3-Quasi-Sasakian manifolds

Beniamino Cappelletti Montano • Antonio De Nicola • Giulia Dileo

Published online: 24 March 2009
© Springer Science+Business Media B.V. 2009

Abstract

We correct the results in section 6 of [B. Cappelletti Montano, A. De Nicola, G. Dileo, 3-Quasi-Sasakian manifolds, Ann. Global Anal. Geom. 33 (2008), 397-409], concerning the corrected energy of the Reeb distribution of a compact 3-quasi-Sasakian manifold. The results are slightly different than what was originally claimed and they are obtained by using results in [B. Cappelletti Montano, A. De Nicola, G. Dileo, The geometry of a 3-quasiSasakian manifold, Int. J. Math., to appear, arXiv:0801.1818], where the geometry of these manifolds is more deeply investigated.

Erratum to: Ann Glob Anal Geom (2008) 33:397-409 DOI 10.1007/s10455-007-9093-5

Introduction

In [2] the authors study the geometry of 3-quasi-Sasakian manifolds, which include as special cases 3-Sasakian and 3-cosymplectic manifolds. A 3-quasi-Sasakian manifold is an almost 3 -contact metric manifold ($M^{4 n+3}, \phi_{\alpha}, \xi_{\alpha}, \eta_{\alpha}, g$) such that each almost contact metric structure ($\phi_{\alpha}, \xi_{\alpha}, \eta_{\alpha}, g$) is quasi-Sasakian. It is proven in [2] that the distribution generated by the Reeb vector fields $\xi_{1}, \xi_{2}, \xi_{3}$ is integrable, defining a canonical totally geodesic and Rie-

The online version of the original article can be found under doi:10.1007/s10455-007-9093-5.

[^0]mannian foliation of $M^{4 n+3}$. The characteristic vector fields obey the commutation relations $\left[\xi_{\alpha}, \xi_{\beta}\right]=c \xi_{\gamma}$ for any even permutation (α, β, γ) of $\{1,2,3\}$ and some $c \in \mathbb{R}$. Furthermore, the ranks of the 1 -forms $\eta_{1}, \eta_{2}, \eta_{3}$ coincide, so that 3-quasi-Sasakian manifolds are classified according to their well-defined rank, which is of the form $4 l+1$ in the Abelian case $(c=0)$, and $4 l+3$ in the non-Abelian one, $0 \leq l \leq n$. As a single application, we compute in [2] the corrected energy of the canonical foliation of a compact 3-quasi-Sasakian manifold, in the attempt to generalize a result of Blair and Turgut Vanli concerning 3-Sasakian manifolds ([1]).

The corrected energy $\mathcal{D}(\mathcal{V})$ of a p-dimensional distribution of a compact Riemannian manifold was defined by Chacón and Naveira in [4]. They also proved that the Reeb distribution of the natural 3-Sasakian structure on the sphere $S^{4 n+3}$ is a minimum of the corrected energy in the set of all integrable 3-dimensional distributions. In [1] Blair and Turgut Vanli tried to extend this result to the Reeb distribution of an arbitrary compact 3-Sasakian manifold. Unfortunately, as it is remarked by Perrone in [5], their demonstration does not prove the minimality of the corrected energy. As for the corrected energy of the Reeb distribution in a 3-quasi-Sasakian manifold, our demonstration of minimality in [2] contains the same gap as in [1].

In this erratum, we distinguish between 3-quasi-Sasakian manifolds of rank $4 l+1$ and those of rank $4 l+3$. We use the results contained in [3], where the geometry of these manifolds is more deeply investigated. Indeed, a 3-quasi-Sasakian manifold of rank $4 l+1$ turns out to be a 3-cosymplectic manifold and in this case, supposing the manifold to be compact, the corrected energy of the Reeb distribution vanishes. As regards compact 3-quasi-Sasakian manifolds of rank $4 l+3$, we prove that the Reeb distribution represents a minimum for the corrected energy among a suitable subset of all integrable 3-dimensional distributions.

Corrected energy of 3-quasi Sasakian manifolds

The corrected energy $\mathcal{D}(\mathcal{V})$ of a p-dimensional distribution \mathcal{V} on a compact oriented Riemannian manifold (M^{m}, g) is defined as (cf. [4])

$$
\mathcal{D}(\mathcal{V})=\int_{M}\left(\sum_{a=1}^{m}\left\|\nabla_{e_{a}} \xi\right\|^{2}+q(q-2)\left\|\vec{H}_{\mathcal{H}}\right\|^{2}+p^{2}\|\vec{H} \mathcal{V}\|^{2}\right) d \mathrm{vol}
$$

where $\left\{e_{1}, \ldots, e_{m}\right\}$ is a local orthonormal adapted frame with $e_{1}, \ldots, e_{p} \in \mathcal{V}_{x}$ and e_{p+1}, \ldots, $e_{m=p+q} \in \mathcal{H}_{x}=\mathcal{V}_{x}^{\perp}$, and $\xi=e_{1} \wedge \cdots \wedge e_{p}$ is a p-vector which determines the distribution \mathcal{V} regarded as a section of the Grassmann bundle $G\left(p, M^{m}\right)$ of oriented p-planes in the tangent spaces of M^{m}. Finally $\vec{H}_{\mathcal{H}}$ and $\vec{H}_{\mathcal{V}}$ are the mean curvatures of the distributions \mathcal{H} and \mathcal{V} (see [4] and [2] for the details). It is proven in [4] that if \mathcal{V} is integrable then

$$
\begin{equation*}
\mathcal{D}(\mathcal{V}) \geq \int_{M} \sum_{i, \alpha} c_{i \alpha} d \mathrm{vol}, \tag{1}
\end{equation*}
$$

where $c_{i \alpha}=K\left(e_{i}, e_{\alpha}\right)$ is the sectional curvature of the plane spanned by $e_{i} \in \mathcal{H}$ and $e_{\alpha} \in \mathcal{V}$. Moreover, the equality in (1) holds if and only if \mathcal{V} is totally geodesic and e_{1}, \ldots, e_{p} are \mathcal{H}-conformal, that is $\left(\mathcal{L}_{e_{i}} g\right)(X, Y)=f_{i} g(X, Y)$, for any $X, Y \in \mathcal{H}$ and $i \in\{1, \ldots, p\}$, where $\mathcal{L}_{e_{i}}$ denotes the Lie derivative and f_{i} is a function on M.

Now, let ($M^{4 n+3}, \phi_{\alpha}, \xi_{\alpha}, \eta_{\alpha}, g$) be a compact 3-quasi Sasakian manifold and let ξ denote the Reeb distribution determined by the 3 -vector $\xi_{1} \wedge \xi_{2} \wedge \xi_{3}$. It is proven in [2] that the corrected energy of ξ is given by

$$
\begin{equation*}
\mathcal{D}(\xi)=\int_{M}\left(\sum_{\alpha=1}^{3}\left\|\nabla \xi_{\alpha}\right\|^{2}-\frac{3}{2} c^{2}\right) d \mathrm{vol} \tag{2}
\end{equation*}
$$

If $M^{4 n+3}$ is a 3 -quasi-Sasakian manifold of rank $4 l+1$, then it is necessarily a 3 cosymplectic manifold (see [3]). Therefore, $\nabla \xi_{\alpha}=0$ and $c=0$. Using (2), it follows that the corrected energy $\mathcal{D}(\xi)$ vanishes.

