
Kent Academic Repository
Full text document (pdf)

Copyright & reuse

Content in the Kent Academic Repository is made available for research purposes. Unless otherwise stated all

content is protected by copyright and in the absence of an open licence (eg Creative Commons), permissions

for further reuse of content should be sought from the publisher, author or other copyright holder.

Versions of research

The version in the Kent Academic Repository may differ from the final published version.

Users are advised to check http://kar.kent.ac.uk for the status of the paper. Users should always cite the

published version of record.

Enquiries

For any further enquiries regarding the licence status of this document, please contact:

researchsupport@kent.ac.uk

If you believe this document infringes copyright then please contact the KAR admin team with the take-down

information provided at http://kar.kent.ac.uk/contact.html

Citation for published version

Altadmri, Amjad and Brown, Neil C.C. (2015) 37 Million Compilations: Investigating Novice
Programming Mistakes in Large-Scale Student Data. In: SIGCSE '15: The 46th SIGCSE technical
symposium on Computer science education, 4th - 7th March 2015, Kansas City, Missouri.

DOI

https://doi.org/10.1145/2676723.2677258

Link to record in KAR

http://kar.kent.ac.uk/46742/

Document Version

Publisher pdf

37 Million Compilations:
Investigating Novice Programming Mistakes in Large-Scale

Student Data

Amjad Altadmri
School of Computing

University of Kent
Canterbury, Kent, UK
aa803@kent.ac.uk

Neil C. C. Brown
School of Computing

University of Kent
Canterbury, Kent, UK
nccb@kent.ac.uk

ABSTRACT

Previous investigations of student errors have typically fo-
cused on samples of hundreds of students at individual in-
stitutions. This work uses a year’s worth of compilation
events from over 250,000 students all over the world, taken
from the large Blackbox data set. We analyze the frequency,
time-to-fix, and spread of errors among users, showing how
these factors inter-relate, in addition to their development
over the course of the year. These results can inform the de-
sign of courses, textbooks and also tools to target the most
frequent (or hardest to fix) errors.

Categories and Subject Descriptors

K.3.2 [Computers And Education]: Computer and In-
formation Science Education

General Terms

Experimentation

Keywords

Programming Mistakes; Blackbox

1. INTRODUCTION
Knowledge about students’ mistakes and the time taken

to fix errors is useful for many reasons. For example, Sadler
et al [10] suggest that understanding student misconceptions
is important to educator efficacy. Knowing which mistakes
novices are likely to make or finding challenging informs the
writing of instructional materials, such as textbooks, and
can help improve the design and impact of beginner’s IDEs
or other educatoinal programming tools.

Previous studies that have investigated student errors dur-
ing [Java] programming have focused on cohorts of up to 600
students at a single institution [1, 4, 5, 7, 8, 13]. However,

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full cita-

tion on the first page. Copyrights for components of this work owned by others than

ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-

publish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

SIGCSE’15, March 4–7, 2015, Kansas City, MO, USA.

Copyright c© 2015 ACM 978-1-4503-2966-8/15/03 ...$15.00.

http://dx.doi.org/10.1145/2676723.2677258.

the recently launched Blackbox data collection project [3]
affords an opportunity to observe the mistakes of a large
number of students across many institutions – for example,
in one year of data, the project collected error messages and
Java code from around 265,000 users worldwide. A previ-
ous study by the authors utilized four months of data from
Blackbox to study educators opinions against the frequency
of mistakes [2]. The contribution in our proposed paper is
to go further, and provide a more detailed investigation into
characteristics of the mistakes, trying to answer the follow-
ing research questions:

• What are the most frequent mistakes in a large-scale
multi-institution data set?

• What are the most common errors, and common classes
of errors?

• Which errors take the shortest or longest time to fix?

• How do these errors evolve during the academic terms
and academic year?

2. RELATED WORK
The concept of monitoring student programming behav-

ior and mistakes has a long history in computing education
research. The series of workshops on Empirical Studies of
Programming [11] in the 1980s had several papers making
use of this technique for Pascal and other languages. More
recently, there have been many such studies specifically fo-
cused on Java, which is also the topic of this study.

