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Abstract: 3,4-Dihydro-2(1H)-pyridones (3,4-DHPo) and their derivatives are privileged structures,
which has increased their relevance due to their biological activity in front of a broad range of targets,
but especially for their importance as synthetic precursors of a variety of compounds with marked
biological activity. Taking into account the large number of contributions published over the years
regarding this kind of heterocycle, here, we presented a current view of 3,4-dihydro-2(1H)-pyridones
(3,4-DHPo). The review includes general aspects such as those related to nomenclature, synthesis,
and biological activity, but also highlights the importance of DHPos as building blocks of other
relevant structures. Additional to the conventional multicomponent synthesis of the mentioned
heterocycle, nonconventional procedures are revised, demonstrating the increasing efficiency and
allowing reactions to be carried out in the absence of the solvent, becoming an important contribution
to green chemistry. Biological activities of 3,4-DHPo, such as vasorelaxant, anti-HIV, antitumor,
antibacterial, and antifungal, have demonstrated this heterocycle’s potential in medicinal chemistry.

Keywords: 3,4-DHPo; 1,4-DHPs; multicomponent reaction; nonconventional synthesis; synthetic precursors

1. Introduction

The study of determinate structures such as small molecules in drug discovery has
increased, engaging most in medicinal chemistry. These structures, particularly those based
on N-heterocycles, represent a class of molecules capable of binding to multiple receptors
with high affinity, showing a broad range of biological activity.

In this regard, the 3,4-dihydro-2(1H)-pyridones (3,4-DHPo) are biologically active
N-heterocycles analogs of the well-known 1,4-dihydropyridines (1,4-DHPs) and dihy-
dropyrimidines (DHPMs) [1], which have been introduced in the scientific landscape. In
this context, DHPo’s as the Milrinone and the Amrinone are drugs with cardiotonic activity
successfully used to treat heart failure (Figure 1) [2]. In addition, they and their derivatives
have also been reported to possess antitumor [3], antibacterial [4], anti-HIV [5], and other
biological activities [6–9]. These results encourage many research groups to search for
potentially active DHPo’s analogs.
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The synthesis of 3,4-DHPo derivatives has been important with the passing of time. 
Different synthetic procedures to synthesize them have taken place in the last years, alt-
hough the most reported uses are the multicomponent reaction (MCR-4CR) of Meldrum’s 
acid (1), a β-keto-ester derivative (2), and aromatic aldehydes (3) in the presence of am-
monium acetate. Additionally, a broad range of techniques have been covered, from the 
conventional synthesis, through energy resources such as microwave, ultrasound, and in-
frared assisted to solid and liquid phase synthesis, and recently the chemoenzymatic as-
sisted methodology applied to their asymmetric synthesis (Scheme 1). 

 
Scheme 1. 3,4-Dihydro-2(1H)-pyridone (3,4-DHPo) synthesis procedures and applications, Mel-
drum’s acid (1), β-keto-ester derivative (2), aldehyde derivative (3). 

Figure 1. Milrinone and Amrinone structures increase cardiac contractility vasodilators.

At the same time, the 3,4-Dihydro-2(1H)-pyridones (3,4-DHPo) and their deriva-
tives are extensively used as precursors in the synthesis of bioactive molecules such as
(±)-Andranginine (Figure 2) [10], elective α1a adrenergic receptors [11], Rho-kinase in-
hibitors [12], and P2X7 receptor antagonists [13].
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Figure 2. (±)-Andranginine structure.

The synthesis of 3,4-DHPo derivatives has been important with the passing of time.
Different synthetic procedures to synthesize them have taken place in the last years, al-
though the most reported uses are the multicomponent reaction (MCR-4CR) of Meldrum’s
acid (1), a β-keto-ester derivative (2), and aromatic aldehydes (3) in the presence of am-
monium acetate. Additionally, a broad range of techniques have been covered, from the
conventional synthesis, through energy resources such as microwave, ultrasound, and
infrared assisted to solid and liquid phase synthesis, and recently the chemoenzymatic
assisted methodology applied to their asymmetric synthesis (Scheme 1).
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Due to the importance of this N-heterocycle, this review aims to present the principal
characteristics of the 3,4-DHPo structures, the different procedures to synthesize them
developed over time, the main biological application, and their crucial importance as
precursors to molecules with high relevance in medicinal chemistry. A critical overview
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of the advantages and disadvantages of the conventional and nonconventional synthetic
methods to prepare 3,4-DHPo are highlighted.

2. Nomenclature, Structure, and General Synthesis

The heterocyclic 3,4-dihydro-2(1H)-pyridones (3,4-DHPo) (Figure 3) are commonly
known 4-aryl substituted 5-alkoxycarbonyl-6-methyl-3,4-dihydropyridones (Figure 3a),
although the correct IUPAC name is 4-arylsubstituted-2-methyl-6-oxo-1,4,5,6-tetrahydro-3-
pyridinecarboxylates (Figure 3b). The calculated tridimensional structure (Figure 3c) shows
the atoms’ corroborated disposition in the DHPo [14–16].
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first accidental synthesis of 3,4-DHPo, as novel heterocycles that showed interesting bio-
logical activity [17]. The general synthesis of 3,4-DHPo as a racemic mixture involves a 
multicomponent reaction (MCR 4-CR) of Meldrum’s acid (1), a β-keto-ester derivative (2), 
and an aromatic aldehyde (3) in the presence of ammonium acetate and with or without 
solvent (Scheme 2). Responsible for blocking the formation of the 1,4-dihydropyridines 
ring is the acidic character of Meldrum’s acid (pKa = 9.97), which is higher than the β-keto-
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These kinds of molecules present a stereogenic center at C-4. Its absolute configura-
tion (R- versus S-enantiomer) was a critical factor for the biological activity as an antago-
nist or agonist of calcium ions [19]. The mechanism reported in Scheme 3 has been demon-
strated in synthesizing intermediaries and their characterization [20]. 

