of ten points shows that the latter derives from the former
shifting by +1 when the indices are 1 and 2, while by −1 when the indices are 3.
Therefore, repeating the above argument n − 4 times gives that all points in the dual
3-net lie on F . �

Proposition 19 [17, Theorem 5.4] If an Abelian group G contains an element of
order ≥ 10, then every dual 3-net realizing G is algebraic.

Proposition 20 [17, Theorem 4.2] No dual 3-net realizes an elementary Abelian
group of order 2h with h ≥ 3.

Proposition 21 [2, Theorem 5.1] Let (Λ1,Λ2,Λ3) be a dual 3-net such that at least
one component lies on a line. Then (Λ1,Λ2,Λ3) is either triangular or of conic-line
type.

Lemma 4 Let (Γ1,Γ2,Γ3) be an algebraic dual 3-net lying on a plane cubic F . If
F is reducible, then (Γ1,Γ2,Γ3) is either triangle or of conic-line type, according as
F splits into three lines or into a line and an irreducible conic.

Proposition 22 Every dual 3-net realizing a dihedral group of order 2n with n ≥ 3
is of tetrahedron type.

Proof Let (Λ1,Λ2,Λ3) be a dual 3-net realizing a dihedral group

Dn = 〈
x, y | x2 = yn = 1, yx = xy−1〉.

Labeling naturally the points in the components Λi as indicated in Sect. 3, every
u ∈ Dn defines a triple of points (u1, u2, u3) where ui ∈ Λi for i = 1,2,3, and vice
versa. Doing so, three points u1 ∈ Λ1, v2 ∈ Λ2, w3 ∈ Λ3 are collinear if and only if
uv = w in Dn.

Therefore, for 1 ≤ i ≤ n − 2, the triangle with vertices x2, (xy)2, (xy−i )3 and that
with vertices (1)3, y3, (y

−i )2 are in mutual perspective position from the point x1.
For two distinct points ui and vj with ui ∈ Λi and vj ∈ Λj and 1 ≤ i, j ≤ 3, let
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uivj denote the line through ui and vj . By the Desargues theorem, the three diagonal
points, that is, the points

U = (x)2(xy)2 ∩ (1)3(y)3,

(
yi

)
1 = (x)2

(
xy−i

)
3 ∩ (

y−i
)

2(1)3,

(
yi+1)

1 = (xy)2
(
xy−i

)
3 ∩ (

y−i
)

2(y)3,

are collinear. Hence, a line �1 contains each point (1)1, (y)1, . . . , (y
n−1)1 in Λ1, that

is,

(1)1, (y)1, . . . ,
(
yn−1)

1 ∈ �1.

There are some more useful Desargues configurations. Indeed, the pairs of trian-
gles with vertices

(x)2,
(
xy−1)

2,
(
y−i−1)

3 and (xy)3, (x)3,
(
y−i

)
2,

(
yi

)
2,

(
yi+1)

2,
(
yi+1)

3 and (x)3, (xy)3, (xy)2,

(
xyi

)
2,

(
xyi+1)

2,
(
yi

)
3 and (x)3, (xy)3, (1)2,

(1)2, (y)2, (x)3 and
(
yi

)
3,

(
yi+1)

3,
(
xyi

)
2, and

(x)2, (xy)2, (1)3 and
(
xyi

)
3,

(
xyi+1)

3,
(
yi

)
2

are in mutual perspective position from the points

(
y−1)

1,
(
xy−i

)
1,

(
yi

)
1,

(
yi

)
1,

(
y−i

)
1,

respectively. Therefore, there exist five more lines m1, �2,m2, �3,m3 such that

{
(x)1, (xy)1, . . . ,

(
xyn−1)

1

} ⊂ m1,
{
(1)2, (y)2, . . . ,

(
yn−1)

2

} ⊂ �2,

{
(x)2, (xy)2, . . . ,

(
xyn−1)

2

} ⊂ m2,
{
(1)3, (y)3, . . . ,

(
yn−1)

3

} ⊂ �3,

{
(x)3, (xy)3, . . . ,

(
xyn−1)

3

} ⊂ m3.

By Proposition 10, the lines �1, . . . ,m3 are the sides of a nondegenerate quadrangle,
which shows that the dual 3-net (Λ1,Λ2,Λ3) is of tetrahedron type. �

Remark 3 By Proposition 22, the dual 3-nets given in [15, Sect. 6.2] are of tetrahe-
dron type.

Proposition 23 Let G be a finite group containing a normal subgroup H of order
n ≥ 3. Assume that G can be realized by a dual 3-net (Λ1,Λ2,Λ3) and that every
dual 3-subnet of (Λ1,Λ2,Λ3) realizing H as a subgroup of G is triangular. Then H

is cyclic, and (Λ1,Λ2,Λ3) is either triangular or of tetrahedron type.
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Proof By Proposition 6, H is cyclic. Fix an H -member Γ1 from Λ1, and denote
by �1 the line containing Γ1. Consider all the triangles that contain some dual 3-
net (Γ1,Γ

j

2 ,Γ s
3 ) realizing H as a subgroup of G. By Proposition 10, these triangles

have two common vertices, say P and Q, lying on �1. For the third vertex Rj of the

triangle containing (Γ1,Γ
j

2 ,Γ s
3 ), there are two possibilities, namely, either the side

PRj contains Γ
j

2 and the side QRj contains Γ s
3 , or vice versa. Therefore, every H -

member Γ
j

2 from Λ2 (as well as every H -member Γ s
3 from Λ3) is contained in a line

passing through P or Q.
Now, replace Γ1 by another H -orbit Γ i

1 lying in Λ1 and repeat the above argument.
If �i is the line containing Γ i

1 and Pi,Qi denote the vertices, then again every H -

member Γ
j

2 from Λ2 (as well as every H -member Γ s
3 from Λ3) is contained in a line

passing through Pi or Qi .
Assume that {P,Q} �= {Pi,Qi}. If one of the vertices arising from Γ1, say P , co-