Many of these studies used compiler error messages to
classify mistakes. Jadud [8] looked in detail at student mis-
takes in Java and how students went about solving them.
Tabanao et al. [13] looked at the association between errors
and student course performance. Denny et al. [4] looked at
how long students take to solve different errors. Dy and
Rodrigo [5] looked at improving the error messages given
to students. Ahmadzadeh et al. [1] looked at student error
frequencies and debugging behavior. Jackson et al. [7] iden-
tified the most frequent errors among their novice program-
ming students. All six of these studies looked at cohorts of
(up to 600) students from a single institution. These studies
used compiler error messages to classify errors, while early
results from McCall and Kölling [9] suggest that compiler
error messages have an imperfect (many-to-many) mapping
to student misconceptions.

http://dx.doi.org/10.1145/2676723.2677258

Our study is novel in that it looks at student mistakes
from a much larger number of students (over 250,000) from
a large number of institutions1, thus providing more robust
data about error frequencies, and error commonality. The
Blackbox work was originally presented with a brief list of
the most frequent compiler error messages [3], but in this
study we do not simply use compiler error messages to clas-
sify errors. Instead, we borrow error classifications from
Hristova et al. [6], which are based on surveying educators
to ask for the most common Java mistakes they saw among
their students.

3. METHOD

3.1 Student Mistakes
We use the 18 mistakes from our previous study [2] as

a basis for our analysis, which in turn were derived from
Hristova et al’s [6] twenty student mistakes (derived from
interviewing educators). The eighteen mistakes, labeled A
through R, are informally categorized as follows:

Misunderstanding (or forgetting) syntax:

• A: Confusing the assignment operator (=) with the
comparison operator (==).
For example: if (a = b) ...

• C: Unbalanced parentheses, curly or square brackets
and quotation marks, or using these different symbols
interchangeably.
For example: while (a == 0]

• D: Confusing “short-circuit” evaluators (&& and ||)
with conventional logical operators (& and |).
For example: if ((a == 0) & (b == 0)) ...

• E: Incorrect semi-colon after an if selection structure
before the if statement or after the for or while repeti-
tion structure before the respective for or while loop.
For example:
if (a == b);

return 6;

• F: Wrong separators in for loops (using commas in-
stead of semi-colons)
For example: for (int i = 0, i < 6, i++) ...

• G: Inserting the condition of an if statement within
curly brackets instead of parentheses.
For example: if {a == b} ...

• H: Using keywords as method or variable names.
For example: int new;

• J: Forgetting parentheses after a method call.
For example: myObject.toString;

• K: Incorrect semicolon at the end of a method header.
For example:
public void foo();

{

...

}

1We have no way of measuring the number of institutions in
the Blackbox data, but simply: the 250,000 students must
be split over at least several hundred institutions.

• L: Getting greater than or equal/less than or equal
wrong, i.e. using => or =< instead of >= and <=.
For example: if (a =< b) ...

• P: Including the types of parameters when invoking a
method.
For example: myObject.foo(int x, String s);

Type errors:

• I: Invoking methods with wrong arguments (e.g. wrong
types).
For example: list.get("abc")

• Q: Incompatible types between method return and
type of variable that the value is assigned to.
For example: int x = myObject.toString();

Other semantic errors:

• B: Use of == instead of .equals to compare strings.
For example: if (a == "start") ...

• M: Trying to invoke a non-static method as if it was
static.
For example: MyClass.toString();

• N: A method that has a non-void return type is called
and its return value ignored/discarded.
For example: myObject.toString();

• O: Control flow can reach end of non-void method
without returning.
For example:
public int foo(int x)

{

if (x < 0)

return 0;

x += 1;

}

• R: Class claims to implement an interface, but does
not implement all the required methods.
For example: class Y implements ActionListener

{ }

Note that mistake N (ignoring the non-void result of a
method) is not always an error (e.g. when you call a remove
method that returns the item removed, you may not need
to do anything with the return value).