The generally accepted mechanism follows a Hantzsch-like pathway with the previ-
ous formation of two intermediates; four from Knoevenagel condensation of Meldrum’s 
acid (1) with the corresponding aromatic aldehyde (3), and five from the reaction involv-
ing β-keto-ester (2) and ammonia. A Michael-type addition of the enamine 5 on ylidene 
compound 5 gives rise to DHPo’s (Scheme 3) [20]. 
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The effort to synthesize 1,4-DHP derivatives by modifying its ring gave rise to the first
accidental synthesis of 3,4-DHPo, as novel heterocycles that showed interesting biological
activity [17]. The general synthesis of 3,4-DHPo as a racemic mixture involves a multicom-
ponent reaction (MCR 4-CR) of Meldrum’s acid (1), a β-keto-ester derivative (2), and an
aromatic aldehyde (3) in the presence of ammonium acetate and with or without solvent
(Scheme 2). Responsible for blocking the formation of the 1,4-dihydropyridines ring is
the acidic character of Meldrum’s acid (pKa = 9.97), which is higher than the β-keto-ester
(pKa = 11.0) [18].
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These kinds of molecules present a stereogenic center at C-4. Its absolute configuration
(R- versus S-enantiomer) was a critical factor for the biological activity as an antagonist or
agonist of calcium ions [19]. The mechanism reported in Scheme 3 has been demonstrated
in synthesizing intermediaries and their characterization [20].

The generally accepted mechanism follows a Hantzsch-like pathway with the previous
formation of two intermediates; four from Knoevenagel condensation of Meldrum’s acid (1)
with the corresponding aromatic aldehyde (3), and five from the reaction involving β-keto-
ester (2) and ammonia. A Michael-type addition of the enamine 5 on ylidene compound 5
gives rise to DHPo’s (Scheme 3) [20].
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3. Synthetic Strategies

Different strategies have been reported to obtain 3,4-DHPo, conventional synthesis
with or without solvent, using different energy resources such as microwave, ultrasound,
and infrared to improve the yield and develop green chemistry reactions. Solid-phase
organic synthesis (SPOS) and liquid-phase synthesis (LPS) on soluble polymers as supports
have also been developed. Finally, chemoenzymatic to asymmetric synthesis has also
been established.

3.1. Conventional Synthesis

The first strategy used to obtain the 3,4-DHPo involved the Multicomponent Reaction
(MCR) using equimolecular amounts of starting compounds under ethanol reflux for six
hours, allowing the synthesis of 3,4-DHPo derivatives with a 15–26% yield [21]. One year
later [22], the synthesis of two 3-CN-DHPo with 51–70% yield from pyran derivatives
previously synthesized was reported.

The Suárez group has improved the efficiency of this MCR procedure, replaced the
ethanol with acetic acid, and allowed moderate to high yields (Scheme 3) [17–19,23–29].
The best results are due to the catalytic effect and the higher boiling point of acetic acid,
which improve the decarboxylation step and increase the yields compared with previously
reported methods [21,30].

In 2011, Sun et al. developed a protocol to synthesize structurally diverse 3,4-DHPo
via MCR, similar to those previously described by the Suárez group but using arylamines,
acetylenedicarboxylate, aromatic aldehydes, and Meldrum acid as starting reagents. The pro-
posed mechanism involves a Michael addition of the enamino ester formed in situ from the re-
action of arylamine with dimethyl acetylenedicarboxylate to arylidine cyclic 1,3-diketones [31].

An efficient one-pot synthesis of polysubstituted dihydropyridones derivatives was
reported by Khazaei and Anary-Abbasinejad [32]. The reaction was achieved using cyanoac-
etamide (6), aryl aldehydes derivatives (3), ethyl acetoacetate (2), and ammonium acetate
and using pyridine as the catalyst, in ethanol as solvent, and under reflux conditions ob-
taining 54–68% of yields (Scheme 4). The advantage of this method is the use of neutral
conditions and the facility of mixing reagents without any previous activation or modification.
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An improvement of this method was reported by Dehghan et al. They used similar
general conditions, introducing some variation [33]. The researchers changed ammonium
acetate to ammonium carbonate and did not use pyridine. Additionally, they also used and
compared ethanol and water as reaction solvents. A significant yield improvement was
obtained in water (90–96%) compared with ethanol (55–75%).

Furthermore, the Hakimi research group reported a new one-pot, four-component
synthesis of 3,4-dihydro-2-pyridone derivatives (3,4-DHPo). The reaction of Meldrum’s
acid (1), methyl acetoacetate (2), benzaldehyde derivatives (3), and ammonium acetate and
using SiO2-Pr-SO3H as an efficient catalyst under solvent-free conditions was reported
(Scheme 5) [34]. The advantages of this methodology are high product yields (78–93%),
being environmentally benign, short reaction times, and easy handling.
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Moreover, the preparation of 3,4-dihydro-2H-chromeno[4,3-b]pyridine-2,5(1H)-dione
derivatives using 4-hydroxycoumarin, an aromatic aldehyde, ammonia, and Meldrum’s
acid under refluxing with 1-propanol has also been published [35].

Li et al. reported the synthesis of 1,4 DHPs derivatives with the precursor ethyl
4,4,4-trifluoro-3-oxobutanoate and a short report with the brominating of 3,4 DHPo using
N-bromosuccinimide [36,37]. The reaction of α-hydroxyketene-(S,S)-acetals and active
methylenes to obtain 3,4 DHPo derivatives was also reported [38]. Razdan and coworkers
reported the synthesis of 3,4-dihydro-2-pyridones, using Bi(III) nitrate immobilized on
neutral alumina as the catalyst, in the presence of co-catalyst of Zn (II) chloride with
79–88% yield [39].

On the other hand, fluorinated DHPo derivatives synthesis has also been developed.
For example, Song et al. reported the synthesis of 3-aryl-4-unsubstituted-6-CF3-pyridin-
2-ones and ethyl 2-hydroxy-6-oxo-4-aryl-2-(trifluoromethyl)-piperidine-3-carboxylate as
essential building blocks for the construction of trifluoromethylated heterocycles, and
studying the effect of base and solvents in the reaction obtained 0–93% of yields [40,41].
Further, Smits et al. published the formation of fluorous 3,4-dihydro-2(1H)-pyridone-5-
carboxylate as a cationic amphiphile. The 3,4-DHPo moiety plays a key role as a scaffold
for attaching cationic head groups [9].

