ERRATUM

3-Quasi-Sasakian manifolds

Beniamino Cappelletti Montano · Antonio De Nicola · Giulia Dileo

Published online: 24 March 2009

© Springer Science+Business Media B.V. 2009

Abstract We correct the results in section 6 of [B. Cappelletti Montano, A. De Nicola, G. Dileo, 3-Quasi-Sasakian manifolds, Ann. Global Anal. Geom. 33 (2008), 397–409], concerning the corrected energy of the Reeb distribution of a compact 3-quasi-Sasakian manifold. The results are slightly different than what was originally claimed and they are obtained by using results in [B. Cappelletti Montano, A. De Nicola, G. Dileo, The geometry of a 3-quasi-Sasakian manifold, Int. J. Math., to appear, arXiv:0801.1818], where the geometry of these manifolds is more deeply investigated.

Erratum to: Ann Glob Anal Geom (2008) 33:397–409 DOI 10.1007/s10455-007-9093-5

Introduction

In [2] the authors study the geometry of 3-quasi-Sasakian manifolds, which include as special cases 3-Sasakian and 3-cosymplectic manifolds. A 3-quasi-Sasakian manifold is an almost 3-contact metric manifold (M^{4n+3} , ϕ_{α} , ξ_{α} , η_{α} , g) such that each almost contact metric structure (ϕ_{α} , ξ_{α} , η_{α} , g) is quasi-Sasakian. It is proven in [2] that the distribution generated by the Reeb vector fields ξ_1 , ξ_2 , ξ_3 is integrable, defining a canonical totally geodesic and Rie-

The online version of the original article can be found under doi:10.1007/s10455-007-9093-5.

B. Cappelletti Montano · G. Dileo

Dipartimento di Matematica, Università degli Studi di Bari, Via E. Orabona 4, 70125 Bari, Italy e-mail: cappelletti@dm.uniba.it

G. Dileo

e-mail: dileo@dm.uniba.it

A. De Nicola (⋈)

Departamento de Matemática Fundamental, Universidad de La Laguna, Av. Astrofísico F.co Sánchez, s/n, 38206 La Laguna, Tenerife, Islas Canarias, Spain e-mail: antondenicola@gmail.com

mannian foliation of M^{4n+3} . The characteristic vector fields obey the commutation relations $[\xi_{\alpha},\xi_{\beta}]=c\xi_{\gamma}$ for any even permutation (α,β,γ) of $\{1,2,3\}$ and some $c\in\mathbb{R}$. Furthermore, the ranks of the 1-forms η_1,η_2,η_3 coincide, so that 3-quasi-Sasakian manifolds are classified according to their well-defined rank, which is of the form 4l+1 in the Abelian case (c=0), and 4l+3 in the non-Abelian one, $0\leq l\leq n$. As a single application, we compute in [2] the corrected energy of the canonical foliation of a compact 3-quasi-Sasakian manifold, in the attempt to generalize a result of Blair and Turgut Vanli concerning 3-Sasakian manifolds ([1]).

The corrected energy $\mathcal{D}(\mathcal{V})$ of a p-dimensional distribution of a compact Riemannian manifold was defined by Chacón and Naveira in [4]. They also proved that the Reeb distribution of the natural 3-Sasakian structure on the sphere S^{4n+3} is a minimum of the corrected energy in the set of all integrable 3-dimensional distributions. In [1] Blair and Turgut Vanli tried to extend this result to the Reeb distribution of an arbitrary compact 3-Sasakian manifold. Unfortunately, as it is remarked by Perrone in [5], their demonstration does not prove the minimality of the corrected energy. As for the corrected energy of the Reeb distribution in a 3-quasi-Sasakian manifold, our demonstration of minimality in [2] contains the same gap as in [1].

In this erratum, we distinguish between 3-quasi-Sasakian manifolds of rank 4l + 1 and those of rank 4l + 3. We use the results contained in [3], where the geometry of these manifolds is more deeply investigated. Indeed, a 3-quasi-Sasakian manifold of rank 4l + 1 turns out to be a 3-cosymplectic manifold and in this case, supposing the manifold to be compact, the corrected energy of the Reeb distribution vanishes. As regards compact 3-quasi-Sasakian manifolds of rank 4l + 3, we prove that the Reeb distribution represents a minimum for the corrected energy among a suitable subset of all integrable 3-dimensional distributions.