incides with one of the vertices, say Pi , arising from Γ i
1 , then the line QQi must

contain either Γ
j

2 or Γ s
3 from each (Γ1,Γ

j

2 ,Γ s
3 ). Therefore, the line QQi must con-

tain every H -member from Λ2 or every H -member from Λ3. Hence, Λ2 or Λ3 lies
on the line QQi . By Proposition 21, (Λ1,Λ2,Λ3) is either triangular or conic-line
type. The latter case cannot actually occur as Λ1 contains Γ1 and hence contains at
least three collinear points.

Therefore, {P,Q} ∩ {Pi,Qi} = ∅ may be assumed. Then the H -members from
Λ2 and Λ3 lie on four lines, namely PPi,PQi,QPi,QQi . Observe that these lines
may be assumed to be pairwise distinct, otherwise Λ2 (or Λ3) is contained in a line,
and again (Λ1,Λ2,Λ3) is triangular. Therefore, half of the H -members from Λ2 lie
on one of these four lines, say PQi , and half of them on QPi . Similarly, each of the
lines PPi and QQi contains half from the H -members from Λ3.

In the above argument, any H -member Γ2 from Λ2 may play the role of Γ1.
Therefore, there exist two lines such that each H -member from Λ1 lies on one of
them. Actually, these two lines are PQ and PiQi since each of them contains an
H -member from Λ1. In this case, (Λ1,Λ2,Λ3) is of tetrahedron type. �

Since a dihedral group of order ≥ 8 has a unique cyclic subgroup of index 2 and
such a subgroup is characteristic, Propositions 23 and 14 have the following corollary.

Proposition 24 Let G be a finite group of order n ≥ 12 containing a normal dihedral
subgroup D. If G is realized by a dual 3-net, then G is itself dihedral.

7 Dual 3-nets preserved by projectivities

Proposition 25 Let (Λ1,Λ2,Λ3) be a dual 3-net of order n ≥ 4 realizing a group G.
If every point in Λ1 is the center of an involutory homology that preserves Λ1 while
interchanges Λ2 with Λ3, then either Λ1 is contained in a line, or n = 9. In the latter
case, (Λ1,Λ2,Λ3) lies on a nonsingular cubic F whose inflection points are the
points in Λ1.
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Proof After labeling (Λ1,Λ2,Λ3) naturally, take an element a ∈ G and denote by
ϕa the (unique) involutory homology of center A1 that maps Λ2 onto Λ3. Obviously,
ϕa also maps Λ3 onto Λ2. Moreover, ϕa(X2) = Y3 ⇐⇒ a · x = y, that is, ϕa(X2) =
ϕa′(X′

2) ⇐⇒ a · x = a′ · x′, where G = (G, ·). Therefore,

ϕa′ϕa(X2) = X′
2 ⇐⇒ (

a′−1 · a) · x = x′. (6)

From this we get that for any b ∈ G, there exists b′ ∈ G such that

ϕa′ϕa(X2) = ϕb′ϕb(X2) (7)

for every X2 ∈ Λ2 or, equivalently, for every x ∈ G.
Let Φ be the projectivity group generated by all products ϕa′ϕa where both a,

a′ range over G. Obviously, Φ leaves both Λ2 and Λ3 invariant. In particular, Φ

induces a permutation group on Λ2. We show that if μ ∈ Φ fixes Λ2 pointwise, then
μ is trivial. Since n > 3, the projectivity μ has at least four fixed points in PG(2,K).
Therefore, μ is either trivial or a homology. Assume that μ is nontrivial, and let C be
the center and c the axis of μ. Take a line � through C that contains a point P ∈ Λ3
and assume that C is a point in Λ2. Then P is the unique common point of � and Λ3.
Since μ preserves Λ2, μ must fix P . Therefore, μ fixes Λ3 pointwise, and hence
Λ3 is contained in c. But then μ cannot fix any point in Λ2 other than C since the
definition of a dual 3-net implies that c is disjoint from Λ2. This contradiction means
that μ is trivial, that is, Φ acts faithfully on Λ2.

Therefore, (7) states that for any a, a′, b ∈ G, there exists b′ ∈ G satisfying the
equation ϕa′ϕa = ϕb′ϕb . This yields that Φ is an Abelian group of order n acting on
Λ2 as a sharply transitive permutation group. Also,

Φ = {ϕaϕe | a ∈ G},
where e is the identity of G. Therefore, Φ ∼= G, and G is Abelian.

Let Ψ be the projectivity group generated by Φ together with some ϕa where
a ∈ G. Then |Ψ | = 2n, and Ψ comprises the elements in Φ and the involutory ho-
mologies ϕa with a ranging over G. Obviously, Ψ interchanges Λ2 and Λ3, while it
leaves Λ1 invariant acting on Λ1 as a transitive permutation group.

Two cases are investigated according as Φ contains a homology or does not. Ob-
serve that Φ contains no elation since every elation has infinite order when p = 0
while its order is at least p when p > 0 but p > n is assumed throughout the paper.

In the former case, let ρ ∈ Φ be a homology with center C ∈ Λ1 and axis c. Since
ρ commutes with every element in Φ , the point C is fixed by Φ , and the line is
preserved by Φ . Assume that C is also the center of φa with some a ∈ G. The group
of homologies generated by φa and ρ preserves every line through C, and it has order
greater than 2. But then it cannot interchange Λ2 with Λ3. Therefore, the center of
every φa with a ∈ G lies on c. This shows that Λ1 is contained in c.