Instead, Dostanic et al. published about synthesizing (substituted phenylazo)-pyridones
in the presence of KOH and acetone to obtain 11–61% yield [42]. These were used
dyeing polyester fabrics as yellow dyes. Another report described the synthesis of 3,4-
dihydropyridones derivatives in the presence of Cs2CO3 and toluene with 53–66% yield [43].
The synthesis of aza- analogs of 3,4-DHPo with anticancer activity was reported by
Bariwal et al. using benzoylacetone, substituted aldehyde, urea or thiourea with HCl,
and ethanol as a solvent with 55–77% yield [44].

Besides, the conventional reaction has been improved by using different catalysts.
Zhiqiang et al. reported a three-component cascade reaction to achieve 3,4-DHPo derivatives
using imidazole as a catalyst with ethylene glycol as solvent [45]. Later, Bhattacharyya et al.
reported a greener method to obtain 3,4-DHPo derivatives using a one-pot multicom-
ponent reaction in aqueous media catalyzed by nanostructured ZnO [46]. Additionally,
Khazaei et al. used ZnO nanoparticles to give 3,4-DHPo derivatives under ethanol as
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solvent [44]. Ziarani et al. published the synthesis of 3,4-DHPo derivatives by sulphonic-
acid-functionalized ordered nanoporous SBA-15 as a nano heterogeneous catalyst via
one-pot, four-component reaction under solvent-free conditions [47]. Further, Pradhan et al.
presented green protocols to achieve 3,4-DHPo derivatives using two catalysts such as the
vitamin B1 or PEG–SO3H in water as solvent [48]. All these described reactions showed
moderate to good yields. Besides, those reactions where a catalyst was attached to solid
or polymeric supports showed better results due to the possibility of the most efficient
purification procedures.

Zhang et al. reported the synthesis of 5-cyano-2-pyridinone catalyzed by Zn-SSA.
The silica sulfuric acid (SSA) was modified with zinc chloride to form the novel catalyst
(Zn-SSA), which improved the chemo-selectivity in the reaction [49]. The synthesis was
developed using 3-dicarbonyl compounds (7), malononitrile (8), arylaldehyde (3), and
solvent-free conditions (Scheme 6).
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Scheme 6. Synthesis of 5-cyano-2-pyridinone using Zn-SSA as catalyst.

The synthesis of 3,4-dihydropyridine-2(1H)-ones catalyzed by ZnBr2, FeCl3, AlCl3,
BF3, Cu(OTf)2, In(OTf)2, and BF3 OEt2 was reported by [50]. This method was developed
via Blaise reaction forming a cyclic intermediate (9) from benzonitrile (10) and Reformatsky
reagents, which was generated in situ from ethyl bromoacetate (11) and zinc power in ethyl
acrylate (12) and tetrahydrofuran with 0–81% yield (Scheme 7).
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Scheme 7. Synthesis of 3,4-dihydropyridin-2-ones catalyzed by ZnBr2, FeCl3, AlCl3, BF3, Cu(OTf)2,
In(OTf)2, and BF3 OEt2.

Paravidino et al. developed a novel four-multicomponent reaction (4CR) of phospho-
nate (13), aldehydes derivatives (14), nitriles (15), and α-acidic isonitriles (16) to obtain
3,4-DHPo derivatives in 53–88% of yield and with complete diastereoselectivity in favor of
the cis-diastereomer (Scheme 8) [51,52].
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Scheme 8. Multicomponent Reaction (4CR) of phosphonate (13), aldehydes derivatives (14), nitriles
(15), and α-acidic isonitriles (16) to obtain 3,4-DHPo.

Another report showed the synthesis of 3,4-DHPo derivatives via tandem olefins
isomerization–RCM reaction, through the in situ generated intermediate 18 from read-
ily available N-Allyl amines type 17 as dienes catalyzed by second-generation Grubbs
catalyst (ruthenium catalysts) and heated to obtain 3,4-DHPo derivatives with 57–85%
yield (Scheme 9) [53].
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Scheme 9. Tandem olefins isomerization–RCM to obtain 3,4-DHPo.

The conventional synthesis has been offered a broad possibility to obtain the desired
product; however, nonconventional energy sources as microwave, infrared, and ultraviolet
have also been incorporated to improve the efficiency of this MCR.

3.2. Nonconventional SYNTHESIS

- Microwave-Assisted Synthesis

In the last decades, microwave-assisted organic synthesis has been used as a tool for
many known and new organic reactions. In general, its application allowed to reduce reaction
times; increase efficiency; selective heating; excellent reproducibility; and, in some cases,
avoid or minimize the use of solvents, contributing to green procedure development [54].

In 2003, our group reported the first solvent-free and accessible one-pot condensation
reaction of Meldrum’s acid (1) in the presence of methyl acetate (2), aldehyde derivatives
(3), and ammonium acetate to obtained 4-aryl substituted 5-alkoxycarbonyl- 6-methyl-3,4-
dihydropyridones (3,4-DHPo) [20]. The mixtures were irradiated at controlled tempera-
tures and times with continuous mechanical stirring, which provided a good homogeneity
of materials and 81–91% yields (Scheme 10).
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Afterward, another author reported the obtention of 3,4-DHPos derivatives with a
similar technique and 70–92% yields [55]. Jaques et al. reported the quantitative MW-
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assisted synthesis of 3,4-dihydro-2(1H)-pyridones without solvents but in the presence of
solid support as a catalyst [56].

Besides, Hernandez et al. published the oxidation reaction of 4H-pyrans derivatives
(19) to obtain 3-cyano-2-pyridones (20) in ethanol, using H2SO4 catalyst source and MW
irradiation (Scheme 11) [57]. These compounds are hybrid milrinone–enifedipine analogs.
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Scheme 11. Microwave-Assisted oxidation of 4H-pyrans derivatives (19) to 3,4-Dihydro-2(1H)-
pyridones (20).

