3-SAT and PPSZ General 3-SAT Cost Function

3-SAT Faster and Simpler - Unique-SAT Bounds for PPSZ Hold in General

Timon Hertli

Institute for Theoretical Computer Science Department of Computer Science ETH Zürich, Switzerland

October 10, 2011

China Theory Week 2011

(D) (A) (A)

The 3-SAT problem

• Given a logical formula in 3-CNF on *n* variables
$$F := \underbrace{(x \lor y \lor \overline{z})}_{clause} \land (\overline{x} \lor a \lor \overline{y}) \dots$$

Does there exist an assignment
 α := {x → α(x), y → α(y),...} s.t. F evaluates to true?

• We call such an assignment *satisfying*

Goal: Moderately Exponential Algorithm

Randomized algorithm for 3-SAT running in time $O(b^n)$ for b < 2

・ロト ・四ト ・ヨト ・ヨト

History of Randomized 3-SAT algorithms

- At 1998, Paturi, Pudlák, Saks, Zane invented the PPSZ algorithm solving 3-SAT in time $O(1.364^n)$
- PPSZ finds a **unique** satisfying assignment in $O(1.308^n)$

・ 同 ト ・ ヨ ト ・ ヨ ト

History of Randomized 3-SAT algorithms

- At 1998, Paturi, Pudlák, Saks, Zane invented the PPSZ algorithm solving 3-SAT in time $O(1.364^n)$
- PPSZ finds a **unique** satisfying assignment in $O(1.308^n)$
 - Schöning's algorithm (1999): $O(1.334^{n})$
 - Combination by Iwama, Tamaki (2004): $O(1.324^n)$
 - Improved to 1.323ⁿ, 1.322ⁿ, 1.321ⁿ

(D) (A) (A) (A)

History of Randomized 3-SAT algorithms

- At 1998, Paturi, Pudlák, Saks, Zane invented the PPSZ algorithm solving 3-SAT in time $O(1.364^n)$
- PPSZ finds a **unique** satisfying assignment in $O(1.308^n)$
 - Schöning's algorithm (1999): $O(1.334^{n})$
 - Combination by Iwama, Tamaki (2004): $O(1.324^n)$
 - Improved to 1.323^n , 1.322^n , 1.321^n
- We show: PPSZ finds a satisfying assignment in $O(1.308^n)$ in the general case

ヘロト ヘポト ヘヨト ヘヨト

PPSZ

• One PPSZ-run tries to build a satisfying assignment by fixing variables in *F*, repeating the following:

A PPSZ-step

- Set all variables we "know"
- Guess a random variable (uniformly at random)
- We "know" x if constantly many clauses imply $x \mapsto 0$ or $x \mapsto 1$.

イロト イポト イヨト イヨト

PPSZ

• One PPSZ-run tries to build a satisfying assignment by fixing variables in *F*, repeating the following:

A PPSZ-step

- Set all variables we "know"
- Guess a random variable (uniformly at random)
- We "know" x if constantly many clauses imply $x \mapsto 0$ or $x \mapsto 1$.

Theorem (PPSZ)

If x has the same value in all satisfying assignments of F, then x is guessed with probability at most 0.387.

• In the unique case, this holds for all variables. The satisfying assignment is found with probability $\left(\frac{1}{2}\right)^{0.387n} \approx 1.308^{-n}$.

General 3-SAT: Original Analysis

- Original analysis: partition the set of 2ⁿ assignments; unique satisfying assignment in each part
- Worse running time and very complicated analysis
- Our approach: Consider each variable separately, do some bookkeeping

General 3-SAT: Frozen Variables

- If x has has the same value in all satisfying assignments of F, we call x frozen
- Otherwise we call it non-frozen

・ 同 ト ・ ヨ ト ・ ヨ ト

General 3-SAT: Frozen Variables

- If x has has the same value in all satisfying assignments of F, we call x frozen
- Otherwise we call it non-frozen

Observation

If x is non-frozen, it's ok to assign any value

• What's the problem?

・ 同 ト ・ ヨ ト ・ ヨ ト ・

General 3-SAT: Frozen Variables

- If x has has the same value in all satisfying assignments of F, we call x frozen
- Otherwise we call it non-frozen

Observation

If x is non-frozen, it's ok to assign any value

- What's the problem?
- OK: x started frozen or x is non-frozen when assigned
- What if x starts non-frozen, but becomes frozen and is set afterwards?

・ロト ・回ト ・ヨト ・ヨト

Handling non-frozen variables

Q: What if x starts non-frozen, but becomes frozen and is set afterwards?

- As soon as x becomes frozen, it will be guessed with probability at most 0.387 in the **remainder**
- Suppose y starts frozen. If it is not set, we expect it's guessing probability to be lower
- Balance x being guessed more with having x around non-frozen

Approach: Quantify this, do the math and hope it works out

Cost Function

Give each intermediate (satisfiable) formula a cost c(F)

- Cost measures how hard F is for PPSZ
- The cost is the sum of contributions of individual variables
 - Frozen variables contribute their probability to be guessed to the cost
 - Non-frozen variables contribute 0.387 to the cost
- Hence $c(F) \le 0.387n$
 - In unique case: c(F) is the expected number of variables we have to guess
- We show: PPSZ finds a sat. assignment with probability $2^{-c(F)}$

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・ ヨ

Analysis in the Unique Case

Remember $c(F) \le 0.387n$. Suppose F has a unique satisfying assignment, so all variables are frozen

- c(F) decreases by 1 each guessing step on average
 - We expect c(F) variables to be guessed now. We guess a variable. How many variables do we expect to be guessed afterwards?
- Hence there are only 0.387*n* guessing steps on average
- Each guessing step succeeds with probability 1/2
- The total success probability is $(1/2)^{0.387n} pprox 1.308^{-n}$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日

Analysis in the General Case

Remember $c(F) \leq 0.387n$. Now consider the general case, where some variables are non-frozen

- Non-frozen variables do not become "less guessed", hence c(F) decreases by less than 1.
- So we have more guessing steps, however the failure probabilty is smaller
- Doing the calculation shows that the total success probability is still at least $2^{-0.387n} \approx 1.308^{-n}$.
 - Because $4 4\log 2 \approx 1.23 < 1.44 \approx 1/\log 2$
 - If PPSZ would run in 1.2ⁿ, it wouldn't work anymore

Conclusion

- Using the cost function, we can look at individual PPSZ-steps
- This gives us the flexibility to accomodate non-frozen variables

Open Problems:

- Does PPSZ get even **better** with more assignments?
- Is UNIQUE *k*-SAT **always** the worst case? (conjectured by Calabro et al.)
- PPSZ derandomized for Unique k-SAT[Rolf, 2005]
- Derandomization for general *k*-SAT?

(D) (A) (A) (A) (A)

Questions?

- ◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで