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Abstract

The mineralocorticoid receptor (MR) belongs to the steroid hormone receptor family 

and classically functions as a ligand-dependent transcription factor. It is involved in 

water-electrolyte homeostasis and blood pressure regulation but independent from 

these effects also furthers in�ammation, �brosis, hypertrophy and remodeling in 

cardiovascular tissues. Next to genomic effects, aldosterone elicits very rapid actions 

within minutes that do not require transcription or translation and that occur 

not only in classical MR epithelial target organs like kidney and colon but also in 

nonepithelial tissues like heart, vasculature and adipose tissue. Most of these effects 

can be mediated by classical MR and its crosstalk with different signaling cascades. 

Near the plasma membrane, the MR seems to be associated with caveolin and striatin 

as well as with receptor tyrosine kinases like EGFR, PDGFR and IGF1R and G protein-

coupled receptors like AT1 and GPER1, which then mediate nongenomic aldosterone 

effects. GPER1 has also been named a putative novel MR. There is a close interaction 

and functional synergism between the genomic and the nongenomic signaling so that 

nongenomic signaling can lead to long-term effects and support genomic actions. 

Therefore, understanding nongenomic aldosterone/MR effects is of potential relevance 

for modulating genomic aldosterone effects and may provide additional targets for 

intervention.

Early milestones in aldosterone research

In 1953 aldosterone was isolated and characterized by 

Simpson and Tait and subsequently in 1960 genomic steroid 

actions were described (Clever & Karlson  1960). Already 

very early on, aldosterone effects that were very rapid and 

therefore could not be reconciled with a genomic mechanism 

were described (Ganong & Mulrow 1958, Klein & Henk 1964, 

Spach & Streeten 1964, Fujii  et  al. 1990). These effects of 

aldosterone included rapid flux of ions in erythrocytes and 

the kidney, stimulation of Na+-K+ pump activity and changes 

in cardiovascular parameters including a decrease in cardiac 

output and an increase in peripheral resistance. However, 

neither their nongenomic nor their nonepithelial origin was 

fully appreciated and it took until 1984 for a nongenomic 

mechanism to be demonstrated (Moura & Worcel 1984). 

Shortly after in 1987 the classical MR was cloned and 

characterized (Arriza et al. 1987).
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Beginning in the 1990s, nongenomic signaling 

effects were investigated on a cellular level and a 

membrane receptor for aldosterone was postulated. 

Based on the findings that actinomycin D and 

cycloheximide were not able to block the influence 

of aldosterone on the activity of the sodium–proton 

exchanger and on cell volume in HML cells, a 

nongenomic signaling mechanism was deduced by 

Wehling and coworkers (Wehling  et  al. 1991, 1992, 

Christ  et  al. 1994, Wildling  et  al. 2008). Because 

glucocorticoids were less effective to induce these 

effects and MR antagonists could not block them, the 

existence of a new membrane aldosterone receptor was 

postulated. Although exhibiting some inconsistencies, 

data on rapid calcium and cAMP signaling in skin cells 

of global MR knockout mice seemed to support this 

hypothesis (Haseroth et al. 1999). Several attempts were 

made to isolate and characterize such an aldosterone 

specific membrane receptor from HML and porcine 

kidney membranes but never completely convincingly 

succeeded (Wehling et al. 1991, 1992, Eisen et al. 1994, 

Wildling et al. 2008). Thereafter, it was shown that many 

of the nongenomic aldosterone effects seem to depend 

on classical MR (Liu  et  al. 2003, Callera  et  al. 2005b, 

McEneaney  et al. 2010a). In cells without endogenous 

MR, many of the rapid signaling effects like activation 

of MAP kinases could only be detected after transfection 

of an MR expression plasmid. Expressing exclusively the 

E/F domain of the MR was sufficient for the induction 

of rapid aldosterone effects (Grossmann  et  al. 2005, 

2008). Additionally, it was shown that some aldosterone 

effects cannot be blocked by spironolactone but by 

other MR antagonists like K+ canrenoate or RU28313 

so that ineffectiveness of spironolactone does not 

necessarily mean that the classical MR is not involved 

in an effect (Alzamora et al. 2000, Mihailidou & Funder 

2005). Nevertheless, aldosterone was still able to induce 

rapid signaling if aldosterone was conjugated to BSA or 

PEG and in cells devoid of classical MR so that both 

MR-dependent and -independent mechanisms seem to 

lead to nongenomic aldosterone effects (Le Moellic et al. 

2004, Grossmann  et  al. 2005, Wildling  et  al. 2008, 

Ashton  et  al. 2015). While early works focused on 

characterizing transporters and intracellular signaling 

molecules like calcium ions and kinases (Funder 2005, 

Grossmann & Gekle 2009), more recent studies have 

identified additional interaction partners of the MR at 

the plasma membrane.

Interaction partners at the plasma membrane

For the rapid MR-dependent aldosterone effects, a 

localization of the classical MR near the plasma membrane 

has been indicated in several studies (Grossmann  et al. 

2010, Callera  et  al. 2011, Coutinho  et  al. 2014, 

Ashton et al. 2015). Since the MR lacks a palmitoylation 

site that has been identified as transmembrane domain 

in other steroid receptors, it does not seem to be directly 

inserted into the plasma membrane. Most likely this 

is achieved by an association of MR to the cytosolic 

side of the plasma membrane by scaffolding proteins 

that are associated to or inserted in the cell membrane 

(Grossmann et al. 2010).

Scaffolding proteins

Recently, striatin and caveolin-1 (CAV1) were identified as 

candidates for such scaffolding proteins (Coutinho et al. 