3.2 Student data
Data about student mistakes was taken from the Black-

box data set [3], which collects Java code written by users
of BlueJ, the Java beginners’ IDE. We used data from the
period 1st Sep. 2013 to 31st Aug. 2014 (inclusive), as repre-
senting a full year.

We had two methods of detecting mistakes. For four of the
student mistakes, I, M, O, R, we were able to use the com-
piler error message directly from Blackbox’s compilations to
detect the mistake. However, this was not possible for the
other errors, as some of them are logical errors that do not
cause a compiler error or warning, while in other cases the
error messages do not have a one-to-one mapping to our
mistakes of interest. Thus for one of the other mistakes (C)
we performed a post-lexing analysis (matching brackets) and
for the final thirteen we used a customized permissive parser

to parse the source code and look for the errors. The source
code of all the tools used is available for analysis or re-use 2.

We took each source file in the data set, and tracked the
file over time. At each compilation we checked the source
file for the eighteen mistakes. If the mistake was present,
we then looked forward in time to find the next compilation
where the mistake was no longer present (or until we had
no further data for that source file). When the mistake
was no longer found – which could have been because the
mistake was corrected or because the offending code was
removed or commented out – we counted this as one instance
of the mistake. Further occurrences in the same source file
were treated as further instances. We calculate the time in
seconds between the first appearance of the mistake and the
possible fix and cap it at 1000 seconds, for any mistake which
takes longer than 1000 seconds to fix, or is never fixed. We
also counted the number of distinct users who committed
each mistake at least once.

4. RESULTS
Our detector is used to look for the number of instances of

mistakes, as described in section 3.2. The data set featured
37,158,094 compilation events, of which 19,476,087 were suc-
cessful and 17,682,007 were unsuccessful. Each compila-
tion may include multiple source files – the total number of
source files input to compilation (i.e. each source file may be
counted multiple times) was 46,448,212, of which 24,264,603
were compiled successfully and 22,183,609 were not.

4.1 Mistakes Overview
The Frequencies, number of Distinct Users and Time-to-

Fix results of each different mistake are shown in Table 1,
along with our informal classification of the error message. It
can be seen that although Mistake C is the most frequent,
the type and semantic errors are generally more frequent
than syntax errors. The ranking of frequency is similar to
the ranking of the number of distinct users, as shown in
Figure 1. This figure confirms that the number of users
is related to the frequency of the mistakes. However, each
mistake is not made the same number of times by each user
that makes it. Figure 2 shows that some mistakes (F, G, H,

L) are generally made only once by the user – a rare mistake,
or one that they easily learn from. In contrast, mistakes such
as C, I and O are made repeatedly by students – in the case
of C (mismatched brackets), a syntax error, this is likely to
be an easy accident, but in the case of I (wrong types in
method call) and O (missing return statement) this is more
likely to be a lack of understanding or difficulty with the
concepts of types and control flow.

It is clear from Table 1 that, as expected, mistakes which
don’t result in a compiler error tend to take much longer to
be fixed, such as Mistakes N, B and D. Mistake E gets fixed
more quickly; although it does not cause a compile error, it
has a more noticeable effect on the program’s control flow.

To examine this relation more, Figure 3 shows a scatter
plot for the mistake Frequencies against Time-to-Fix. If it
was the case that students learned to quickly fix the most
frequent errors, we would expect a trend along a diagonal
line from top left to bottom right. This is not the case,
showing that the time to fix an error is not noticeably related
to how often a student will encounter it.