Corrected energy of 3-quasi Sasakian manifolds

The corrected energy $\mathcal{D}(\mathcal{V})$ of a *p*-dimensional distribution \mathcal{V} on a compact oriented Riemannian manifold (M^m, g) is defined as (cf. [4])

$$\mathcal{D}(\mathcal{V}) = \int_{M} \left(\sum_{q=1}^{m} \|\nabla_{e_{q}} \xi\|^{2} + q(q-2) \|\overrightarrow{H}_{\mathcal{H}}\|^{2} + p^{2} \|\overrightarrow{H}_{\mathcal{V}}\|^{2} \right) d\text{vol},$$

where $\{e_1, \ldots, e_m\}$ is a local orthonormal adapted frame with $e_1, \ldots, e_p \in \mathcal{V}_x$ and $e_{p+1}, \ldots, e_{m=p+q} \in \mathcal{H}_x = \mathcal{V}_x^{\perp}$, and $\xi = e_1 \wedge \cdots \wedge e_p$ is a *p*-vector which determines the distribution \mathcal{V} regarded as a section of the Grassmann bundle $G(p, M^m)$ of oriented *p*-planes in the tangent spaces of M^m . Finally $\overrightarrow{H}_{\mathcal{H}}$ and $\overrightarrow{H}_{\mathcal{V}}$ are the mean curvatures of the distributions \mathcal{H} and \mathcal{V} (see [4] and [2] for the details). It is proven in [4] that if \mathcal{V} is integrable then

$$\mathcal{D}(\mathcal{V}) \ge \int_{M} \sum_{i \alpha} c_{i\alpha} d\text{vol}, \tag{1}$$

where $c_{i\alpha} = K(e_i, e_\alpha)$ is the sectional curvature of the plane spanned by $e_i \in \mathcal{H}$ and $e_\alpha \in \mathcal{V}$. Moreover, the equality in (1) holds if and only if \mathcal{V} is totally geodesic and e_1, \ldots, e_p are \mathcal{H} -conformal, that is $(\mathcal{L}_{e_i}g)(X,Y) = f_ig(X,Y)$, for any $X,Y \in \mathcal{H}$ and $i \in \{1,\ldots,p\}$, where \mathcal{L}_{e_i} denotes the Lie derivative and f_i is a function on M.

Now, let $(M^{4n+3}, \phi_{\alpha}, \xi_{\alpha}, \eta_{\alpha}, g)$ be a compact 3-quasi Sasakian manifold and let ξ denote the Reeb distribution determined by the 3-vector $\xi_1 \wedge \xi_2 \wedge \xi_3$. It is proven in [2] that the corrected energy of ξ is given by

$$\mathcal{D}(\xi) = \int_{M} \left(\sum_{\alpha=1}^{3} \|\nabla \xi_{\alpha}\|^{2} - \frac{3}{2}c^{2} \right) d\text{vol}.$$
 (2)

If M^{4n+3} is a 3-quasi-Sasakian manifold of rank 4l+1, then it is necessarily a 3-cosymplectic manifold (see [3]). Therefore, $\nabla \xi_{\alpha} = 0$ and c = 0. Using (2), it follows that the corrected energy $\mathcal{D}(\xi)$ vanishes.

Now, let us consider a 3-quasi-Sasakian manifold $(M^{4n+3},\phi_\alpha,\xi_\alpha,\eta_\alpha,g)$ of rank 4l+3, with $[\xi_\alpha,\xi_\beta]=c\xi_\gamma,c\neq 0$. It is proven in [3] that M^{4n+3} is locally the Riemannian product of a 3- α -Sasakian manifold M^{4l+3} , where $\alpha=\frac{c}{2}$, and a hyper-Kähler manifold M^{4m} , with m=n-l. In particular, M^{4m} is a leaf of the distribution $\mathcal{E}^{4m}:=\{X\in TM\mid \text{ for any }\alpha\in\{1,2,3\}\ i_X\eta_\alpha=0 \text{ and }i_Xd\eta_\alpha=0\}$, while M^{4l+3} is a leaf of the orthogonal distribution \mathcal{E}^{4l+3} . Moreover, the Ricci tensor of M^{4n+3} is given by

$$\operatorname{Ric}(X,Y) = \begin{cases} \frac{c^2}{2}(2l+1)g(X,Y), & \text{if } X,Y \in \Gamma(\mathcal{E}^{4l+3}); \\ 0, & \text{elsewhere.} \end{cases}$$
 (3)

We can prove the following.

Theorem 1 Let M^{4n+3} be a compact 3-quasi-Sasakian manifold of rank 4l+3. Then, among the integrable 3-dimensional distributions \mathcal{V} of M^{4n+3} such that $\mathcal{V} \subset \mathcal{E}^{4l+3}$ and $K(\mathcal{V}) \leq \frac{3}{4}c^2$, the Reeb distribution ξ minimizes the corrected energy $\mathcal{D}(\mathcal{V})$, where $K(\mathcal{V}) := K(e_1, e_2) + K(e_1, e_3) + K(e_2, e_3)$ is the curvature of the distribution \mathcal{V} . Moreover $\mathcal{D}(\mathcal{V}) = \mathcal{D}(\xi)$ if and only if $K(\mathcal{V}) = \frac{3}{4}c^2$, \mathcal{V} is totally geodesic and e_1, e_2, e_3 are \mathcal{H} -conformal.