2014, Ashton et al. 2015). For both proteins evidence for 

Figure 1

Aldosterone/MR signaling. Aldosterone (aldo) has several mechanisms of 

action. (1) It can bind to cytosolic MR and initiate translocation of MR 

into the nucleus, where the MR homodimerizes and acts as a 

transcription factor. (2) Additionally, aldosterone and MR can initiate a 

crosstalk with other cytosolic signaling pathways, like for example NFAT 

and CREB signaling, which ultimately may affect genomic signaling. (3) 

Genomic MR signaling may be in�uenced by epigenetic regulation by 

histone modi�cation or promoter methylation and also by (4) 

posttranscriptional regulation for example by microRNAs. (5) Aldosterone 

can also bind to MR attached to the plasma membrane by scaffolding 

proteins like Cav1 and striatin. There it may elicit nongenomic effects by 

interacting with receptors, i.e. receptor tyrosine kinases like EGFR, PDGFR 

and IGF1R or GPCR like AT1 or GPER1.
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an involvement in nongenomic signaling as part of a 

larger membrane complex exists (Fig. 1).

Striatin Striatin is a scaffolding protein that contains 

several protein-binding domains, which enable it to 

interact with and activate different signal transduction 

molecules. These domains include a caveolin binding 

motif that attaches it to the plasma membrane, a 

coiled-coil-domain, a Ca++-calmodulin-binding site and 

WD-repeat domains for interactions with Gαi proteins and 

PP2A phosphatase (Hwang & Pallas 2014). In endothelial 

cells and murine heart tissue, complexes between striatin 

and MR have been described that can be disrupted by 

aldosterone but cannot be restored by spironolactone 

(Pojoga  et  al. 2012, Ashton  et  al. 2015). Activation of 

MR by high levels of aldosterone increases striatin levels 

in vascular cells and in tissues of mouse models with 

elevated aldosterone concentrations (Ricchiuti  et  al. 

2011, Pojoga  et  al. 2012). Lowering striatin levels in 

endothelial cells reduces nongenomic aldosterone/

MR-dependent ERK phosphorylation without affecting 

EGF-induced ERK phosphorylation or genomic MR 

signaling (Coutinho et al. 2014). The relevance of striatin 

for MR signaling is further suggested by the analysis 

of heterozygous striatin KO mice with low striatin 

levels and salt sensitive blood pressure. In this model,  

pAKT/AKT ratio, another potential nongenomic MR 

signaling pathway, is reduced while MR expression 

and genomic signaling are increased (Garza  et  al. 

2014). Consequently, striatin seems to play a role in 

nongenomic MR signaling. A similar role in nongenomic 

steroid receptor signaling has been described for striatin 

in estrogen receptor alpha signaling, where striatin is 

involved in the activation of AKT and eNOS and estrogen-

mediated protection of arteries after injury (Lu et al. 2004, 

Bernelot Moens et al. 2012).

Caveolin Caveolins are membrane-bound scaffolding 

proteins enriched in caveolae that help to form 

microdomains for signal transduction, i.e. for PI3K/AKT 

signaling, ERK1/2, NO, eNOS, G protein-coupled receptors 

(GPCRs), tyrosine kinases and PKC (Yang et al. 2016). For 

other steroid receptors, caveolin acts as a control point 

for crosstalk with other signaling pathways (Igarashi et al. 

2013). Both AT1 and MR coimmunoprecipitate with CAV1 

in rat, mouse and human tissues and the MR contains 

a caveolin binding motif in the middle of n-terminal 

domain (between aa 450 and 460 (FPFMDGSYFSF) 

(Ushio-Fukai & Alexander 2006, Pojoga  et  al. 2010b, 

Coutinho  et  al. 2014). Aldosterone induces caveolin-1 

expression in endothelial cells (BAEC), an effect that can 

be inhibited by spironolactone (Igarashi  et  al. 2013). In 

Cav1 KO mice an interaction between MR and striatin 

is no longer detectable and MR expression is reduced 

(Pojoga  et  al. 2010a, Coutinho  et  al. 2014). Conversely, 

during sodium load, CAV1 and MR expression are increased 

and more complexes between the two can be detected 

(Ricchiuti et al. 2011). There are several indications that 

Cav1 is associated with MR signaling although the exact 

mechanisms remain to be investigated. In Cav1 KO 

mice on a high salt diet, MR blockade increases blood 

pressure and vascular contraction but reduces eNOS 

expression and vasorelaxation so that MR seems to play 

a beneficial role (Pojoga et al. 2010a). Additionally, Cav1 

KO mice and carriers of Cav1 gene variants are prone 

to insulin resistance, dyslipidemia and other metabolic 

abnormalities probably due to impaired aldosterone/MR 

signaling (Pojoga et al. 2011, Baudrand et al. 2016). After 

challenge with L-NAME and angiotensin II (angII), Cav1 

KO mice showed disturbed MR signaling with reduced MR 

and PAI-1 expression and were protected from myocardial 

damage despite higher increases in systolic blood pressure 

than WT mice (Pojoga et al. 2010b).

Overall, there are indications that both striatin and 

caveolin are involved in nongenomic MR signaling 

by associating classical MR to the plasma membrane. 

Additionally, CAV1 is an excellent candidate for linking 

the MR to membrane receptors like receptor tyrosine 

kinases and also GPCRs, for which transactivation or 

a crosstalk with classical MR has been demonstrated. 

Furthermore, CAV1 is also associated with many other 

molecules like eNOS and c-SRC, which are activated as a 

result of rapid aldosterone/MR signaling, suggesting that 

a larger membrane signaling complex exists for mediating 

various nongenomic aldosterone effects and that the 

classical MR is an integral part of this complex.

Membrane receptors

As part of rapid MR signaling, transactivation of receptor 

tyrosine kinases including EGFR, PDGFR and IGF1R has 

been described. For GPCRs even more complex synergistic 

activities have been reported especially for AT1 and GPER1. 

GPER1 has even been declared an aldosterone receptor 

although direct binding of aldosterone has not been shown. 