This research group compared the different energy sources for oxidation; carried
out the reaction at room temperature, at ethanol reflux, under infrared and microwave
irradiation; and obtained 8, 72, 80, and 86% yields, respectively. Furthermore, the reaction
times decreased from seven hours at room temperature until seven and five minutes for
IR and MW irradiation, respectively. These comparisons show the importance of using
different energy resources and their potential. Besides, ultrasound has been the other
nonconventional energy source used to efficiently synthesize 3,4-DHPo.

- Ultrasound-Assisted Synthesis

The ultrasonic activation is based on cavitation effects, allowing this technique to im-
prove the mass transfer in several organic reactions reported. In 2011, our group published
the synthesis of 4-aryl 3,4-dihydropyridone derivatives (3,4-DHPo) by ultrasound-assisted
technique, through the one-step condensation of Meldrum’s acid (1), alkyl acetoacetates
(2), aromatic aldehydes (3), and ammonium acetate, using glacial acetic acid as solvent, at
room temperature, and obtained high yields (Scheme 12) [58].
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Scheme 12. Ultrasound-Assisted Multicomponent preparation (4CR) of 3,4-Dihydro-2(1H)-pyridones
(3,4-DHPo).

The main advantages of ultrasound-assisted synthesis compared with conventional
procedures are the milder conditions, the shorter reaction times, and the higher yields that
improve the efficiency of the organic synthesis of these heterocycles. In addition, another
energy source, such as the infrared-assisted technique, has also been explored.

- Infrared-Assisted Synthesis

Parallel to the MW-assisted synthesis design of 3,4-DHPo derivatives, our group
also reported the preparation of 3,4-Dihydro-2(1H)-pyridones derivatives (3,4-DHPo) by
infrared-assisted method of the same multicomponent reaction under solvent-free condi-
tions and similar reagents with moderate yields (Scheme 13) [59].
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Scheme 13. Infrared-Assisted Multicomponent preparation (4CR) of 3,4-Dihydro-2(1H)-pyridones
(3,4-DHPo).

To summarize, different energy sources have been used to prepare 3,4-DHPo, allowing
a broad range of products with varying substituent patterns. Particularly, nonconventional
techniques such as MW and IR lead to high yields, short reaction times, and safe and
straightforward work-up, constituting a notable improvement and involving green chem-
istry to synthesize these organic molecules. The support (insoluble or soluble)-assisted
synthesis of 3,4-DHPo has also been a successful development.

3.3. Solid-Phase Organic Synthesis (SPOS)

One of the most commonly used techniques in combinatorial chemistry is Solid-
Phase Organic Synthesis (SPOS), because it allows the rapid synthesis of many structurally
diverse molecules in a short time. In 2006, our group published the first SPOS of 3,4-DHPo
derivatives following a solid-support assisted synthetic strategy (Scheme 14) [60]. The
immobilized acetoacetate (21) was obtained by reaction of 2,2,6-trimethyl-1,3-dioxin-4-
one (1) and Wang resin (0.92 mmol OH/g); the further reaction of 21 in the presence of
NH4OAc and HOAc led to the corresponding immobilized enamine (22), which reacted
with the Knovenagel derivatives (23) to afford the expected immobilized 3,4-DHPo (24).
The heterocycle was cleaved from the resin with 71–85% overall yield (Scheme 14) [60].

Molecules 2022, 27, x FOR PEER REVIEW 10 of 26 
 

 

 
Scheme 14. SPOS of 3,4-Dihydro-2(1H)-pyridones derivatives (3,4-DHPo). 

This technique has been used in response to the increment of target molecules syn-
thesis to combinatorial chemistry. SPOS of 3,4-DHPo derivatives presents good results 
and opens the way to synthesize other molecules with biological activity. Additionally, 
the synthesis of 3,4-DHPo derivatives using soluble polymers as support has also been 
studied [61]. 

3.4. Liquid-Phase Organic Synthesis (LPOS) 
The employment of soluble polymers as supports in organic synthesis is known as 

liquid-phase synthesis (LPS). In 2008, Fu et al. reported the LPS of 4-substituted-5-meth-
oxycarbonyl-6-methyl-3,4-dihydropyridones on polyethylene glycol (PEG) 4000 assisted 
by MW irradiation (Scheme 15) [62]. First, the acetoacetylation of PEG was realized to 
obtain the immobilized acetoacetate (21); further, condensation of 21 with aldehyde de-
rivative (3), Meldrum’s acid in the presence of ammonium acetate, and solvent-free as-
sisted by microwave irradiation allowed to obtain the immobilized 3,4-DHPo (24). The 
target compound 3,4-DHPo was obtained after cleavage using NaOMe in MeOH with 88–
95% yield. 

 

Scheme 15. LP-MW assisted of 3,4-Dihydro-2(1H)-pyridones derivatives (3,4-DHPo). 

The LPS of 3,4-DHPo derivatives showed excellent results and improved the overall 
results with the solid phase, allowing the one-step condensation, which was not possible 
in the SPOS procedure. On the other hand, all synthesized 3,4-DHPo showed at least one 
chiral center at C4, and all previously reported procedures allowed to obtain the corre-
sponding racemic mixtures. Hence, efforts have been made to search for the chemo-selec-
tive synthesis of these derivatives. 

3.5. Asymmetric Synthesis 
The 3,4-DHPo structure is closely related to the configuration of its chiral center at 

C4, bringing biological activity. The chemoenzymatic synthesis can search the specific chi-
ral center configuration and, at the same time, use an ecofriendly procedure. Torres et al. 
reported the chemoenzymatic preparation of a series of racemic 4-aryl-5-(tert-butoxycar-
bonyl)-6-methyl-3,4-dihydro-2(1H)-pyridones (25) using several combinations of lipases 

Scheme 14. SPOS of 3,4-Dihydro-2(1H)-pyridones derivatives (3,4-DHPo).