In the case where Φ contains no homology, Φ has odd order, and δ ∈ Φ has three
fixed points, which are the vertices of a triangle Δ. Since δ commutes with every
element in Φ , the triangle Δ is left invariant by Φ .

If Φ fixes each vertex of δ, then Φ must be cyclic since, otherwise, Ψ would con-
tain a homology. Therefore, Ψ is a dihedral group, and we show that Λ1 is contained
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in a line. For this purpose, take a generator ρ = ϕaϕb of Φ , and consider the line �

through the centers of ϕa and ϕb . Obviously, ρ preserves �, and this holds for every
power of ρ. Hence, Ψ also preserves �. Since every ϕc is conjugate to ϕa under Ψ ,
this shows that the center of ϕc must lie on � as well. Therefore, Λ1 is contained in �.

We may assume that some ρ ∈ Φ acts on the vertices of Δ as a 3-cycle. Let Δ′ be
the triangle whose vertices are the fixed points of ρ. Then ρ3 = 1 since ρ3 fixes not
only the vertices of Δ′ but also those of Δ′. Therefore, Φ = 〈ρ〉 × Θ where Θ is the
cyclic subgroup of Φ fixing each vertex of Δ. A subgroup of Θ of index ≤ 3 fixes
each vertex of Δ′ and hence is trivial. Therefore, |Θ| = 3 and Φ ∼= C3 × C3. This
shows that n = 9 and if Λ1 is not contained in a line, then the configuration of their
points, that is, the centers of the homologies in Ψ , is isomorphic to AG(2,3), the
affine plane of order 3. Such a configuration can also be viewed as the set of the nine
common inflection points of the nonsingular plane cubics of a pencil P , each cubic
left invariant by Ψ . For a point P2 ∈ Λ2, take that cubic F in P that contains P2.
Since the orbit of P2 under the action of Ψ consists of the points in Λ2 ∪ Λ3, it
follows that F contains each point of (Λ1,Λ2,Λ3). �

The following result is a corollary of Proposition 25.

Proposition 26 Let (Λ1,Λ2,Λ3) be a dual 3-net of order n ≥ 4 realizing a group G.
If every point of (Λ1,Λ2,Λ3) is the center of an involutory homology that preserves
(Λ1,Λ2,Λ3), then (Λ1,Λ2,Λ3) is triangular.

Proof By Proposition 11 and Example 1, (Λ1,Λ2,Λ3) is not of conic-line type. For
n = 9, (Λ1,Λ2,Λ3) does not lie on any nonsingular cubic F since no nonsingu-
lar cubic has twenty-seven inflection points. Therefore, the assertion follows from
Proposition 25. �

A useful generalization of Proposition 26 is given in the proposition below.

Proposition 27 Let (Λ1,Λ2,Λ3) be a dual 3-net of order n ≥ 4 realizing a group G.
Let U be the set of all involutory homologies preserving (Λ1,Λ2,Λ3) whose centers
are points of (Λ1,Λ2,Λ3). If |U | ≥ 3 and U contains two elements whose centers lie
in different components, then the following assertions hold:

(i) Every component contains the same number of points that are centers of involu-
tory homologies in U .

(ii) The points of (Λ1,Λ2,Λ3) that are centers of involutory homologies in U form
a triangular dual 3-subnet (Γ1,Γ2,Γ3).

(iii) Let M be the cyclic subgroup associated to (Γ1,Γ2,Γ3). Then either (Λ1,Λ2,

Λ3) is also triangular, or

|G| <
{ |G : M|2, when gcd(3, |G|) = 1;

3|G : M|2, when gcd(3, |G|) = 3.

Proof Let G be the projectivity group preserving (Λ1,Λ2,Λ3). Let (ijk) denote any
permutation of (123). As we have already observed in the proof of Proposition 25, if
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ϕ ∈ G is an involutory homology with center P ∈ Λi , then ϕ preserves Λi and inter-
changes Λj with Λk . If σ ∈ G is another involutory homology with center R ∈ Λj ,
then σϕσ is also an involutory homology whose center S is the common point of Λk

and the line � through P and R. In terms of dual 3-subnets, this yields (i) and (ii).
Let m be the order of (Γ1,Γ2,Γ3). For m = 2, (Γ1,Γ2,Γ3) is triangular. For m = 3,
Γ1 ∪ Γ2 ∪ Γ3 is the Hesse configuration, and hence (Γ1,Γ2,Γ3) is triangular. This
holds for m ≥ 4 by Proposition 26 applied to (Γ1,Γ2,Γ3).

To prove (iii), assume that (Λ1,Λ2,Λ3) is not triangular and take a point P from
some component, say Λ3, that does not lie on the sides of the triangle associated
to (Γ1,Γ2,Γ3). Since (Γ1,Γ2,Γ3) is triangular, it can play the role of (Λ1,Λ2,Λ3)

in Sect. 4.2, and we use the notation introduced there. By the second assertion of
Proposition 9, the point has as many as |Θ| distinct images, all lying in Λ3. Therefore,
|G| = |Λ3| > |Θ|. Using Proposition 9, |Θ| can be written in function of |M| giving
the assertion. �

Let U2 be the set of all involutory homologies with center in Λ2 which inter-
changes Λ1 and Λ3. There is a natural injective map Ψ from U2 to G, where
Ψ (ψ) = g holds if and only if the point g2 ∈ Λ2 is the center of ψ .

Proposition 28 Let (Λ1,Λ2,Λ3) be a dual 3-net of order n ≥ 4 realizing a group G.
If |U2| ≥ 2, then the following hold.