All of these receptors are located in close proximity to the 

putative MR scaffolding proteins described previously and 

they have been mostly studied as modulators of pathological 

MR effects.
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EGFR Of the membrane receptor tyrosine kinases involved 

in aldosterone signaling, the epidermal growth factor 

receptor (EGFR) seems to be of special importance as a signal 

integrator for both physiological and pathophysiological 

aldosterone effects. The EGFR is associated to CAV1 and 

can be transactivated by aldosterone/MR either through 

a C-SRC- or ROS-dependent mechanism, which then 

leads to downstream MAP kinase and/or PI3 kinase 

signaling (Mazak et al. 2004, Grossmann et al. 2005, 2008, 

McEneaney et al. 2007, Huang et al. 2009). Importantly, the 

EGFR cascade is also linked to other important signaling 

components of aldosterone like G protein-coupled AT1 and 

GPER signaling and PDGFR activation. Physiological MR 

effects mediated via EGFR include processes that enhance 

surface expression of different transporters like ENaC 

(McEneaney et al. 2007), NHE1 (Gekle et al. 2002) or NHE3 

(Drumm et al. 2006) in epithelial tissues. Pathophysiological 

MR actions mediated by EGFR include proinflammatory 

effects in vessels, where aldosterone can increase 

lipoxygenase expression via MAPK activation (Limor et al. 

2009) and where enhanced TGFbeta, ICAM1 and collagen I 

expression in VSMCs of aged rats can be attenuated by MR 

or MAP kinase inhibitors (Krug et al. 2010). In conjunction 

with AT1 signaling, aldosterone via EGFR can also induce 

a mitogenic response and enhanced cell migration 

(Min  et al. 2005, Montezano  et al. 2008). Transactivation 

of EGFR by aldosterone/MR can furthermore aggravate 

fibrosis through induction of fibroblast proliferation via 

PDGFR, PI3K and MAP kinase signaling shown in kidney 

and by augmenting collagen synthesis in vascular and 

HEK cells in a favorable micromilieu (Gekle  et  al. 2007, 

Huang et al. 2012). A truncated MR variant without DNA-

binding domain is sufficient to enhance extracellular 

matrix production, which supports a nongenomic nature 

of the effect (Grossmann  et  al. 2008). In the kidney, 

aldosterone via MR additionally induces mesangial cell 

proliferation via ROS-dependent activation of EGFR, 

leading to combined ERK1/2 and PI3K/mTOR signaling 

(Huang  et  al. 2009). There is a close interaction between 

genomic and nongenomic aldosterone signaling because 

aldosterone/MR can both transactivate the EGFR and 

enhance its expression (Dorrance et al. 2001, Nakano et al. 

2005, Meinel  et  al. 2013). Furthermore, nongenomic 

aldosterone-mediated ERK1/2 phosphorylation seems to 

enhance MR nuclear shuttling and thereby transactivation 

activity (Grossmann et al. 2005).

PDGFR Another receptor tyrosine kinase located in 

caveolae and involved in aldosterone signaling is the 

platelet-derived growth factor receptor (PDGFR). It can 

also be transactivated by MR and AT1, which then lead 

to C-SRC activation, increased NADPH oxidase activity 

and cell migration (Montezano et al. 2008). Additionally, 

PDGFR-C-SRC signaling is involved in aldosterone-

dependent proinflammatory responses, namely increased 

ICAM and VCAM expression and stimulation of monocyte 

adhesion to VSMCs. Together with the EGFR, PDGFR 

induces fibroblast proliferation in the kidney (Huang et al. 

2012). Interestingly, PDGF was shown to stimulate nuclear 

MR translocation in pulmonary artery smooth muscle 

cells as well as cell proliferation (Preston  et  al. 2013) 

indicating that nongenomic aldosterone effects support 

genomic ones.

IGF1R A third receptor tyrosine kinase, interacting 

with aldosterone signaling is the insulin-like-growth 

factor 1 receptor (IGF1R), which has been investigated in 

renal epithelial cells and in fibroblasts of different origin 

(Holzman et al. 2007, Mitts et al. 2010). Its transactivation 

by aldosterone in cardiac fibroblasts cannot be inhibited 

by spironolactone, involves activation of Gα13 and 

c-src and leads to enhanced elastogenesis (Bunda  et  al. 

2007, 2009). Likewise in renal fibroblasts, a rapid 

MR-independent fibronectin synthesis that requires 

C-SRC mediated IGF1R transactivation with subsequent 

ERK1/2 phosphorylation has been described (Chen et al. 

2013). Besides transactivating IGF1R, aldosterone again 

can genomically increase its expression (and that of 

hybrid receptor), leading to VSMC growth, migration, 

protein synthesis and insulin resistance (Cascella  et  al. 

2010, Sherajee et al. 2012). In a diabetes mouse model with 

over-expression of aldosterone synthase, an increase in 

IGF1R expression was associated with protection against 

diabetes-associated cardiac changes (Fazal  et  al. 2014), 

suggesting that in this scenario nongenomic signaling 

may even exert some beneficial effects.

AT1 Besides receptor tyrosine kinases, GPCRs are 

also important interaction partners of nongenomic 

aldosterone/MR signaling. For angII receptor I (AT1), 

a complex interaction with aldosterone/MR signaling 

on different levels is reported in literature and 

spironolactone, for example, can inhibit angII-mediated 

pathological effects by improving cardiac and vascular 

changes, including fibrosis, hypertrophy and oxidative 

stress in rats (Ullian et al. 1992, 1996, Fiebeler et al. 2001, 

Virdis  et  al. 2002, Neves  et  al. 2003, 2005). Besides a 

genomic component whereby aldosterone regulates ACE 
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(and thereby angII synthesis), MR and AT1 expression in 

the cardiovascular system, MR and AT1 signaling cascades 

also interact on a nongenomic level (Zennaro et al. 1996, 

Sugiyama et al. 2005, Hirono et al. 2007, Tsai et al. 2013). 

In VSMCs this was shown by demonstrating a synergistic 

effect of angII and aldosterone on ERK1/2 phosphorylation 

that results in cell proliferation, migration and cell 

senescence (Mazak et al. 2004, Min et al. 2005, 2007). In 

the brain the crosstalk between MR and AT1 and MAP 

kinase signaling is involved in increased sympathetic 

drive and hypertension (Xue  et  al. 2011, Zhang  et  al. 