This technique has been used in response to the increment of target molecules synthesis
to combinatorial chemistry. SPOS of 3,4-DHPo derivatives presents good results and opens
the way to synthesize other molecules with biological activity. Additionally, the synthesis
of 3,4-DHPo derivatives using soluble polymers as support has also been studied [61].

3.4. Liquid-Phase Organic Synthesis (LPOS)

The employment of soluble polymers as supports in organic synthesis is known
as liquid-phase synthesis (LPS). In 2008, Fu et al. reported the LPS of 4-substituted-
5-methoxycarbonyl-6-methyl-3,4-dihydropyridones on polyethylene glycol (PEG) 4000
assisted by MW irradiation (Scheme 15) [62]. First, the acetoacetylation of PEG was realized
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to obtain the immobilized acetoacetate (21); further, condensation of 21 with aldehyde
derivative (3), Meldrum’s acid in the presence of ammonium acetate, and solvent-free
assisted by microwave irradiation allowed to obtain the immobilized 3,4-DHPo (24). The
target compound 3,4-DHPo was obtained after cleavage using NaOMe in MeOH with
88–95% yield.
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Scheme 15. LP-MW assisted of 3,4-Dihydro-2(1H)-pyridones derivatives (3,4-DHPo).

The LPS of 3,4-DHPo derivatives showed excellent results and improved the overall
results with the solid phase, allowing the one-step condensation, which was not possible
in the SPOS procedure. On the other hand, all synthesized 3,4-DHPo showed at least
one chiral center at C4, and all previously reported procedures allowed to obtain the
corresponding racemic mixtures. Hence, efforts have been made to search for the chemo-
selective synthesis of these derivatives.

3.5. Asymmetric Synthesis

The 3,4-DHPo structure is closely related to the configuration of its chiral center at C4,
bringing biological activity. The chemoenzymatic synthesis can search the specific chiral cen-
ter configuration and, at the same time, use an ecofriendly procedure. Torres et al. reported
the chemoenzymatic preparation of a series of racemic 4-aryl-5-(tert-butoxycarbonyl)-6-
methyl-3,4-dihydro-2(1H)-pyridones (25) using several combinations of lipases (PSL, CRL,
CAL-A, and CAL-B) and organic solvents such as 1,4-dioxane, DIPE, and TMBE [63]. The
authors improved the enzymatic hydrolysis of R-diesters (27) derivatives, making subse-
quent S-enantiomer (26) separation viable by acid–base extraction procedures (Scheme 16).
An improvement to this methodology was made by the chemoenzymatic preparation of
optically active phenolic 3,4-dihydropyridin-2-ones [64].
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Another enzymatic multicomponent reaction (EMCR) was reported using benzalde-
hyde, cyanoacetamide, ketone, and Acylaze Amano (AA)-catalyzed. This single enzymatic
catalyzed reaction is attractive due to its high atom economy, easy work-up process, tol-
erance to a wide range of substituted reagents (benzaldehyde and ketones), and all mild
conditions [65]. The best result was shown in the enzymatic hydrolysis of 4-aryl-5-(tert-
butoxycarbonyl)-6-methyl-3,4-dihydro-2(1H)-pyridones with CAL-B enzyme and TMBE as
a solvent to obtain high ee (93–95%) and moderate yields (30–31%) of (S)-derivative (26).

On the other side, Huang et al. reported the first asymmetric synthesis of 3,4-DHPo
derivatives [66]. The formation of monoacid (R)-30 was carried out by desymmetrization
or asymmetric methanolysis of prochiral anhydride (29) using the organocatalyst 28, 2-Me-
THF, and MeOH as solvents (Scheme 17). The conversion was 100%, and the best-observed
ee of 80%. The next step was the selective formylation to obtain the intermediate 31, and
finally, the cyclization of 31 with ammonium acetate using acetic acid achieved the final
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product (R)-32, with an overall yield of three steps 48% and >95% ee (Scheme 17) [66]. The
same group also reported the pilot-scale enantioselective synthesis of 32 and kilogram-scale
production of N-methyl derivative of 32 in an excellent overall yield of ~22% with excellent
stereochemical purity (97% ee) [13].
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Scheme 17. Asymmetric synthesis of (R)-3,4-DHPo derivatives (3,4-DHPo, 32).

Wanner et al. published the enantioselective synthesis of (R)-3,4-DHPo through N-
Heterocyclic carbene (NHC)-catalyzed aza-Claisen reaction of enal (35) and enamine (36)
in the presence of N-mesityl catalyst (33) and oxidant (34); the better bases were DBU,
NMM, and i-Pr2Net, showing higher enantioselectivity with 60% to quantitative yields,
and 79–96% enantiomeric excess (Scheme 18) [13].
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through N-Heterocyclic carbene (NHC)-catalyzed aza-Claisen reaction.

Vellalath et al. described the enantioselective nucleophile catalyzed Michael/proton
transfer/lactamization cascade with 3,4-difluorocinnamoyl chloride (37) and the enamine
(39) in the presence of 37 as a catalyst with a nonpolar solvent and LiCl as an additive,
which affected enantioselectivity; this mild process delivered 3,4-DHPo derivative in 78%
yield and 92% ee (Scheme 19) [67].

As time went on, different strategies were developed to obtain 3,4-DHPo derivatives
in higher yields. Using nonconventional sources such as microwave and infrared radiation
increased the yield; reduced the reaction time; and, in many cases, avoided the use of
solvent, approaching green chemistry. However, access to the equipment can become
a handicap. On the other hand, the main disadvantage of described conventional and
nonconventional methodologies is the lack of stereoselectivity, which only shows in the
asymmetrical synthesis. Nevertheless, a broad range of procedures described shows the
importance of these heterocycles, not only because of their biological activity but also
because they are crucial starting materials for synthesizing other more complex entities.
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4. Structural Characterization

The structure of 3,4-Dihydro-2(1H)-pyridones has been determined for physical and
analytical techniques such as melting point (Table 1), 1H- and 13C-NMR spectroscopy, mass
spectrometry (electron impact (EI) and electrospray ionization (ESI)), and X-ray. These
techniques allowed to obtain a broad range of databases of physical properties to synthesize
3,4-DHPo [20,28,59].