(i) U2 is closed by conjugation, that is, ψωψ ∈ U2 whenever ψ,ω ∈ U2.
(ii) If g,h ∈ Ψ (U2), then gh−1g ∈ Ψ (U2).

(iii) If G has a cyclic subgroup H of order 6 with |H ∩ Ψ (U2)| ≥ 3 and 1 ∈ H ∩
Ψ (U2), then either Ψ (U2) = H , or Ψ (U2) is the subgroup of H of order 3.

Proof For ψ,ω ∈ U2, the conjugate τ = ψωψ of ω by ψ is also an involutory ho-
mology. Let g = Ψ (ψ) and h = Ψ (ω). Then the center of τ is ψ(h2). For x ∈ G, the
image of x1 under τ is y3 ∈ Λ3 with y = xgh−1g. This shows that the center of τ is
also in Λ2; more precisely,

Ψ (ψωψ) = Ψ (ψ)
(
Ψ (ω)

)−1
Ψ (ψ). (8)

In the case where G has a cyclic subgroup H of order 6, assume the existence of
three distinct elements ψ,ωρ ∈ U2 such that g = Ψ (ψ), h = Ψ (ω), and r = Ψ (ρ)

with g,h, r ∈ H . Then H contains gh−1g, hg−1h, g2, and h2. From this assertion
(iii) follows. �

8 Dual 3-nets containing algebraic 3-subnets of order n with n ≥ 5

A key result is the following proposition.

Proposition 29 Let G be a group containing a proper Abelian subgroup H of order
n ≥ 5. Assume that a dual 3-net (Λ1,Λ2,Λ3) realizes G such that all its dual 3-
subnets (Γ

j

1 ,Γ2,Γ
j

3 ) realizing H as a subgroup of G are algebraic. Let Fj be the
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cubic through the points of (Γ
j

1 ,Γ2,Γ
j

3 ). If (Λ1,Λ2,Λ3) is not algebraic, then Γ2
contains three collinear points, and one of the following holds:

(i) Γ2 is contained in a line.
(ii) n = 5, and there is an involutory homology with center in Γ2 that preserves every

Fj and interchanges Λ1 and Λ3.
(iii) n = 6, and there are three involutory homologies with center in Γ2 that preserve

every Fj and interchange Λ1 and Λ3.
(iv) n = 9, and Γ2 consists of the nine common inflection points of Fj .

We need the following technical lemma.

Lemma 5 Let A = (A,⊕), B = (B,+) be Abelian groups and consider the injective
maps α,β, γ : A → B such that α(x) + β(y) + γ (z) = 0 if and only if z = x ⊕ y.
Then, α(x) = ϕ(x) + a, β(x) = ϕ(x) + b, γ (x) = −ϕ(x) − a − b for some injective
homomorphism ϕ : A → B and elements a, b ∈ B .

Proof Define a = α(0), b = β(0), and ϕ(x) = −γ (x) − a − b. For x = 0 and z = y,
we obtain that α(0) + β(y) + γ (y) = 0, whence β(y) = −γ (y) − a = ϕ(y) + b.
Similarly, for y = 0 and z = x, we obtain that α(x) + β(0) + γ (x) = 0, whence
α(x) = −γ (x) − b = ϕ(x) + a. Finally, for any x, y ∈ G,

ϕ(x) + ϕ(y) − ϕ(x + y) = ϕ(x) + a + ϕ(y) + b − (
ϕ(x + y) + a + b

)

= α(x) + β(y) + γ (x + y) = 0.

Therefore, ϕ : A → B is a group homomorphism. �

Let A = (A,⊕) be an Abelian group, and α,β, γ injective maps from A to
PG(2,K). The triple (α,β, γ ) is a realization of A if the points α(x),β(y), γ (z) are
collinear if and only if z = x ⊕ y. Since (Λ1,Λ2,Λ3) realizes G, the natural labeling
gives rise to a realization (α,β, γ ) such that α(G) = Λ1, β(G) = Λ2, γ (G) = Λ3.
Let u ∈ G. Since H is a subgroup of G, the triple

(
αu(x) = α(ux),β(y) = β(y), γu(z) = α(uz)

)

provides a realization of H such that

αu(H) = Γ u
1 , β(H) = Γ2, γu(H) = Γ u

3 .

Therefore, Lemma 5 has the following corollary, where (Fj ,∗) denotes the additive

group of the plane cubic Fj through the points of (Γ
j

1 ,Γ2,Γ
j

3 ), where for u = 1, we
write (F ,+), α,β, γ,Γ1,Γ2,Γ3.

Lemma 6 There exist two realizations from H into PG(2,K), say (α,β, γ ) and
(αj ,βj , γj ), with

α(H) = Γ1, β(H) = Γ2, γ (H) = Γ3,
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αj (H) = Γ
j

1 , βj (H) = Γ2, γj (H) = Γ
j

3

such that

α(x) = ϕ(x) + a, β(y) = ϕ(y) + b, γ (z) = ϕ(z) + c,

αj (x) = ϕj (x) ∗ aj , βj (y) = ϕj (y) ∗ bj , γj (z) = ϕj (z) ∗ cj

for every x, y, z ∈ H , where both ϕ : H → (F ,+) and ϕj : H → (Fj ,∗) are injective
homomorphisms, and ϕ(y) + b = ϕj (y) ∗ bj for every y ∈ H .

