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Introduction. In 1960 Sasaki [17] introduced a geometric structure re-
lated to an almost contact structure on a smooth manifold. This structure,
which became known as a Sasakian structure, was studied extensively in the
1960’s by an entire school of Japanese geometers (See [24] and references
therein). In 1970 Kuo [14] refined this notion and introduced manifolds with
Sasakian 3-structures. The same year Kuo and Tachibana, Tachibana and
Yu, and Tanno [15, 22, 21] published foundational papers discussing Sasa-
klan 3-structures an’d these structues were then vigorously studied by many
Japanese mathematicians from 1970-1975. This intense analysis culminated
with an important paper of Konishi [13] which shows the existence of a
Sasakian 3-structure on a certain principal SO(3) bundle over any quater-
nionic Khler manifold of positive scalar curvature.

Earlier on, in 1973, Ishihara [10] had shown that if the distribution
formed by the three Killing vector fields which define the Sasakian
3-structure is regular then the space of leaves is a quaternionic Kfihler man-
ifold. This fact led Ishihara to his foundational work on quaternionic Kihler
manifolds [9]. Ishihara’s and Konishi’s observation that quaternionic Khler
and 3-Sasakian geometries are related is fundamental.

It is notable that in this early period the only examples of 3-Sasakian
manifolds appearing in the literature were those of constant curvature, name-
ly the spheres S-t the real projective spaces Re and spherical space
forms in dimension three [18]. Even though Konishi’s result mentioned above
combined with the earlier work of Wolf [23] on the classification of
homogeneous quaternionic Kfihler manifolds of positive scalar curvature
gives many new homogeneous examples, no further work on 3-Sasakian
manifolds seems to have been done until very recently [2, 7].

The purpose of this note is to announce some of our recent results about
the geometry of Sasakian 3-structures. Full details and proofs of the results
stated below can be found in [2, 3, 4, 5].

Definition A. Let (s3, g) be a Riemannian manifold and let 17 denote
the Levi-Civita connection of g. Then (s3, g)has a Sasakian structure if
there exists a Killing vector field e of unit length on so that the tensor
field of type (1,1), defined by
(i) q--

*) During the preparation of this work all three authors were supported
by NSF grants.
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satisfies the condition

(ii) (Vx(l)) ( Y) 7 ( Y)X g Y Y)
for any pair of vector fields X and Y on .. Here 7 denotes the 1-form dual
to with respect to g; i.e., g(Y, ) r(Y) for any vector field Y. and satis-

fies the dual equation to (i); namely,
(iii) (F’x7) (Y) g(X, X).
We write (, , r/) to denote the specific Sasakian structure on (, g) and
will refer to A with such a structure as a Sasakian manifoid.

Definition B Let (A, g) be a Riemannian manifold that admits three

distinct Sasakian structures {a, a, 7}__1,.,3 such that
g(a, ) fia and [a, ] 2ac

for a, b, c 1,2,3. Then (s3, g)is a 3-Sasakian manifold with Sasakian

3-structure (A, g, a).
It follows directly from the definition that every 3-Sasakian manifold

admits a local action of either Sp(1) or SO(3) as local isometries and, if the

vector fields a are complete, then these are global isometries. We refer to

this action as the standard Sp(1) action on . In the remainder of this note
we shall assume that the vector fields a are complete. It is well-known that

every 3-Sasakian manifold (, g, a) has dimension 4n q- 3 and defines a

Riemannian foliation (, if) of codimension 4n with totally geodesic leaves

of constant curvature 1 [11, 15]. Furthermore, (A, g, a)is an Einstein

manifold [12].
1. The structure theorem. Our first main theorem generalizes the re-

sult of Ishihara [10] which say that if the space of leaves A/ff is a manifold

then it has a canonical quaternionic Khler structure. In addition, we show
that every 3-Sasakian manifold is of positive scalar curvature and that it

admits a second non-isometric Einstein metric. However, this second Ein-

stein metric does not have a compatible Sasakian 3-structure.
Theorem C [3]. Let (, g, a) be a 3-Sasakian manifold of dimension 4n

+ 3 such that the Killing vector fields are complete for a 1,2,3. Then

(i) (, g, a) is an Einstein manifold of positive scalar curvature equal to
2(2n + 1)(4n + 3).