2012). As a second common signaling mechanism, IGF1R 

and redox-dependent activation of kinases like RHOA 

kinase was described, which support VSMC migration 

(Montezano  et  al. 2008). Furthermore, aldosterone-

induced rapid vasoconstriction in coronary arterioles was 

dependent on AT1 and possibly AT1 dimer formation 

but in this case, spironolactone was not able to block the 

effect of aldosterone (Kushibiki et al. 2007, Yamada et al. 

2008). While aldosterone-dependent phosphorylation 

of ERK1/2, JNK and NFκB requires AT1, angII-dependent 

activation of NFκB requires MR (Lemarie  et  al. 2008). 

Additionally, transactivation of the MR by angII (and AT1) 

with subsequent regulation of MR-dependent genes has 

been demonstrated (Xiao et al. 2004, Jaffe & Mendelsohn 

2005). Relevance of G protein-coupled receptor signaling 

for pathological aldosterone effects is demonstrated by the 

attenuation of cardiac damage including ROS production, 

myocyte cell death and hypertrophy by either MR or 

AT1 blockade and the involvement of GRK2 and GRK5 

(Cannavo et al. 2016).

GPER1 Another G protein-coupled receptor with 

special relevance for nongenomic aldosterone signaling 

is G protein-coupled estrogen receptor 1 (GPER1), alias 

GPR30, which is best known for conveying nongenomic 

estrogen effects in different model systems but has 

also been proposed to be a novel aldosterone receptor. 

As estrogen receptor in the cardiovascular system, it 

influences vascular tone through modulation of p-eNOS/

eNOS and pERK/ERK ratios as well as apoptosis via PI3K, 

c-SRC and EGFR and also influences PKA (Filardo  et  al. 

2000, 2002, Meyer  et  al. 2016). A protective role in 

pulmonary hypertension, atherosclerosis and diabetes 

has been postulated (Barton & Prossnitz 2015, Prossnitz 

& Hathaway 2015).

An interaction between aldosterone, MR and GPER1 

signaling was first described in VSMCs by Gros and 

coworkers who later showed that ERK1/2 phosphorylation 

was stimulated by aldosterone via GPER1 and MR and 

could be inhibited by eplerenone or the GPER1 antagonist 

G15 (Gros et al. 2007, 2011). Likewise, apoptosis induction 

via PI3K, ERK1/2 as well as MLC phosphorylation was 

enhanced by aldosterone via both receptors. Interestingly, 

GPER1 had no effect on corticosterone- or angII-mediated 

ERK1/2 phosphorylation (Gros et al. 2011). In endothelial 

cells aldosterone and the GPER1 agonist G1 both 

induced ERK phosphorylation and also apoptosis. These 

experiments suggest a crosstalk between aldosterone and 

GPER1 signaling but do not prove a direct binding or 

interaction between aldosterone and GPER1.

Further support for a crosstalk comes from experiments 

showing that nanomolar concentration of aldosterone 

are able to enhance angII-mediated vasoconstriction in 

human coronary microarteries in a GPER1- and EGFR-

dependent manner (Batenburg et al. 2012). In mesenteric 

resistance arteries, aldosterone led to enhanced maximal 

phenylephrine-induced vasocontraction that could be 

reversed by GPER1 inhibitor and to reduced acetylcholine-

induced vasorelaxation depending on MR and GPER1 

(Ferreira et al. 2015). Likewise, vasocontraction in diabetic 

db/db mice in response to phenylephrine could be reduced 

by MR or GPER1 inhibitors, however, aldosterone-induced 

vasorelaxation was only dependent on MR (Ferreira et al. 

2015). Furthermore, aldosterone could endothelium-

dependently inhibit phenylephrine-mediated 

vasoconstriction of aortic rings via GPER1 (Gros et al. 2013). 

This suggests that the effects of aldosterone on vascular 

tone and function are complex and dependent on both 

receptors MR and GPER1 and the dominant cell type, i.e. 

endothelial and vascular smooth muscle cells. Interestingly, 

striatin does not only serve as a scaffolding protein for MR 

but also for GPER1; and MR-striatin complexes can be 

disrupted by G1 and restored by the GPER antagonist G36 

but not by spironolactone (Ashton et al. 2015).

Experiments in other organs suggest that GPER1 

also plays a role in nongenomic aldosterone signaling in 

heart, kidney and in tumors. However, although pegylated 

aldosterone could induce ERK1/2 phosphorylation and 

superoxide production in H9c2 cells, it was not able 

to aggravate the infarct size in an ex vivo rat model of 

myocardial infarction like unmodified aldosterone. This 

indicates that GPER1 activation at the membrane is not 

sufficient to trigger pathophysiological aldosterone effects 

in myocardial reperfusion injury (Ashton  et  al. 2015). 

Furthermore, in rat cardiomyocytes, aldosterone and G1 

could enhance sodium bicarbonate cotransporter (NBC) 

activity depending on GPER1, EGFR, ROS production and 
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AKT stimulation (De Giusti  et  al. 2015). In cardiac vagal 

neurons vagal tone and thereby bradycardia was increased 

via GPER1 and calcium signaling (Brailoiu et al. 2013, De 

Giusti  et al. 2015) while in the kidney, a sensitization of 

renal connecting tubule glomerular feedback by aldosterone 

involved nongenomic effects via GPER1, classical MR and 

sodium–proton exchanger 1 (NHE1) (Ren  et  al. 2014). 

In addition, aldosterone induced cell proliferation and 

migration of tumor cells via GPER1, and it also induced 

pulmonary tumor spread that could be inhibited by 

spironolactone and GPER1 inhibition (Feldman et al. 2016). 

Functionally, MR and GPER1 contribute to proliferation 

and migration of breast and endothelial cancer cells by 

mediating an upregulation of NHE1 (Rigiracciolo  et  al. 