Proof We compute the corrected energy $\mathcal{D}(\xi)$ of the canonical distribution given by (2). Since for a quasi-Sasakian structure $\|\nabla \xi_{\alpha}\|^2 = \text{Ric}(\xi_{\alpha}, \xi_{\alpha})$, applying (3), we have $\mathcal{D}(\xi) = 3c^2l\text{vol}(M^{4n+3})$. Now, let \mathcal{V} be a 3-dimensional integrable distribution such that $\mathcal{V} \subset \mathcal{E}^{4l+3}$ and $K(\mathcal{V}) \leq \frac{3}{4}c^2$. We prove that $\mathcal{D}(\mathcal{V}) \geq \mathcal{D}(\xi)$. Let $\{e_1, \ldots, e_{4n+3}\}$ be a local orthonormal adapted frame with $e_1, e_2, e_3 \in \mathcal{V}$ and $e_4, \ldots, e_{4n+3} \in \mathcal{H} = \mathcal{V}^{\perp}$. Using (3) again, we get

$$\sum_{\alpha=1}^{3} \sum_{i=1}^{4n} K(e_i, e_{\alpha}) = \sum_{\alpha=1}^{3} \sum_{i=1}^{4n+3} K(e_i, e_{\alpha}) - \sum_{\alpha, \beta=1}^{3} K(e_{\alpha}, e_{\beta})$$

$$= \sum_{\alpha=1}^{3} \text{Ric}(e_{\alpha}, e_{\alpha}) - 2K(\mathcal{V})$$

$$= \frac{3}{2}c^2(2l+1) - 2K(\mathcal{V}). \tag{4}$$

Arguing as in [5], $K(\mathcal{V})$ depends only on the distribution, in the sense that it is invariant under adapted orthonormal frame changes. Moreover, supposing $K(\mathcal{V}) \leq \frac{3}{4}c^2$ and applying (1), we have

$$\mathcal{D}(\mathcal{V}) \ge 3c^2 l \text{vol}(M^{4n+3}) = \mathcal{D}(\xi),$$

and the equality holds if and only if $K(\mathcal{V}) = \frac{3}{4}c^2$, \mathcal{V} is totally geodesic and e_1, e_2, e_3 are \mathcal{H} -conformal.

In the above theorem, if l < n, since the distribution \mathcal{E}^{4l+3} defines a Riemannian foliation, then $(\mathcal{L}_{e_i}g)(X,Y) = 0$ for any $i \in \{1,2,3\}$ and $X,Y \in \mathcal{E}^{4m}$. Therefore, e_1,e_2,e_3

are \mathcal{H} -conformal if and only if the distribution \mathcal{V} defines a Riemannian foliation. As for 3-quasi-Sasakian manifolds of maximal rank 4n+3, they are necessarily $3-\alpha$ -Sasakian manifolds, with $\alpha = \frac{c}{2}$ (see [3, Corollary 4.4]). Hence, we obtain the following.

Corollary 2 Let M^{4n+3} be a compact 3- α -Sasakian manifold. Then, among the integrable 3-dimensional distributions V of M^{4n+3} with curvature $K(V) \leq 3\alpha^2$, the Reeb distribution ξ minimizes the corrected energy $\mathcal{D}(V)$. Moreover $\mathcal{D}(V) = \mathcal{D}(\xi)$ if and only if V is totally geodesic, e_1, e_2, e_3 are \mathcal{H} -conformal and $K(V) = 3\alpha^2$.

The sphere $S^{4n+3}(r)$ of radius r can be canonically endowed with a 3- α -Sasakian structure $(\phi_{\delta}, \xi_{\delta}, \eta_{\delta}, g)$ with $\alpha = \frac{1}{r}$ ([3]) Since for any 3-dimensional distribution \mathcal{V} , $K(\mathcal{V}) = 3\alpha^2$, then the Reeb distribution ξ minimizes the corrected energy among the integrable 3-dimensional distributions of $S^{4n+3}(r)$.

References

- Blair, D.E., Turgut Vanli, A.: Corrected energy of distributions for 3-Sasakian and normal complex contact manifolds. Osaka J. Math. 43, 193–200 (2006)
- Cappelletti Montano, B., De Nicola, A., Dileo, G.: 3-Quasi-Sasakian manifolds. Ann. Global Anal. Geom. 33(4), 397–409 (2008)
- Cappelletti Montano, B., De Nicola, A., Dileo, G.: The geometry of a 3-quasi-Sasakian manifold. Int. J. Math. (to appear). arXiv:0801.1818
- Chacón, P.M., Naveira, A.M.: Corrected energy of distributions on Riemannian manifolds. Osaka J. Math. 41, 97–105 (2004)
- Perrone, D.: Corrected energy of the Reeb distribution of a 3-Sasakian manifold. Osaka J. Math. 45, 615–627 (2008)