(ii) admits a second Einstein metric g’ of positive scalar curvature which

is not homothetic to g.
(iii) The metric g is bundle-like with respect to the foliation ;.
(iv) Each leaf of the foliation : is a 3-dimensioncil homogeneous spheric-

al space form.
(v) The space of leaves /; is .a quaternionic Kahler orbifold of dimension

4n with positive scalar curvature equal to 16n(n -+- 2).
Hence, every complete 3-Sasakian manifold is compact with finite fundamental
group and diameter less than or equal to

Notice that the space of leaves described in part (v) is not necessarily a

smooth manifold but rather is a V-manifold, now commonly referred to as an

orbifold, originally studied by Satake [19]. As pointed out above there is al-

ways at least one 3-Sasakian manifold associated with every quaternionic
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Kahler manifold of positive scalar curvature [13]. However, as shown in [3],
3-Sasakian manifolds are much more plentiful than quaternionic Kahler man-
ifolds of positive scalar curvature. In all but five quaternionic dimensions
there are only 3 explicitly known examples of compact quaternionic Khler
manifolds of positive scalar curvature (in dimension 1 there are only two
such examples whereas in dimensions 7, 10, 16, and 28 there are four).
Moreover, all of these examples are symmetric spaces and can be found in
Wolf’s classification [23]. It is also known that in quaternionic dimensions 1
and 2 there are no others [8], [16].

By contrast, a 3-Sasakian manifold must be of real dimension 4k + 3
and in each such allowable dimension we have constructed infinitely many
distinct compact simply-connected 3-Sasakian manifolds [2, 3]. Moreover,
these examples range through infinitely many distinct homotopy types in ev-
ery dimension.

Thus, Theorem C explains why, in order to understand the connection

between quaternioic Khler and 3-Sasakian geometry, as first observed by
Ishihara and Konishi, one must consider the larger category of quaternionic
Kfihler orbifolds.

2. The embedding theorem. Our next theorem shows that every
3-Sasakian manifold embeds naturally in a hyperkahler manifold, which
generalizes Swann’s associated bundle [20] to the orbifold category.

Theorem D. Let (z3, g, a) be a complete 3-Sasakian manifold. Then
the product manifold M 3 x R+ with the cone metric gM = dra + r g is

hyperkhler so that there is a commutative diagram of (orbifold) fibrations
xR+

Here is a quaternionic Kizhler orbifold appearing in part (v) of Theorem C,
is the twistor space of with its Kahler-Einstein orbifold metric, and 1+
is an orbifold generalization of Swann’s associated quaternionic bundle.

3. Some classification theorems. We obtain the following classification
theorem of all 3-Sasakian homogeneous spaces; that is, 3-Sasakian man-
ifolds with transitive action of the group of automorphisms of the Sasakian
3-structure. Combining Wolf’s [23] classification with the results of Ishihara

[10], Tanno [21], and Theorem C above we prove the followi’ng theorem.
Theorem E [3]. Let (, g, a) be a 3-Sasakian homogeneous space. Then

is precisely one of the following homogeneous spaces:
Sp(n) _

S4n_ Sp(n) 4-1

Sp(n- 1) Sp(n- 1) x Z2 "RP
SU(m) SO(k)

S(U(m- 2) x U(1))’ SO(k- 4) x Sp(1)’
G F4 E E Es

Sp(1)’ Sp(3)’ SU(6)’ Spin(12)’ E"
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Here n >_ 1, Sp(O) denotes the identity group, m >_ 3, and k >_ 7. Furthermore,

the fiber F over the quaternionic Khler base space is Sp(1) if and only if
(, g, a) is simply connected with constant curvature" that is, when -S4n-1 In all other cases F SO(3)

The metrics on all these cosets spaces are Einstein and they were consi-
dered in this context in Besse [1]. However, with the exception of the con-

stant curvature case, these are not the normal homogeneous metrics, as they
are not naturally reductive and thus are not obtained from the bi-invariant
metric on G by Riemannian submersion. Inhomogeneous 3-Sasakian geome-

tries were constructed and studied in [3, 4] as indicated in section four be-

low.
Combing the result of Ishihara [10] with the results of Hitchin who clas-

sified all 4-dimensional compact quaternionic Kfihler manifolds of positive
scalar curvature [8], and Poon and Salamon who extended this classification
to dimension 8 [16], we obtain the following classification of all fibered

Riemannian spaces with Sasakian 3-structure.
Theorem F [2]. Let 7c"- /: be a complete principal Riemannian

fibration with Sasakian 3-structure. Then,
1. If has dimension 7, then is either S7, RP, or SU(3)/ U(1).
2. If has dimension 11, then is either S, RP, SU(4)/S(U(2)

U(1)), or Ge/SU(2). In particular, every such fibered Riemannian manifold of
dimension 7 or 11 with Sasakian 3-structure is homogeneous.