2016). Consequently, there are many indications for 

functional involvement of GPER1 in rapid aldosterone/MR 

signaling (Ashton et al. 2015) (Fig. 2). However, although 

estradiol was shown to bind to the plasma membrane 

fraction in GPER1 over-expressing HEK cells or SKBr3 

cells with endogenous GPER1 expression, no binding of 

aldosterone was found and displacement of 3H-estradiol 

was also not possible. In these cellular systems, aldosterone 

elicited no recruitment of GTPyS to the plasma membrane, 

which would have supported a direct GPER1 activation 

by aldosterone as a ligand (Cheng et al. 2014). It has also 

not been fully elucidated why specific MR antagonists 

sometimes are able to block G1 and GPER1 effects so that 

further work is required to establish the exact role of GPER1 

for nongenomic aldosterone signaling.

In summary, nongenomic aldosterone signaling 

often seems to rely on classical MR and a crosstalk with 

membrane-associated signaling cascades, including 

receptor tyrosine kinase and GPCR pathways. Although 

many participating signaling components have been 

identified, the precise spatial and temporal sequence of 

events has not been elucidated. Also the existence and 

identity of a possible additional aldosterone receptor is 

still not clear.

Figure 2

Functional interaction between aldosterone and GPER1. There are many indications for a functional interaction between aldosterone/MR and GPER1 

signaling, especially in cardiovascular cells (endothelial cells (ECs), vascular smooth muscle cells (VSMCs) and cardiomyocytes) as well as in tumor cells. 

NBC, sodium bicarbonate cotransporter; pMLC, phosphorylated myosin light chain.
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Target tissues of nongenomic MR e�ects

Nongenomic MR signaling has been mostly studied as 

modulator of physiological and pathological genomic 

MR effects. Consequently, they have been especially 

well characterized not only in classical epithelial MR 

target organs like the kidney but also in cardiovascular 

tissues. They are often involved in ion transport but 

can also facilitate pathological MR effects that lead to 

inflammation, fibrosis and impaired tissue and organ 

function.

Nongenomic aldosterone effects in the kidney

The MR is best known for its effects in classical epithelial 

tissues like kidney, where it increases sodium reabsorption 

and potassium secretion through genomic changes in 

ion transporters like epithelial sodium channel (ENaC), 

Na+-K+-ATPase and sodium–proton exchanger (NHE). The 

abundance of transporters at the plasma membrane is 

stabilized through aldosterone-dependent expression of 

proteins like SKG1, GILZ, CNKSR3 and ubiquitin-specific 

protease 2–45 (Oberfeld et al. 2011). In addition, a rapid 

increase in transport activity within minutes that cannot 

be explained by transcriptional regulation was detected 

for many of the transporters, suggesting that nongenomic 

effects enhance genomic effects by ensuring their early 

start or by perhaps functioning as feedback loops.

ENaC ENaC consists of three subunits and sodium 

reabsorption depends on the surface abundance of 

the subunits and their open probability. Genomically, 

aldosterone directly regulates ENaCα expression, which 

facilitates sodium reabsorption. Via a genomic regulation 

of SGK1 expression and activity, aldosterone leads to 

phosphorylation of the ubiquitin ligase, NEDD4-2, 

which abolishes ubiquitination and degradation of ENaC 

subunits beta and gamma. Furthermore SGK is involved 

in phosphorylation of regulatory proteins that facilitate 

trafficking of ENaC subunits to the cell surface (Liang et al. 

2010). Besides genomically controlling the expression 

and degradation of ENaC subunits, aldosterone also 

influences subcellular trafficking of ENaC subunits to the 

cell membrane and influences ENaC open probability by 

nongenomic mechanisms. Through activation of EGFR, 

PKC and PKD, rapid trafficking of ENaC subunits to 

the apical membrane followed by prolonged increased 

apical membrane expression and activity was reported 

(Loffing  et  al. 2001, McEneaney  et  al. 2008, 2010b, 

Kusche-Vihrog et al. 2008, Dooley et al. 2013). Subcellular 

trafficking seems to be modulated by members of the 

RAS GTPase superfamily and associated kinases that 

are known to modulate cytoplasmic cytoskeleton 

structure (Karpushev  et  al. 2010). For example, for 

RHOA, an increase in ENaC subunit insertion into the 

plasma membrane through effects on microtubule was 

reported (Pochynyuk  et  al. 2006, 2007). For RAC-1, 

which also enhances ENaC activity, an upregulation of 

MR nuclear translocation and transcriptional activity 

was demonstrated and even a ligand independent 

activation of the MR was shown (Staruschenko et al. 2004, 

Shibata  et  al. 2008, Pavlov  et  al. 2004). Activation and 

enhanced expression of KRasA in renal cells by aldosterone 

furthermore led to an increased open probability of ENaC 

via the PI3K signaling cascade (Staruschenko et al. 2004). 

Furthermore, Blazer-Yost and coworkers and Yu and 

coworkers (Blazer-Yost  et  al. 1997, Yu  et  al. 2013) show 

that aldosterone also influences epigenetic regulation by 

promoter methylation and by histone modification, which 

may both be important for ENaC expression (Zhang et al. 

2006, 2007). Enhanced nongenomic aldosterone-induced 

ENaC activity was also reported to rely on channel 

methylation (Stockand et al. 2000, Zhou & Bubien 2001). 

In summary, aldosterone-induced sodium reabsorption 

by ENaC has genomic and nongenomic elements. Besides 

facilitating genomic effects, nongenomic effects can also 

be involved in regulatory feedback loops, as can be seen 

for ENaC activity which can be decreased by enhanced 

nongenomic MR-MAP kinase activation (Booth & 

Stockand 2003, Grossmann et al. 2004).

Na+-K+-ATPase In the collecting tubule early effects 

of aldosterone on Na+-K+-ATPase activity have been 

described in adrenalectomized animals but are controversial 

(Doucet & Katz 1981, El Mernissi & Doucet 1984, Fujii et al. 