To prove Proposition 29, we point out that 3b ∈ ϕ(H) if and only if Γ2 contains
three collinear points. Suppose that ϕ(x1)+b,ϕ(x2)+b,ϕ(x3)+b are three collinear
points. Then ϕ(x1) + b + ϕ(x2) + b + ϕ(x3) + b = 0, whence ϕ(x1 + x2 + x3) +
3b = 0. Therefore, 3b ∈ ϕ(H). Conversely, if ϕ(t) = 3b, take three pairwise distinct
elements x1, x2, x3 ∈ H such that x1 + x2 + x3 + t = 0. Then ϕ(x1) + b + ϕ(x2) +
b + ϕ(x3) + b = 0. Therefore, the points ϕ(x1) + b,ϕ(x2) + b and ϕ(x3) + b of Γ2
are collinear. Notice that the element t = −x1 − x2 − x3 ∈ H is the same even if we
make the computation with ϕj and bj .

We separately deal with two cases.

8.1 Γ2 contains no three collinear points

By the preceding observation, 3b �∈ ϕ(H). For any z ∈ H , take four different ele-
ments x1, y1, x2, y2 in H such that

z = x1 ⊕ y1 = x2 ⊕ y2. (9)

Then ϕ(x1) + b + ϕ(y1) + b = ϕ(z) + 2b = ϕ(x2) + b + ϕ(y2) + b. Let Pi = β(xi)

and Qi = β(yi) for i = 1,2. Then Pi �= Qi , and the lines P1Q1 and P2Q2 meet
in a point S in F outside Γ2. The same holds for Fj . Therefore, each point S is a
common point of F and Fi other than those in Γ2. As S only depends on z which
can be freely chosen if |H | ≥ 4, there are at least n such points S. Hence, F ∩ Fj

contains at least 2n ≥ 10 points. By Bézout’s theorem, either F = Fj , or they are
reducible. We may assume that the latter case occurs. By Lemma 4, we may assume
that both (Γ1,Γ2,Γ3) and (Γ

j

1 ,Γ2,Γ
j

3 ) are of conic-line type. Here Γ2 is contained in
an irreducible conic C that is a common component of F and Fj . By Proposition 13,
F = Fj .

8.2 Γ2 contains three collinear points

This time, 3b ∈ ϕ(H). Let ϕ(t) = 3b with t ∈ H . If either F or Fj is reducible, then
Γ2 is contained in a line. Therefore, both F and Fj are assumed to be irreducible.

First, suppose in addition that t �∈ 3H . For any x ∈ H , let y = 2(�x) � t . Observe
that y �= x. Since

2
(
ϕ(x) + b

) + ϕ(y) + b = ϕ(t) + ϕ(2x) + ϕ(y) = 0,
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the point Q = β(y) is the tangential point of P = β(x) on F . Therefore, β determines
the tangents of F at its points in Γ2. This holds for Fj . By Lemma 6, F and Fj share
the tangents at each of their common points in Γ2. Therefore, |F ∩ Fj | ≥ 2n ≥ 10,
and thus F = Fj .

It remains to investigate the case where 3b = ϕ(3t0) for some t0 ∈ H . Replacing b

by b − ϕ(t0) shows that 3b = 0 may be assumed. Therefore, the point P = ϕ(y) + b

with y ∈ H is an inflection point of F if and only if 3y = 0. Furthermore, if 3y �= 0,
then Q = ϕ(�(2y)) + b is the tangential point of P on F . Therefore, β determines
the tangents of F at its points in Γ2. The same holds for Fj . By Lemma 6, P = β(y)

is an inflection point of both F and Fj or none of them. In the latter case, F and Fj

have the same tangent at P .
Let m be the number of common inflection points of F and Fj lying in Γ2. Obvi-

ously, P = ϕ(0)+b is such a point, and hence m ≥ 1. On the other hand, m may take
only three values, namely 1, 3, and 9. If m = 9, then F is nonsingular, and Γ2 con-
sists of all the nine inflection points of F . The same holds for Fj . If m = 3, then F
and Fj share their tangents at n − 3 common points. Therefore, 2n − 3 ≤ 9, whence
n ≤ 6.

If n = 6, there are three common inflection points of F and Fj , and they are
collinear. Let H be the additive group of integers modulo 6. Then the inflection points
of F lying on Γ2 are Pi = ϕ(i) + b with i = 0,2,4, while the tangential point of
Pi = ϕ(i)+ b with i = 1,3,5 is P−2i = ϕ(−2i)+ b. Now fix a projective frame with
homogeneous coordinates (X,Y,Z) in such a way that

P0 = (1,0,1), P1 = (0,0,1), P2 = (0,1,1),

P3 = (0,1,0), P4 = (−1,1,0), P5 = (1,0,0).

A straightforward computation shows that Fj is in the pencil P comprising the cubics
Gλ with equation

(X − Z)(Y − Z)(X + Y) + λXYZ = 0, λ ∈ K,

with the cubic G∞ with equation XYZ = 0. The intersection divisor of the plane
cubics in P is P0 + P2 + P4 + 2P1 + 2P3 + 2P5. Moreover, the points P0,P2,P4 are
inflection points of all irreducible cubics in P , and

ψ0 : (X,Y,Z) → (Z,−Y,X),

ψ2 : (X,Y,Z) → (−X,Z,Y ),

ψ4 : (X,Y,Z) → (Y,X,Z)

are the involutory homologies preserving every cubic in P , the center of ψi being Pi

for i = 0,2,4.
If n = 5, the zero of H is the only element y with 3y = 0. This shows that F

(and Fj ) has only one inflection point P0 in Γ2 and P0 is not the tangential point of
another point in Γ2. Each of the remaining four points is the tangential point of ex-
actly one point in Γ2. These four points may be viewed as the vertices of a quadrangle
P1P2P3P4 such that the side PiPi+1 is tangent to F at Pi for every i with P5 = P1.
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Therefore, the intersection divisor of F and Fj is P0 + 2P1 + 2P2 + 2P3 + 2P4, and
Fj is contained in a pencil P .

Fix a projective frame with homogeneous coordinates (X,Y,Z) in such a way that

P1 = (0,0,1), P2 = (1,0,0), P3 = (1,1,1), P4 = (0,1,0).

Then P0 = (1,1,0). The pencil P is generated by the cubics G and D with equations
Y(X − Z)Z = 0 and X(Y − X)(Y − Z) = 0, respectively. Therefore, it consists of
cubics Gλ with equation

Y 2X − X2Y + (λ − 1)XYZ + X2Z − λYZ2 = 0,

together with G = G∞. Since the line Z = 0 contains three distinct base points of
the pencil, P0 is a nonsingular point of Gλ for every λ ∈ K, and the tangent �λ to
Gλ at P0 has equation −X + Y + λZ = 0. Assume that Q0 is an inflection point
of Gλ. Then �λ contains no point P = (X,Y,1) from Gλ, that is, the polynomials
Y 2X − X2Y + (λ − 1)XY + X2 − λY = 0 and −X + Y + λ = 0 have no common
solutions. On the other hand, eliminating Y from these polynomials gives λ2. This
shows that Q0 is an inflection point for every irreducible cubic in P . Hence, P0 = Q0.
Therefore, the involutory homology

ϕ : (X,Y,Z) 
→ (−Y + Z,−X + Z,Z)

with center P0 preserves each cubic in P .
This completes the proof of Proposition 29.
In the case where H is an Abelian normal subgroup of G, we have the following

result.

Proposition 30 Let G be a group containing a proper Abelian normal subgroup H

of order n ≥ 5. If a dual 3-net (Λ1,Λ2,Λ3) realizes G such that all its dual 3-subnets
realizing H as a subgroup of G are algebraic, then either (I) or (II) of Theorem 1
holds.

Proof The essential tool in the proof is Proposition 29. Assume on the contrary that
neither (I) nor (II) occurs.

If every H -member is contained in a line, then every dual 3-net realizing H as a
subgroup of G is triangular. By Proposition 23, either (I) of (II) follows.

Take an H -member not contained in a line. Since H is a normal subgroup, that
H -member can play the role of Γ2 in Proposition 29. Therefore, one of the three spo-
radic cases in Proposition 29 holds. Furthermore, from the proof of that proposition
it follows that every Fj is irreducible, and hence neither Γ

j

1 nor Γ
j

3 is contained in a
line. Therefore, no H -member is contained in a line. Since H is a normal subgroup,
every 3-subnet (Γ i

1 ,Γ
j

2 ,Γ s
3 ) realizing H as a subgroup of G lies in an irreducible

plane cubic F(i, j).
Therefore, we can assume that all H -members have the exceptional configurations

described in (ii), (iii), or (ivc) of Proposition 29. We separately deal with the cases
n = 5,6, and 9.



962 J Algebr Comb (2014) 39:939–966

n = 9 From (iv) of Proposition 29 it follows that the cubics Fj share their nine in-
flection points, which form Γ2. So it is possible to avoid this case by replacing
Γ2 with Γ1 so that Γ2 will not have any inflection point of F .

n = 6 Every H -member Γ2 contains three collinear points, say Q1,Q2,Q3, so that
Qr is the center of an involutory homology ψr interchanging Λ1 and Λ3. Rela-
beling the points of the dual 3-net permits us to assume that Q1 = 12. Then for
all x ∈ G, ψ1 interchanges the points x1 and x3. The point a2 ∈ Λ2 is the inter-
section of the lines y1(ya)3, with y ∈ G. These lines are mapped to the lines
(ya)1y3, which all contain the point (a−1)2 of Λ2. Therefore, the involutory
homology ψ1 leaves Λ2 invariant. This holds for all involutory homologies
with center in Λ1 ∪Λ2 ∪Λ3. Since the H -members partition each component
of (Λ1,Λ2,Λ3) and every H -member comprises six points, it turns out that
half of the points of (Λ1,Λ2,Λ3) are the centers of involutory homologies
preserving (Λ1,Λ2,Λ3). Therefore, Proposition 27(iii) applies. As in Propo-
sition 27, let M denote the subgroup of G such that the dual 3-subnet con-
sisting of the centers of involutory homologies realizes M . As |G : M| = 2,
Proposition 27(iii) implies |G| < 6, a contradiction.

n = 5 The arguments in discussing case n = 6 can be adapted for case n = 5. This
time, Proposition 29 gives |G : M| = 5. By Proposition 27(iii), if G contains
an element of order 3, then |G| < 75; otherwise, |G| < 25. In the former case,
the element of order 3 of G is in CG(H), and hence G contains a cyclic normal
subgroup of order 15. Then, (Λ1,Λ2,Λ3) is algebraic by Proposition 29. If G

has no element of order 3, then |G| < 25, and G contains a normal subgroup
of order 10 that is either cyclic or dihedral. By Propositions 24 and 29 either
(I) or (II) of Theorem 1 holds. �

The following result is a corollary of Proposition 30.

Theorem 4 Every dual 3-net (Λ1,Λ2,Λ3) realizing an Abelian group G is alge-
braic.