Table 1. Melting Point of 3,4-DHPo derivatives.
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3,4-DHPo

R1 R2 MP (◦C) Ref. R1 R2 MP (◦C) Ref.

[16]

4-CN Me 259–260

[50]
4-Cl Me 202–203 4-COOCH3 Me 186–187

4-CH3 Me 186–187 4-Cl Et 178–179
2,4-di-
NO2

Me 212–213
4-CN Et 169–170

4-COOCH3 Et 189–190

H Me 181–182

[24]

H OMe 197–198

[51]

2-NO2 Me 178–180 H OEt 168–171
3-NO2 Me 212–214 4-F OMe 206–208
4-NO2 Me 190–192 4-F OEt 184–486

2-Cl Me 196–198 4-NO2 OMe 200–202
3-pyridyl Me 199–201 4-NO2 OEt 130–133

H Et 201–202 2-CH3 OMe Oil
2-NO2 Et 198–200 2-CH3 OEt Oil
3-NO2 Et 225–227 4-OCH3 OMe 180–183
4-NO2 Et 251–253 4-OCH3 OEt 185–188

2-Cl Et 210–212 p-CHO OMe Oil
3-pyridyl Et 217–219 m-CHO OEt Oil

The technique most used in the characterization of 3,4-DHPo derivatives has been
1H-NMR spectroscopy, allowing us to corroborate the ring formation through the ABX
pattern, as was explained by our group [68], which showed the protons H1, H3a, H3b, and
H4 of the heterocycle ring (Table 2 and Figure 4).
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Table 2. 1H-NMR spectroscopy, ABX pattern of 3,4-DHPo derivatives (δ, ppm; J, Hz).
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Electron impact (EI) and electrospray ionization (ESI) have also been used to character-
ize the 3,4-DHPo. Our group reported the fragmentation patterns of the even-electron ions
formed under ESI conditions and the odd-electron ions generated under EI conditions from
substituted 3,4-DHPo [20]. The characteristic fragmentation pattern under EI conditions
was also established (Scheme 20) [65].
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Scheme 20. Fragmentation pattern of 3,4-DHPo derivatives established under EI conditions.

Under ESI conditions, molecular ions [M + H]+ and [M-H]− were observed, cor-
responding with the positive and negative modes. Additionally, some structures were
proposed to explain the fragment ions found in the spectra (Schemes 21 and 22).
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Different authors have confirmed the structure of 3,4-DHPo with different substituents
by X-ray diffraction [17,29,30,69–73], semiempirical (AM1) calculations [25], NMR spectro-
scopic including NOE experiments, and coupling constants to determinate the structural
conformation in solution [17].

There are some structural requirements to the 3,4-DHPo derivatives conformation,
such as the absolute configuration at C-4 (R-versus S-enantiomer) acting as a molecular
switch, the substituted phenyl ring occupies an axial position perpendicularly bisecting the
boatlike DHPo ring in a synperiplanar orientation, and the cis-carbonyl ester orientation
concerning the olefinic double bond [17]. The semiempirical (AM1) calculations and NOE
experiments defined two conformational structures; a first presents the aryl substituent
at C-4 extended in a pseudoaxial position, and a second in which the aryl substituent is
in a pseudoequatorial position; besides, the first conformation was 2–4 kcal/mol more
stable than second structure. In both arrangements, the pyridone ring presented a twisted
boat [17,19,23,24]. The X-ray studies confirmed the pseudoaxial disposition (Figure 5),
which was stable in a solid state after the crystallization of ethanol [17].
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5. 3,4-Dihydro-2(1H)-Pyridones (3,4-DHPo) as Synthetic Precursors

Over time, the 1,4-DHP and 3,4-DHPo cores have served as scaffolds for the relevant
design of more complex entities with various biological activities.

The effort to improve the synthesis of 1,4-DHP with a broad range of substitution
patterns gave rise to 3,4-DHPo as crucial intermediaries. For example, 3,4-DHPo were
converted to the aromatics 4-(3-nitrophenyl) pyridines (Figure 6a) [74], and to alkyl 4-aryl-
6-chloro-5-formyl-2-methyl-1,4-dihydropyridine-3-carboxylate derivatives (Figure 6b) by
reaction with the Vilsmeier–Haack reagent. 3,4-DHPo and 6-chloro-5-formyl-1,4-DHPs
(Figure 6b) have become versatile intermediaries of other compounds (Figure 6) [26–28,75–81].
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Figure 6. 3,4-Dihydro-2(1H)-pyridones (3,4-DHPo) as synthetic precursors. 

Starting from b, more complex structures have been synthesized. The 1,5-benzodiaz-
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cally active 1,4-dihydropyridines (1,4-DHPs) (Figure 6e) were also prepared using Prato’s 
procedure [75,80]. The chloro-formyl derivative b also allowed to obtain 1,4-dihydro-
pyridines (1,4-DHPs) bearing a semicarbazone moiety on C5 (Figure 6f) [86] and iminium 
salts of dihydropyrido[3,2-e] [1,3]thiazines (Figure 6g) [27]. 
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been incorporated in the diastereoselective synthesis of 3-Oxo-14,15-dihydroandrangi-
nine, a unique indole alkaloid with an unusual ring system that includes a tetrahydroaze-
pine unit condensed with an hexahydroquinoline entity in a trans–trans fashion (Figure 
6i) [34]. The α1a receptor antagonist from 3,4-DHPo was also synthesized, and its efficacy 
was demonstrated in a screen of prostate contraction model in rats (Figure 6j) [11]. 