Now, let us consider a 3-quasi-Sasakian manifold ($M^{4 n+3}, \phi_{\alpha}, \xi_{\alpha}, \eta_{\alpha}, g$) of rank $4 l+3$, with $\left[\xi_{\alpha}, \xi_{\beta}\right]=c \xi_{\gamma}, c \neq 0$. It is proven in [3] that $M^{4 n+3}$ is locally the Riemannian product of a 3- α-Sasakian manifold $M^{4 l+3}$, where $\alpha=\frac{c}{2}$, and a hyper-Kähler manifold $M^{4 m}$, with $m=n-l$. In particular, $M^{4 m}$ is a leaf of the distribution $\mathcal{E}^{4 m}:=\{X \in T M \mid$ for any $\alpha \in$ $\{1,2,3\} i_{X} \eta_{\alpha}=0$ and $\left.i_{X} d \eta_{\alpha}=0\right\}$, while $M^{4 l+3}$ is a leaf of the orthogonal distribution $\mathcal{E}^{4 l+3}$. Moreover, the Ricci tensor of $M^{4 n+3}$ is given by

$$
\operatorname{Ric}(X, Y)= \begin{cases}\frac{c^{2}}{2}(2 l+1) g(X, Y), & \text { if } X, Y \in \Gamma\left(\mathcal{E}^{4 l+3}\right) \tag{3}\\ 0, & \text { elsewhere }\end{cases}
$$

We can prove the following.
Theorem 1 Let $M^{4 n+3}$ be a compact 3-quasi-Sasakian manifold of rank $4 l+3$. Then, among the integrable 3 -dimensional distributions \mathcal{V} of $M^{4 n+3}$ such that $\mathcal{V} \subset \mathcal{E}^{4 l+3}$ and $K(\mathcal{V}) \leq \frac{3}{4} c^{2}$, the Reeb distribution ξ minimizes the corrected energy $\mathcal{D}(\mathcal{V})$, where $K(\mathcal{V}):=K\left(e_{1}, e_{2}\right)+$ $K\left(e_{1}, e_{3}\right)+K\left(e_{2}, e_{3}\right)$ is the curvature of the distribution \mathcal{V}. Moreover $\mathcal{D}(\mathcal{V})=\mathcal{D}(\xi)$ if and only if $K(\mathcal{V})=\frac{3}{4} c^{2}, \mathcal{V}$ is totally geodesic and e_{1}, e_{2}, e_{3} are \mathcal{H}-conformal.

Proof We compute the corrected energy $\mathcal{D}(\xi)$ of the canonical distribution given by (2). Since for a quasi-Sasakian structure $\left\|\nabla \xi_{\alpha}\right\|^{2}=\operatorname{Ric}\left(\xi_{\alpha}, \xi_{\alpha}\right)$, applying (3), we have $\mathcal{D}(\xi)=$ $3 c^{2} l \operatorname{vol}\left(M^{4 n+3}\right)$. Now, let \mathcal{V} be a 3-dimensional integrable distribution such that $\mathcal{V} \subset \mathcal{E}^{4 l+3}$ and $K(\mathcal{V}) \leq \frac{3}{4} c^{2}$. We prove that $\mathcal{D}(\mathcal{V}) \geq \mathcal{D}(\xi)$. Let $\left\{e_{1}, \ldots, e_{4 n+3}\right\}$ be a local orthonormal adapted frame with $e_{1}, e_{2}, e_{3} \in \mathcal{V}$ and $e_{4}, \ldots, e_{4 n+3} \in \mathcal{H}=\mathcal{V}^{\perp}$. Using (3) again, we get

$$
\begin{align*}
\sum_{\alpha=1}^{3} \sum_{i=1}^{4 n} K\left(e_{i}, e_{\alpha}\right) & =\sum_{\alpha=1}^{3} \sum_{i=1}^{4 n+3} K\left(e_{i}, e_{\alpha}\right)-\sum_{\alpha, \beta=1}^{3} K\left(e_{\alpha}, e_{\beta}\right) \\
& =\sum_{\alpha=1}^{3} \operatorname{Ric}\left(e_{\alpha}, e_{\alpha}\right)-2 K(\mathcal{V}) \\
& =\frac{3}{2} c^{2}(2 l+1)-2 K(\mathcal{V}) \tag{4}
\end{align*}
$$

Arguing as in [5], $K(\mathcal{V})$ depends only on the distribution, in the sense that it is invariant under adapted orthonormal frame changes. Moreover, supposing $K(\mathcal{V}) \leq \frac{3}{4} c^{2}$ and applying (1), we have

$$
\mathcal{D}(\mathcal{V}) \geq 3 c^{2} l \operatorname{vol}\left(M^{4 n+3}\right)=\mathcal{D}(\xi)
$$

and the equality holds if and only if $K(\mathcal{V})=\frac{3}{4} c^{2}, \mathcal{V}$ is totally geodesic and e_{1}, e_{2}, e_{3} are \mathcal{H}-conformal.