Proof By absurd, let n be the smallest integer for which a counterexample (Λ1,Λ2,

Λ3) to Theorem 4 exists. Since any dual 3-net of order ≤ 8 is algebraic by Propo-
sitions 15 and 18, we have that n ≥ 9. Furthermore, again by Proposition 18, G has
composite order. Since n is chosen to be as small as possible, by Proposition 30, |G|
has only one prime divisor, namely either 2 or 3. Since |G| ≥ 9, either |G| = 2r with
r ≥ 4, or |G| = 3r with r ≥ 2. In the former case, G has a subgroup M of order 8,
and every dual 3-subnet realizing M is algebraic by Proposition 15. But this, together
with Proposition 30, shows that (Λ1,Λ2,Λ3) is not a counterexample. In the latter
case, G contains no element of order 9, and hence it is an elementary Abelian group.
But then (Λ1,Λ2,Λ3) is algebraic by Proposition 16. �

9 Dual 3-nets realizing 2-groups

Proposition 31 Let G be a group of order n = 2h with h ≥ 2. If G can be realized
by a dual 3-net (Λ1,Λ2,Λ3), then one of the following holds.
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(i) G is cyclic.
(ii) G ∼= Cm × Ck with n = mk.

(iii) G is a dihedral.
(iv) G is the quaternion group of order 8.

Proof For n = 4,8, the classification follows from Propositions 15 and 22 and from
[17, Theorem 4.2]. Up to isomorphisms, there exist fourteen groups of order 16; each
has a subgroup H of index 2 that is either an Abelian or a dihedral group. In the latter
case, G is itself dihedral, by Proposition 24. So, Proposition 30 applies to G and H ,
yielding that G is Abelian. This completes the proof for n = 16. By induction on h

we assume that Proposition 31 holds for n = 2h ≥ 16, and we are going to show that
this remains true for 2h+1. Let H be a subgroup of G of index 2. Then |H | = 2h, and
one of the cases (i), (ii), and (iii) hold for H . Therefore, the assertion follows from
Propositions 30 and 24. �

10 Dual 3-nets containing algebraic 3-subnets of order n with 2 ≤ n ≤ 4

It is useful to investigate separately two cases according as n = 3,4, or 2. An essential
tool in the investigation is M = CG(H), the centralizer of H in G.

Proposition 32 Let G be a finite group containing a normal subgroup H of order
n with n = 3 or n = 4. Then every dual 3-net (Λ1,Λ2,Λ3) realizing G is either
algebraic or of tetrahedron type, or G is isomorphic either to the quaternion group
of order 8, or to Alt4, or to Sym4.

Proof First, we investigate the case where M > H . Take an element m ∈ M out-
side H . Then the subgroup T of G generated by m and H is Abelian and larger
than H . Since |H | ≥ 3, we have |T | ≥ 6. If all H -members of (Λ1,Λ2,Λ3) are
contained in a line, then (Λ1,Λ2,Λ3) is either triangular or of tetrahedron type by
Proposition 23. Assume that Γ2 is an H -member that is not contained in a line. Let
Γ ′

2 be the T -member containing Γ2. We claim that (Λ1,Λ2,Λ3) is algebraic. If not,
then one of the exceptional cases (iii) or (iv) of Proposition 29 must hold. Clearly, in
these cases, |H | = 3. However, the centers of the involutory homologies mentioned
in Proposition 29 correspond to the points in the H -member Γ2. As these centers
must be collinear, we obtain that Γ2 is contained in a line, a contradiction.

Assume that M = H . Then G/H is an automorphism group H . If H is C3 or C4,
then |Aut(H)| = 2, and G is either a dihedral group or the quaternion group of or-
der 8. If H ∼= C2 × C2, then G is a subgroup of Sym4. The possibilities for G other
than H and the dihedral group of order 8 are Alt4 and Sym4. Since all these groups
are allowed in the proposition, the proof is finished. �

Proposition 33 Let G be a finite group with a central involution that contains no
normal subgroup H of order 4. Then a dual 3-net (Λ1,Λ2,Λ3) realizing G is either
algebraic or of tetrahedron type.
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Proof Let H be the normal subgroup generated by the (unique) central involution
of G. Two cases are separately investigated according as a minimal normal subgroup
N̄ of the factor group Ḡ = G/H is solvable or not. Let σ be the natural homomor-
phism G → Ḡ. Let N = σ−1(N̄).

If N̄ is solvable, then N̄ is an elementary Abelian group of order dh for a prime d .
Furthermore, N is a normal subgroup of G and N̄ = N/H . If N is Abelian, then
|N | ≥ 6, and the assertion follows from Proposition 30 and Theorem 4.

Bearing this in mind, the case where d = 2 is investigated first. Then N has order
2h+1 and is a normal subgroup of G. By Proposition 31, N is either Abelian, or it
is the quaternion group Q8 of order 8. We may assume that N ∼= Q8. By Proposi-
tion 31, N is not contained in a larger 2-subgroup of G. Therefore, N is a (normal)
Sylow 2-subgroup of G. We may assume that G is larger than N . If M = CG(N) is
also larger than N , take an element t ∈ M of outside N . Then t has odd order ≥ 3.
The group T generated by N and t has order 8m, and its subgroup D generated by
t together with an element of N of order 4 is a (normal) cyclic subgroup of M of
order 4m. But this contradicts Proposition 30 as T is neither Abelian nor dihedral.
Therefore, M = N , and hence G/N is isomorphic to a subgroup L of the automor-
phism group Aut(Q8). Hence, |G|/|N | divides 24. On the other hand, since N is a
Sylow 2-subgroup of G, |G/N | must be odd. Therefore, |G| = 24. Two possibilities
arise according as either G ∼= SL(2,3) or G is the dicyclic group of order 24. The
latter case cannot actually occur by Proposition 30 as the dicyclic group of order 24
has a (normal) cyclic subgroup of order 12.