Indazole amide (Figure 6k) [11] was also prepared through saponification of the ester 
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analogs derivatives with different aryl groups. Thus, imidazole amide is an interesting 
structure with a selective ROCK1 inhibition. Moreover, a series of isoxazolo[5,4-b]pyridin-
6(7H)-ones (Figure 6l) [19] have been synthesized by the reaction of novel 3,4-dihydro-
2(1H)-pyridones with hydroxylamine hydrochloride and following 5-endo-trig cycliza-
tion. Additionally, 3,4-DHPos is an intermediate for the synthesis of Furo[3,4-b]-2(1H)-
pyridones (Figure 6m) [17,25,88], which act as potential Calcium channel modulators. 
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Starting from b, more complex structures have been synthesized. The 1,5-benzodiazepine
fused to a dihydropyridine moiety (Figure 6c) have been prepared, and one derivative
(JM-20, Figure 6c) has shown promising neuroprotective and antioxidant properties [82–85].
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Besides, [3,4-b]pyridines derivatives (Figure 6d) were obtained by treatment of b with
hydrazine hydrate. Fulleropyrrolidines endowed with chlorine-containing biologically
active 1,4-dihydropyridines (1,4-DHPs) (Figure 6e) were also prepared using Prato’s proce-
dure [75,80]. The chloro-formyl derivative b also allowed to obtain 1,4-dihydropyridines
(1,4-DHPs) bearing a semicarbazone moiety on C5 (Figure 6f) [86] and iminium salts of
dihydropyrido[3,2-e] [1,3]thiazines (Figure 6g) [27].

3,4-DHPo has been used as an intermediate for the formation of β-lactams derivatives
through photochemical cycloaddition (Figure 6h) [87]. Besides, this heterocycle has been
incorporated in the diastereoselective synthesis of 3-Oxo-14,15-dihydroandranginine, a
unique indole alkaloid with an unusual ring system that includes a tetrahydroazepine
unit condensed with an hexahydroquinoline entity in a trans–trans fashion (Figure 6i) [34].
The α1a receptor antagonist from 3,4-DHPo was also synthesized, and its efficacy was
demonstrated in a screen of prostate contraction model in rats (Figure 6j) [11].

Indazole amide (Figure 6k) [11] was also prepared through saponification of the ester
provided by 3,4-DHPo, which smoothly combined with an indazole to give close pyridine
analogs derivatives with different aryl groups. Thus, imidazole amide is an interesting
structure with a selective ROCK1 inhibition. Moreover, a series of isoxazolo[5,4-b]pyridin-
6(7H)-ones (Figure 6l) [19] have been synthesized by the reaction of novel 3,4-dihydro-
2(1H)-pyridones with hydroxylamine hydrochloride and following 5-endo-trig cyclization.
Additionally, 3,4-DHPos is an intermediate for the synthesis of Furo[3,4-b]-2(1H)-pyridones
(Figure 6m) [17,25,88], which act as potential Calcium channel modulators.

Sadhu et al. report an efficient way for the photochemical dehydrogenation of various
substituted 3,4-DHPo to obtain 2-Pyridone derivatives in excellent yields (83–97%) using
different photoinduced electron transfer (PET) sensitizers (Scheme 23) [89].
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Azelnidipine (46) after radical initiator-based oxidative conditions (Figure 8) [92]. 
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Lawesson’s reagent has been widely used as a powerful, mild, and versatile reagent
for transforming carbonyl functionalities into their thio analogs. Our group reported
the synthesis of 4-aryl substituted alkyl 2-methyl-6-thioxo-1,4,5,6-tetrahydropyridine-3-
carboxylates (40) with a 29–93% yield. The thionation of 3,4-DHPo was carried out in a
one-step procedure of the 3,4-DHPo derivatives (41) by exposure to microwave irradiation
under solvent and solvent-free conditions (Scheme 24) [90].
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In 2011, our group reported the preparation of N-heterocycles using nonconven-
tional synthesis as an ecofriendly approach to producing heterocyclic nitrogen compounds
starting with DHPo. MW-assisted synthesis (MWAS) of alkyl 4-arylsubstituted-6-chloro-5-
formyl-2-methyl-1,4-dihydropyridine-3-carboxylates (43) and 4-arylsubstituted-4,7-dihydro
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furo[3,4-b]pyridine-2,5(1H,3H)-diones (44) from 3,4-DHPo’s (42) were reported (Figure 7) [91].
US-assisted synthesis (USAS) was also used to obtain chloro-formyl derivatives from 3,4-
DHPo’s as starting materials (Figure 7) [27]. MWAS and USAS showed higher yields in
shorter reaction times and milder conditions.
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Ueyama et al. identified the 3,4-DHPo derivative 45 as a degradation product of
Azelnidipine (46) after radical initiator-based oxidative conditions (Figure 8) [92].
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3,4-DHPo has been used as an enamine precursor to obtain nitrogen heterocycles
such as dihydropyridinones by applying the nucleophile-catalyzed Michael/proton trans-
fer/lactamization (NCMPL) cascade, allowing the total synthesis of α1a adrenergic receptor
antagonist (47) (Scheme 25) [67].
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Quinolizin-4-ones (49) have been prepared from 6-ciano-3,4-DHPo’s derivatives (48)
with low to high yields (20–90%) through allylation/intramolecular Heck reaction sequence
(Scheme 26). Quinolizin-4-ones showed attractive biological activities related to CNS
diseases, including Alzheimer’s [44].

Additionally, in 2019, simple 2-pyridones were applied in synthesizing alkaloids
and alkaloid-inspired compounds based on the piperidine or pyridine framework [93],
demonstrating the versatility of the revised scaffold.
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6. Biological Activity

DHPos and its derivatives possess a wide variety of biological activities such as vasore-
laxant [57], reverse transcriptase inhibition of human immunodeficiency virus-1 [5,83,94],
Rho-kinase inhibitors [12], anticancer [3], antibacterial [4], human rhinovirus 3C protease
inhibitors [6,7], urease inhibitors [34], antifungal activity [95], glycine/NMDA receptor
inhibitor [8], and as cellular transport [9].