1990). Discrepancies in reports may result from indirect 

effects of other transporters on Na+-K+-ATPase pump activity 

or from different isoforms expressed in different models 

and tissues (Summa  et al. 2004). Again just like for ENaC,  

Na+-K+-ATPase response to aldosterone seems to involve 

trafficking of preexisting subunits to the membrane as 

well as de novo synthesis (El Mernissi & Doucet 1984, Blot-

Chabaud et al. 1990, Kolla & Litwack 2000, Summa et al. 2001, 

Musch et al. 2008). SGK, an MR target gene, and aldosterone 

were shown to stimulate long-term effects synergistically  

but independently (Alvarez de la Rosa  et  al. 2006). 
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Aldosterone-induced trafficking of the Na+-K+-ATPase α and β 

subunits to the basolateral membrane was dependent on PKD, 

suggesting a nongenomic mechanism (Dooley et al. 2013). 

Furthermore, activation of PKC was shown to be required for 

aldosterone-induced genomic increase in α1-Na+-K+-ATPase  

mRNA, thus functionally linking nongenomic to 

genomic effects (Le Moellic et al. 2004). Therefore, overall,  

Na+-K+-ATPase activity seems to facilitate chronic sodium 

reabsorption in the collecting duct mediated by genomic and 

modulated by nongenomic aldosterone signaling events. 

However, a rapid inhibitory component on Na+-K+-ATPase 

activity mediated by PKC in cardiomyocytes and vascular 

tissue was also described for aldosterone (Alzamora  et  al. 

2003, Mihailidou et al. 2004).

NHE For both NHE1 and NHE3 rapid aldosterone-

dependent changes in signaling and ion transport activity 

have been reported. While NHE1 is expressed ubiquitously 

at the basal membrane of polarized tissues and also in 

unpolarized cells, NHE3 is expressed in apical membranes 

in the renal and intestinal tissues that are responsible 

for Na+ absorption and proton secretion or rather HCO3
− 

absorption. A rapid stimulation of NHE1 has been one 

of the earliest and best investigated nongenomic effects 

described for aldosterone in different renal cell lines 

and was mediated for example by intracellular calcium 

and ERK1/2 phosphorylation in MTAL and MDCK-C11 

cells (Gekle  et  al. 1996, 1998, 2001, Watts  et  al. 2006, 

Pinto  et  al. 2008). NHE1 is not only known for its 

effects on electrolyte and acid–base regulation but also 

for its function as a regulator of cytoskeletal function 

which affects various transport processes, cell motion 

and cell volume and perhaps also fibronectin synthesis 

(Markos et al. 2005, Leite-Dellova et al. 2008, Zhang et al. 

2010, Braga-Sobrinho  et  al. 2012). Furthermore, NHE1 

is also important for other organs like vasculature and 

heart (Ebata et al. 1999, Michea et al. 2005, Miyata et al. 

2005, Matsui  et  al. 2007, De Giusti  et  al. 2011) and 

a genomic increased NHE1 expression induced by 

aldosterone has been additionally described in various 

tissues (Karmazyn et al. 2001). In strips of human arteries, 

aldosterone-induced changes in intracellular pH mediated 

by NHE1 could be blocked by the MR antagonist RU28318 

and could be mimicked by cortisol but only in the 

presence of an 11beta-hydroxysteroid dehydrogenase 2 

inhibitor (Alzamora et al. 2000).

In the proximal tubule NHE3 activity and expression 

at the apical brush border, but not total NHE3 expression, 

were aldosterone sensitive, suggesting an increase in 

trafficking to the plasma membrane. Although the effect is 

persistent and lasting over several days, the involvement 

of the EGFR signaling pathways indicates a possible 

nongenomic mechanism (Krug et al. 2003, Drumm et al. 

2006). Furthermore, it has been demonstrated that NHE3 

expression is increased via SGK1 and genomic effects on 

the long-term (Musch et al. 2008). Conversely, aldosterone 

inhibited maximal velocity of NHE3 via ERK1/2 in MTAL, 

thus reducing bicarbonate reabsorption (Good et al. 2006, 

Watts et al. 2006). It was postulated that by counteracting 

the overall proton excreting effect of aldosterone, the 

kidney is enabled to regulate Na+ balance and volume 

while maintaining acid–base balance (Good et al. 2002).

H+-ATPase Aldosterone is involved in acid–base 

homeostasis not only through NHE but also through 

nongenomic regulation of electrogenic vacuolar type 

H+-ATPase. Enhanced proton secretion is achieved 

rapidly within 15 min and most probably by influencing 

microtubule and PKC-dependent rapid trafficking of 

the pumps to the cell membrane (Gekle  et  al. 1997, 

Winter et al. 2004, Dos Santos et al. 2009). These effects 

not only occur in kidney but also in other organs 

(Ehrenfeld  et  al. 1985, Harvey 1992, Roy  et  al. 2013). 

Again the effects of aldosterone on H+-ATPase seem to 

combine rapid nongenomic and genomic effects as it has 

been shown in proximal renal tubule (Leite-Dellova et al. 

2011).

Overall, nongenomic aldosterone signaling in 

the kidney seems to facilitate genomic signaling by 

rapidly activating transporters either by inhibiting their 

degradation or by enhancing their surface expression 

through facilitating intracellular trafficking.

Nongenomic effects in the cardiovascular system

After exploring physiological MR function in kidney and 

other epithelial target tissues, the cardiovascular system 

was identified as a main target for pathological MR actions 

(Brilla & Weber 1992, Brilla et al. 1994, Young et al. 1994). 

The importance of the MR for eliciting pathological effects 

was impressively shown by several clinical trials including 

RALES, EPHESUS, EMPHASIS-HF, TOPCAT and the 4E 

study, in which MR antagonists were used in patients 

with cardiovascular diseases (Pitt  et  al. 1999, 2003a,b, 

2014, Zannad et al. 2010). New genomic target genes were 

identified that support pathological effects, including 

PAI-1, CTGF, PGF and EGFR. In animal models, activated  

MR was shown to increase endothelial dysfunction, 
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oxidative stress, inflammation and tissue remodeling. 