4. Applications to other geometries. We conclude this announcement
by indicating how our results on 3-Sasakian manifolds can be used to de-
duce results in other areas of differential geometry. To begin we give some
non-homogeneous examples of 3-Sasakian manifolds that are not covered by
the Classification Theorem E.

Definition G [3]. Let n _> 3 and p (p,...,pn) Z be an n-tuple of
non-decreasing pairwise relatively prime, positive integers. Let (p) be the
left-right quotient of the unitary group U(n) by U(1) U(n 2) U(n)

U(n) L U(n)R where the action is given by the formula

W "’. W I0

v 0 B

Here W U(n) and (v, B) U(1) U(n- 2).
Theorem H [3]. Let n >_ 3 and p-- (p,. ,Pn) Z+ be an n-tuple of

non-decreasing, pairwise relatively prime, positive integers. Then (p) is a com-

pact, simply connected, (4n--5)-dimensional 3-Sasakian manifold. Fur-
thermore, (p) is inhomogeneous as long as p (1,...,1).

Combining Theorem H with a homology calculation given in [3] we have
Corollary I [3]. There are infinitely many non-homotopy equivalent compact

simply-connected inhomogeneous 3-Sasakian manifolds in dimension 4n 5 for
every n >_ 3.

Following Eschenburg we call a manifold strongly inhomogeneous if it is
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not homotopy equivalent to any homogeneous Riemannian manifold. The next
corollary follows directly from a theorem of Eschenburg [6] and the proof of
Corollary I.

Corollary J [3]. There are infinitely many homotopically distinct
7-dimensional strongly inhomogeneous compact simply connected 3-Sasakian

manifolds.
To our knowledge, the families in Corollary J are the only known exam-

ples of strongly inhomogeneous compact 3-Sasakian manifolds. Combining
Theorem C with Kashiwada’s fundamental observation [12] that every
3-Sasakian manifold is Einstein we can replace the phrase "3-Sasakian man-

ifold" by the phrase "Einstein manifold of positive scalar curvature" in both
Corollaries and J [4].

Finally, Theorem D can be used to give a generalization of the standard
Hopf surface construction which we can then use to construct many new
compact hypercomplex manifolds. Consider the manifold s3 x S obtained
from s3 iI + as the quotient by the multiplicative action of Z on iI + gener-
ated by r ar where a :/: 1 is a fixed positive real number.

Corollary K [3]. Let s3 be a complete 3-Sasakian manifold, then the com-
pact manifold s3 x S constructed above has a naturally induced hypercomplex
structure. In fact, the product metric is locally conformally hyperkahler.

More generally we have
Theorem L [5]. Let s3 be a 3-Sasakian manifold and P any circle bundle

over s3. Then
P is almost hypercomplex.

(ii) P is hypercomplex if and only if the nowhere vanishing vertical vector

field on P which generates the circle action is compatible with the Sasakian
3-structure.

The technical definition of compatibility in part (ii) of Theorem L is
given in [5]. Moreover, we have

Theorem M [5]. Let H(s3) be a compatible hypercomplex circle bundle over

any complete 3-Sasakian manifold . Then
H(s) does not admit any Kfzhler metric.

(ii) All the Chern numbers of H() are zero.
’(iii) There is a compatible hyperhermitian metric on H(s) whose isometry

group contains a copy of U(2).
We conclude this note by pointing out that Theorems L and M are not

vacuous as we have infinite families of examples in every quaternionic
dimension.

Theorem N [5]. Let n >_ 3, p be an n-tuple of non-decreasing, pairwise re-

latively prime, positive integers, and k a non-negative integer. Then there exist

compatible hypercomplex circle bundles H( (p) ;k) over the complete 3-Sasakian

manifold z3 () given in Definition G.
The hypercomplex manifolds in Theorem N are constructed so that

7rI(H( (p) ;k)) . In addition, the integral cohomology ring of H(s3 (p)
k) is computed in [5].
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