In the above theorem, if $l<n$, since the distribution $\mathcal{E}^{4 l+3}$ defines a Riemannian foliation, then $\left(\mathcal{L}_{e_{i}} g\right)(X, Y)=0$ for any $i \in\{1,2,3\}$ and $X, Y \in \mathcal{E}^{4 m}$. Therefore, e_{1}, e_{2}, e_{3}
are \mathcal{H}-conformal if and only if the distribution \mathcal{V} defines a Riemannian foliation. As for 3-quasi-Sasakian manifolds of maximal rank $4 n+3$, they are necessarily 3- α-Sasakian manifolds, with $\alpha=\frac{c}{2}$ (see [3, Corollary 4.4]). Hence, we obtain the following.

Corollary 2 Let $M^{4 n+3}$ be a compact 3- α-Sasakian manifold. Then, among the integrable 3-dimensional distributions \mathcal{V} of $M^{4 n+3}$ with curvature $K(\mathcal{V}) \leq 3 \alpha^{2}$, the Reeb distribution ξ minimizes the corrected energy $\mathcal{D}(\mathcal{V})$. Moreover $\mathcal{D}(\mathcal{V})=\mathcal{D}(\xi)$ if and only if \mathcal{V} is totally geodesic, e_{1}, e_{2}, e_{3} are \mathcal{H}-conformal and $K(\mathcal{V})=3 \alpha^{2}$.

The sphere $S^{4 n+3}(r)$ of radius r can be canonically endowed with a 3- α-Sasakian structure ($\phi_{\delta}, \xi_{\delta}, \eta_{\delta}, g$) with $\alpha=\frac{1}{r}$ ([3]) Since for any 3-dimensional distribution $\mathcal{V}, K(\mathcal{V})=3 \alpha^{2}$, then the Reeb distribution ξ minimizes the corrected energy among the integrable 3-dimensional distributions of $S^{4 n+3}(r)$.

References

1. Blair, D.E., Turgut Vanli, A.: Corrected energy of distributions for 3-Sasakian and normal complex contact manifolds. Osaka J. Math. 43, 193-200 (2006)
2. Cappelletti Montano, B., De Nicola, A., Dileo, G.: 3-Quasi-Sasakian manifolds. Ann. Global Anal. Geom. 33(4), 397-409 (2008)
3. Cappelletti Montano, B., De Nicola, A., Dileo, G.: The geometry of a 3-quasi-Sasakian manifold. Int. J. Math. (to appear). arXiv:0801.1818
4. Chacón, P.M., Naveira, A.M.: Corrected energy of distributions on Riemannian manifolds. Osaka J. Math. 41, 97-105 (2004)
5. Perrone, D.: Corrected energy of the Reeb distribution of a 3-Sasakian manifold. Osaka J. Math. 45, 615-627 (2008)

[^0]: B. Cappelletti Montano • G. Dileo

 Dipartimento di Matematica, Università degli Studi di Bari, Via E. Orabona 4, 70125 Bari, Italy
 e-mail: cappelletti@dm.uniba.it
 G. Dileo
 e-mail: dileo@dm.uniba.it
 A. De Nicola (\triangle)

 Departamento de Matemática Fundamental, Universidad de La Laguna, Av. Astrofísico F.co Sánchez, s/n, 38206 La Laguna, Tenerife, Islas Canarias, Spain
 e-mail: antondenicola@gmail.com