Consequently, nongenomic aldosterone effects were 

extensively studied as modulators of pathological effects in 

cardiovascular tissues and cells.

Vascular smooth muscle cells In VSMCs 

nongenomic aldosterone signaling has been demonstrated 

to lead to vasoconstriction, although the underlying 

signaling pathways are complex and they include ERK 

phosphorylation, intracellular calcium, cAMP and NHE, 

PLC, IGF1 and c-SRC, PI3K and PDGFR (Wehling  et  al. 

1994, Christ et al. 1995, Ebata et al. 1999, Manegold et al. 

1999, Michea et al. 2005, Yamada et al. 2008, Gros et al. 

2011) (Fig.  3). Enhanced vasoconstriction may also 

include PKC and L- or T-type calcium channels in the 

glomerular microcirculation (Arima  et al. 2003) and can 

be mediated by enhanced ROS production via c-SRC 

and p38 (Callera  et  al. 2005a,b). As described above, 

a crosstalk with receptor tyrosine kinases like EGFR, 

IGF1R and PDGFR and their transactivation seem to 

be a common theme as well as a crosstalk with GPCRs, 

especially AT1 and GPER1 (Mazak et al. 2004, Gros et al. 

2011). Aldosterone also impairs guanylyl cyclase activity 

by cysteinyl thiol oxidation in VSMCs, which enhances 

vascular contractility (Maron et al. 2009).

Endothelial cells In endothelial cells NO production 

can be rapidly stimulated by aldosterone through 

enhanced NO synthase activity and phosphorylation 

mediated by PI3K (Liu et al. 2003, Uhrenholt et al. 2003, 

Mutoh  et  al. 2008). This can somewhat counteract the 

overall vasoconstrictor effect of aldosterone in vessels via 

PLC and IP3 which usually prevails (Arima et al. 2004). On 

the other hand aldosterone can enhance ROS availability 

in endothelial cells, for example, by activating NADPH 

oxidase via c-SRC and RAC-1 (Iwashima  et  al. 2008) or 

by reducing G6PD activity and GSH levels (Leopold et al. 

2007). This can decrease overall NO bioavailability by 

peroxynitrite formation or uncoupling of eNOS by 

eNOS cofactor depletion, which will lead to preferential 

ROS and not NO production (Landmesser  et  al. 2003, 

Thomas  et  al. 2006). Furthermore, enhanced ROS 

production can also inhibit eNOS itself (Sanz-Rosa  et al. 

2005, Nagata  et  al. 2006). By increasing ENaC insertion 

into the plasma membrane aldosterone via MR can also 

increase cellular volume and stiffness, a state associated 

with decreased formation of NO. This observation 

provides a comprehensive link between high salt and 

hypertension but also between inflammation and vascular 

injury, because C-reactive protein, an acute phase protein 

of inflammation, has been shown to enhance this process 

(Kusche-Vihrog  et  al. 2008, 2011, Fels  et  al. 2010). Also 

regulation of local vasoconstrictors like endothelin-1 

and angII are mediated by aldosterone and may be of 

relevance for endothelial function (Lariviere  et al. 1993, 

Sugiyama et al. 2005).

Vessels Not surprisingly, in clinical studies with healthy 

individuals, rapid aldosterone actions on the vasculature 

seem to depend on the adrenergic and health status of 

the individuals. Infusion of aldosterone usually leads to 

a rapid increase in vascular resistance and a decrease in 

Figure 3

Components of rapid aldosterone signaling in 

VSMCs. Vascular smooth muscle cells (VSMCs) are 

one of the best studied models for nongenomic 

MR signaling pathways. As common interaction 

partners of the MR, GPCR like AT1 and GPER1 as 

well as receptor tyrosine kinases like EGFR, PDGFR 

and IGF1R have been identi�ed at the membrane. 

In the cytosol, rapid MR signaling in�uences not 

only ROS homeostasis and the activity of different 

signaling molecules like small GTPases like RhoA 

and KRas but also kinases like c-src, PKC, PI3K, 

MAP kinases (including ERK, JNK and p38) and 

Ca++ signaling.
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forearm blood flow within the first 10 min after infusion 

(Wehling  et  al. 1998, Schmidt  et  al. 1999, 2001, 2003, 

Romagni  et  al. 2003, Gunaruwan  et  al. 2005). After 

inhibiting NO synthase, enhanced vasoconstriction was 

reported (Schmidt  et  al. 2006, Nietlispach  et  al. 2007), 

suggesting that a rapid vasodilation occurs via NO synthesis 

in the endothelium while vasoconstriction is mediated 

by vascular smooth muscle cells. Also renal plasma flow 

was reduced after aldosterone infusion if the effect of the 

endothelium is excluded by simultaneous application of 

L-NMMA to inhibit NO synthase (Schmidt  et  al. 2006). 

Likewise, Hwang and coworkers show that in healthy 

older people, acute MR antagonism impairs endothelial 

function by inhibiting NO formation and endothelium-

dependent vasorelaxation (Hwang  et  al. 2016). This fits 

well to observations made by Liu and coworkers and 

confirmed by Heylen and coworkers who showed that 

acute aldosterone application can lead to a vasodilation 

dependent on NO generation from the endothelium and 

to vasoconstriction via ROS in endothelium-denuded 

vessels (Liu et al. 2003, Heylen et al. 2009). Consequently, 

in mouse mesenteric vessels and endothelium-

denuded rings, aldosterone rapidly leads to enhanced 

vasoconstriction (Yamada et al. 2008, Gros et al. 2011).

In conclusion, nongenomic aldosterone signaling in 

VSMCs seems to lead to increased ROS formation, tyrosine 

kinase receptor activation, GPCR activation and supports 

overall vasoconstriction which aggravates pathological 

MR effects in vessels and supports genomic effects. In 

endothelial cells, aldosterone can rapidly activate or 

inactivate eNOS and NO depending on cell context, 

which again mainly seems to facilitate pathological MR 

effects but may also be part of a regulatory feedback 

loop. In addition, orthostasis is known to induce rapid 

aldosterone secretion, which may play a role in rapid 

hemodynamic adaptation to changes in posture by 

inducing vasoconstriction as a physiological response.