- Vasorelaxant activity

The regulation of blood pressure depends on vascular tone. In addition, nitric oxide
(NO) is an excellent vasodilator molecule, but a low production of endothelium-derived NO
causes a diminished vasodilator tone. This increases vascular resistance, which contributes
to elevated blood pressure [96]. Therefore, various research groups are focused on finding
compounds with vasorelaxant activity. A recent study demonstrated that 3-cyano-pyridin-
2-ones (Figure 9) show a significant vasorelaxant. Three of them are the most potent and
revealed an endothelium-independent effect.
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In addition, 3-cyano-2-pyridone derivatives were synthesized as calcium channel
blockers and probable PD3 and PD4 inhibitors, taken as comparison; nifedipine for L-type
calcium channel blocker, milrinone and amrinone for PD3 and PD4 inhibition. These
compounds also have antihypertensive and vasorelaxant activity [57].

- HIV-1 inhibitors

Non-nucleoside reverse transcriptase inhibitors (NNRTIs) play an essential role in
treating HIV infections. They have been used as the main target in the attack against this
virus, and most of them present butterfly-like conformation [94,97]. This conformation
facilitates the intramolecular interactions between receptor and ligand. The NNRTI interacts
specifically with the HIV reverse transcriptase (RT) substrate-binding site and inhibits its
replication. Pyridone derivatives act in this way due to their favorable conformation. Hence,
they are highly active against HIV-1. Parreira et al. reported a series of 22 DHPo derivatives
such as 50 (Figure 10), which are inhibitors of HIV-1 [94]. In 2001, they synthesized 32 DHPo
and proved their HIV-1 inhibitor activity; one of these compounds (51) (Figure 10) showed
higher activity [90]. Additionally, another research group described the use of pyridine
cocktails to attack viral variants that exhibit drug resistance [98].
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Figure 10. 3,4-DHPo with HIV-1 inhibitor activity.

- Antitumor activity

Several DHPos have emerged during the last twenty years with potent antitumor
activity. They have been mainly tested against P388 lymphocytic leukemia cells, demon-
strating potential antitumor activity [99,100]. Oxygen-containing functional groups play an
essential role in P388 activity; at least two groups are required. Hwang group reported a
series of compounds (52) with high activity (Figure 11) [99]. Additionally, 3-Hydroxy-2-
pyridone Nucleosides (53) [100] and series 2-pyridones (54) were reported (Figure 11) [3].
These studies demonstrate the potential utility of 3,4-Dihydro-2(1H)-pyridones as building
blocks in drug design.
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- Antibacterial and antifungal activity

DHPos derivatives present favorable properties as antibacterial agents against multidrug-
resistant bacteria such as streptococci and anaerobic microorganisms [4]. In 2018, in vitro
antimicrobial activity was reported in some 4-(biphenyl-4-yl)-1,4-dihydropyridine and 4-
(biphenyl-4-yl)pyridine derivatives, followed by molecular docking and DFT studies [101].
Ahamed et al. have tested in vitro antibacterial activity of some 1,4-dihydropyridine deriva-
tives against Escherichia coli, Pseudomonas aeruginosa, Staphylococcus epidermidis, Staphylococ-
cus aureus, and Klebsiella pneumoniae. Most of these compounds were highly active against
E. coli, and some even showed antifungal activity [102].

- Other biological activities

Although the DHPos have been exceptionally well-explored as a vasorelaxant, they
have a privileged scaffold that could act as human rhinovirus 3C protease inhibitors, urease
inhibitors, and Rho-Kinase N-methyl-D-aspartate (NMDA) inhibitors. Recent studies have
reported a series of 3,4-dihydro-2-pyridone derivatives, from which 4-(4-nitrophenyl)-5-
methoxycarbonyl-6-methyl-3,4-dihydropyridone (3,4-DHPo) exhibited the most potent
activity (IC50 = 29.12 µM). This inhibitory activity grows with the increase in the electron-
withdrawing ability of the groups [34].

NMDA inhibitors are highly interesting in pharmaceutical research due to their ap-
plication in treating moderate to severe Alzheimer’s disease [103]. A series of 122 DHPos
derivatives have been proven to be NMDA inhibitors through QSAR methodology [8]. Five
of them, whose structures have a DHPo ring fused to a substituted aromatic ring (55 to 59),
showed the highest inhibitory capacity (Figure 12).
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Additionally, some dihydropyridines act as calcium channel blockers, potential candi-
dates for schizophrenia and antihypertensive treatment [104,105].

7. Conclusions

Since the first accidental 3,4-DHPo synthesis, the most extensive method reported
to obtain these derivatives proceeded via a multicomponent reaction (MCR-4CR) of Mel-
drum’s acid, a β-keto-ester, and an aromatic aldehyde in the presence of ammonium acetate.
This experimental procedure is simple and allows a wealth of molecular diversity depend-
ing on substituents in the starting reagents. Besides, this base strategy has been extended to
nonconventional methods such as Microwave-, Ultrasound-, or Infrared-assisted reactions,
allowing us to increase the efficiency by reducing the reaction time; increasing the yields;
and, for some of them, eliminating the reaction solvents, as an important contribution
to Green Chemistry. SPOS and LPOS have also been applied, allowing for obtaining a
combinatorial library of these structures.

All 3,4-DHPo synthesized showed a broad range of biological activity highlighted as
vasorelaxants and antihypertensives due to its structural similarity with 1,4-DHPs. Many
of them also showed activity as antitumors, HIV-inhibitors, or antibacterial and antifungal,
among others. On the other hand, 3,4-DHPo have become excellent synthetic precursors of
many different complex structures with exciting applications.

High expectations still surround the next generation and further evolution of 3,4-
DHPo. The improvement of asymmetric synthesis methodologies will allow the enantiose-
lective preparation of this heterocycle, opening up the possibilities of enhancing biological
activities. In the short and long term, more complex structures can be synthesized us-
ing DHPo as base molecular skeletons. In addition, the multicomponent platforms that
characterize DHPo synthesis will promote the use of virtual screening tools and combina-
torial chemistry, allowing us access to leading compounds based on this heterocycle. All
described advancements contribute to an in-depth understanding of the potential of this
scaffold and pave the way to apply novel 3,4-DHPo-based derivatives for further rational
development in drug discovery.
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