To rule the case G ∼= SL(2,3) out, we rely on Propositions 29 and 28 since SL(2,3)

has four cyclic groups of order 6. For this purpose, we show that every point in Λ2
is the center of an involutory homology preserving (Λ1,Λ2,Λ3) whence the asser-
tion will follow from Proposition 25 applied to Λ2. With the notation in Sect. 7,
(iii) Proposition 29 yields that |U2| ≥ 3. With the notation introduced in the proof
of Proposition 18, we may assume that the point 12 is the center of an involutory
homology ε in U2. From (iii) of Proposition 28 it follows that every (cyclic) sub-
group of G of order 6 provides (at least) two involutory homologies other than ε.
Therefore, |U2| ≥ 9, and every point u2 ∈ Λ2 such that u3 = 1 is the center of an
involutory homology in U . A straightforward computation shows that every element
in G other than the unique involution e can be written as gh−1g with g3 = h3 = 1.
Thus, |U | ≥ 23. The involutory homology with center 12 cannot actually be an ex-
ception. To show this, take an element g ∈ G of order 4. Then g2 is the center of an
element in U . Since 1 = g2 = g · 1 · g, this holds for 12. Therefore, |U | = 24. By (i)
of Proposition 28, U also preserves Λ2. This completes the proof.

Now, the case of odd d is investigated. Since |H | = 2 and d are coprime,
Zassenhaus’ theorem [9, 10.1 Hauptsatz] ensures a complement W ∼= N̄ such that
N = W �H = W × H . Obviously, W is an Abelian normal subgroup of G of order
at least 3. The assertion follows from Propositions 30 and 32.

If N̄ is not solvable, then it has a non-Abelian simple group T̄ . Let S̄2 be a Sylow
2-subgroup of T̄ . By Proposition 31, the realizable 2-group S2 is either cyclic, or
product of two cyclic groups, or dihedral, or quaternion of order 8. Thus, S̄2 is either
cyclic, or product of two cyclic groups, or dihedral. As T̄ is simple, S̄2 cannot be
cyclic. In the remaining cases we can use the classification of finite simple groups of
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2-rank 2 to deduce that either T̄ ∼= PSL(2, qh) with an odd prime q and qh ≥ 5, or
T̄ ∼= Alt7; cf. the Gorenstein–Walter theorem [6].

If H �≤ T ′, then T = H × T ′. As T ′ ∼= T̄ , T ′ contains an elementary Abelian
subgroup of order 4, and G contains an elementary Abelian group of order 8, a con-
tradiction. Therefore, T is a central extension of either PSL(2, qh) with qh as before,
or Alt7 with a cyclic group of order 2. From a classical result of Schur [1, Chap. 33],
either T ∼= SL(2, q), or T is the unique central extension of Alt7 with a cyclic group
of order 2. In the latter case, no dual 3-net can actually realize T since Proposition 31
applies, a Sylow 2-subgroup of T being isomorphic to a generalized quaternion group
of order 16. To finish the proof, it suffices to observe that SL(2, qh), with qh as be-
fore, contains SL(2,3), whereas no dual 3-net can realize SL(2,3) as we have already
pointed out. �

11 3-Nets and non-Abelian simple groups

Proposition 34 If a dual 3-net realizes a non-Abelian simple group G, then G ∼=
Alt5.

Proof Let G be a non-Abelian simple group, and consider a Sylow 2-subgroup S2
of G. By Proposition 31, S2 is dihedral since no Sylow 2-subgroup of a non-Abelian
simple group is either cyclic or the direct product of cyclic groups, see [5, Theo-
rem 2.168], or the quaternion group of order 8, see [3]. From the Gorenstein–Walter
theorem [6], either G ∼= PSL(2, qh) with an odd prime q and qh ≥ 5, or G ∼= Alt7. In
the former case, G has a subgroup T of order qh(qh − 1)/2 containing a normal sub-
group of order qh. Here T is not Abelian and is dihedral only for qh = 5. Therefore,
Theorem 4 and Proposition 30 leave only one case, namely q = 5. This also shows
that Alt7 cannot occur since Alt7 contains PSL(2,7). �

Notice that, by Proposition 17, computer results show that if p = 0, then Alt4
cannot be realized in PG(2,K). This implies that no dual 3-net can realize Alt5.

12 The proof of Theorem 1

Take a minimal normal subgroup H of G. If H is not solvable, then H is either a
simple group or the product of isomorphic simple groups. By Proposition 20, the lat-
ter case cannot actually occur as every simple group contains an elementary Abelian
subgroup of order 4. Therefore, if H is not solvable, H ∼= Alt5 may be assumed
by Proposition 34. Two cases are considered separately according as the central-
izer CG(H) of H in G is trivial or not. If |CG(H)| > 1, take a nontrivial element
u ∈ CG(H) and define U to be the subgroup of G generated by u together with a
dihedral subgroup D5 of H of order 10. Since u centralizes D5, the latter subgroup is
a normal subgroup of U . Hence, D5 is a normal dihedral subgroup of U . By Propo-
sition 24, M itself must be dihedral. Since the center of a dihedral group has order 2,
this implies that u is an involution. Now, the subgroup generated by u, together with
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an elementary Abelian subgroup of H of order 4, generates an elementary Abelian
subgroup of order 8. But this contradicts Proposition 20. Therefore, CG(H) is trivial,
and, equivalently, G is contained in the automorphism group of H . From this it fol-
lows that either G = H or G ∼= PGL(2,5). In the latter case, G contains a subgroup
isomorphic to the semidirect product of C5 by C4. But this contradicts Proposition 24.
Hence, if H is not solvable, then H ∼= Alt5.

If H is solvable, then it is an elementary Abelian group of order d ≥ 2. If d is a
power of 2, then d = 2 or d = 4, and Theorem 1 follows from Propositions 31 and 33.
If d is a power of an odd prime, Theorem 1 is obtained by Propositions 30 and 32.
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