Heart The detrimental effects of aldosterone/

MR in the heart mimic those of the vasculature and 

include inflammation, fibrosis, cardiac hypertrophy 

and electrical remodeling. In ischemia-reperfusion 

experiments of the heart, aldosterone and low 

concentrations of cortisol both led to comparable 

exacerbation of damage via the MR (Mihailidou et al. 

2009). Genomically, proinflammatory genes like 

ICAM-1, VCAM-1, PAI-1 and SPP-1 and osteopontin 

are upregulated by aldosterone/MR in addition to 

profibrotic genes for collagen I and III, CTGF and PGF 

(Nguyen Dinh Cat & Jaisser 2012). These genomic 

effects again seem to be supported and enhanced by 

nongenomic effects. One important mediator in this 

seems to be the generation of ROS through enhanced 

NOX activation and possible G6PD decrease. A rapid 

aldosterone-dependent increase in nongenomically 

generated ROS by NOX activation followed by myocyte 

apoptosis and ASK1 activation was demonstrated by 

Hayashi and coworkers in neonatal cardiomyocytes, 

and in adult ventricular cardiomyocytes, enhanced 

ROS production led to ERK1/2 activation and 

increased MMP-2 and MMP-9 activity (Rude  et  al. 

2005, Hayashi et al. 2008).

A rapid increase in contractility was detected by 

some groups after aldosterone treatment in rat isolated 

working heart (Moreau  et  al. 1996, Barbato  et  al. 2002) 

while other groups found no effect on contractility or a 

reduced contractility in human trabeculae (Chai  et  al. 

2005, Matsui  et  al. 2007). During ischemia, nongenomic 

aldosterone effects reduce coronary blood flow and 

thereby impair cardiac metabolic and contractile 

function (Fujita  et  al. 2005). Aldosterone/MR can also 

directly stimulate hypertrophy in neonatal rat ventricular 

myocytes through the activation of ERK, JNK and PKCα 

(Okoshi  et  al. 2004). Additionally, aldosterone via PKCε 

leads to a rapid but prolonged activation of Na+K+2Cl− 

cotransporter and a decrease in Na+-K+-ATPase activity, 

which supports myocyte hypertrophy (Mihailidou  et  al. 

1998, 2000, 2002, 2004). Increased intracellular sodium 

may then affect calcium content and thereby contractile 

status of cardiomyocytes. Sodium influx is also enhanced 

by NHE1 activation via EGFR and ROS (Matsui  et  al. 

2007, De Giusti et al. 2011) and may lead to cell swelling. 

Changes in intracellular pH mediated by changes in 

NHE1 or sodium bicarbonate cotransporter activity may 

also account for increased myofilament responsiveness 

to calcium and thereby modulated contractility 

(Barbato  et  al. 2004, De Giusti  et  al. 2015). Furthermore, 

cardiac injury, i.e. perivascular and interstitial fibrosis and 

hypertrophy, induced by DOCA can be reduced by NHE1 

blockade (Fujisawa  et  al. 2003, Young & Funder 2003). 

Aldosterone also increases monophasic action potential 

duration within minutes after intravenous application 

which may support the development of arrhythmias 

(Tillmann et al. 2002). In HL-1 cells, aldosterone activates 

p38 to induce cardiotropin-1 expression, a cytokine 

with hypertrophic effects on cardiomyocytes (Lopez-

Andres et al. 2008). Similarly, p38 activation is required for  

aldosterone-induced Ctgf gene expression in ventricular 
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cardiomyocytes (Lee et al. 2004). In both cases nongenomic 

pathways regulate genomic effects.

In cardiac fibroblasts, aldosterone can stimulate 

collagen-I-deposition and elastogenesis via Galpha13, 

C-SRC and IGF1R signaling (Bunda et al. 2007, 2009). In 

neonatal cardiac fibroblasts aldosterone favors cell cycle 

progression and cell proliferation mediated by AT1 via 

ERK1/2 activation which enhances the expression of 

cyclins D1 and E2 (Wang et al. 2013). Again nongenomic 

and genomic pathways are closely intertwined and seem 

to be of pathophysiological relevance.

Taken together, the role of nongenomic MR effects has 

been best characterized in classical epithelial MR target 

organs like kidney and colon and in the cardiovascular 

system for modulating physiological and pathological 

processes. However, nongenomic MR effects have been 

also well studied in the brain (Joels  et al. 2012) and are 

becoming increasingly important in other tissues of 

pathological relevance like adipose tissue and immune 

cells (Vecchiola et al. 2016).

Conclusions

In summary, the existence of nongenomic aldosterone 

signaling has been well established and many of 

the signaling components have been identified. 

The involvement of the classical MR in many of the 

nongenomic signaling effects has been proven, although 

an additional membrane receptor may exist. A 

possible candidate for such a receptor is GPER1 but 

further investigations for this are required. Crosstalk 

between nongenomic aldosterone signaling and other 

signaling pathways has been demonstrated including 

signaling of receptor tyrosine kinases like EGFR, 

PDGFR and IGF1R and also GPCRs like AT1 and GPER1. 

Nongenomic aldosterone signaling occurs in various 

tissues including epithelial tissues like kidney and 

colon and nonepithelial tissues like heart, vasculature 

and brain. Most data are available for kidney and 

cardiovascular tissue, where the rapid effects seem to 

support physiological and pathophysiological genomic 

effects of aldosterone and MR or may be involved in 

regulatory loops. Because of the close interaction 

between genomic and nongenomic effects, nongenomic 

aldosterone signaling can also lead to long lasting and 

persistent effects. They also may provide new targets 

for modulation of pathophysiological aldosterone/MR 

actions.
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