2See: http://www.cs.kent.ac.uk/~nccb/blackbox/

Mistake Freq. Distinct Median Error
Users Time to Fix Type

C 793232 119407 17 Syntax
I 464075 66977 58 Type
O 342891 57129 37 Semantic
A 173938 45082 111 Syntax
N* 121663 27369 ≥ 1000 Semantic
B* 121172 29627 ≥ 1000 Semantic
M 86625 26527 48 Semantic
R 79462 17521 104 Semantic
P 52862 21904 24 Syntax
E* 49375 18350 401 Syntax
K 38001 19502 51 Syntax
D* 29605 8742 ≥ 1000 Syntax
J 18955 10232 34 Syntax
Q 16996 7556 115 Type
L 4214 3317 12 Syntax
F 2719 2244 36 Syntax
H 1097 943 22 Syntax
G 118 112 26 Syntax

Table 1: Statistics for mistakes committed by Black-
box students between 1st Sep. 2013 to 31st Aug.
2014 (inclusive). The results are sorted according
to frequency in descending order. Most mistakes
will result in a compiler error message being shown
to the user – those mistakes which do not cause a
compiler error have an asterisk.

A

B

C

D

E

F

G

H

I

J

K

L

M N

O

P

Q

R

1

10

100

1000

10000

1 10 100 1000 10000

U
se
rs

H
u
n
d
re
d
s

Frequency
Hundreds

Figure 1: Log-log plot of Frequency vs Distinct
users. Mistake N overlaps Mistake B towards the
right.

http://www.cs.kent.ac.uk/~nccb/blackbox/

0

1

2

3

4

5

6

7

8

A B C D E F G H I J K L M N O P Q R

R
e
p
e
∃
∃
o
n
s

Mistakes

Mistakes per User

Figure 2: The average of number of times that each
user who made a mistake, repeated it. For example,
each user who made mistake G only made it approx-
imately once, while each user who made mistake B

made it four times on average.

A

B

C

D

E

F

G
H

I

J

K

L

M

N

O

P

Q R

1

10

100

1000

1 10 100 1000 10000

T
im

e
‐t
o
‐F
ix

Frequency
Hundreds

Figure 3: Log-log plot of Frequency vs Time-to-Fix.
Mistake N overlaps Mistake B in the top right. Mis-
takes N, B and D have a median equal to the cap
value of 1000, which means that more than half of
the instances appeared took ≥ 1000 seconds to fix or
were not fixed at all.

0

20

40

60

80

100

120

140

160

180

Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug

F
re
q
u
e
n
cy

T
h
o
u
sa
n
d
s

Months

 Syntax

Seman≅c

Figure 4: The development of frequency of mistakes
categories over months (not normalised). The start
of terms is very clear in all of the three categories.

4.2 Mistakes Over Time
To have a deeper look on these factors and to understand

the effect of the learning process on these mistakes, we anal-
ysed the mistake factors over the course of the year, split
into months. Figure 4 outlines the mistake frequencies for
the three proposed categories over the course of 12 months,
without normalization (i.e. raw figures, which are clearly
affected by the number of compilations changing between
months). The three curves show clear peaks in the number
of errors (and underneath, the number of compilations) in
October/November and March.

To allow a better comparison, the data is rendered again
in Figure 5 after normalization: we divide the frequencies of
the mistakes in each category in each month by the number
of total compilations in that month. At the start of the
data (and to a smaller degree at the turn of the calendar
year), Syntax errors show a small peak at the beginning of
the northern hemisphere academic year, but otherwise are
fairly flat. In the contrast, the slight peaks for the Semantic
and Type categories happen later. We propose that this
is due to the order of topics in academic courses: students
initially struggle with syntax, but as they master this, they
begin to grapple instead with semantic and type errors.

As described in section 4.1, and shown in Table 1, Mistake
C is clearly the most frequent mistake – but in general, Se-
mantic mistakes were more frequent than Syntax mistakes.
However, Mistake C is also one of the fastest mistakes to
fix, and thus could be considered relatively unproblematic.
Figure 6 shows the same data as Figure 5, but with mistake
C removed. With this adjustment, Syntax errors are much
less common, and show less of an early peak, suggesting
that students learn, to some extent, to avoid making the C

bracket mistakes.
This suggestion that students learn to avoid C is con-

firmed in figure 7, which shows the normalized number of
users making each mistake (not the frequency). Mistake C

shows a peak in Aug/Sep at the start of the northern hemi-
sphere academic year, whereas many of the other errors have
a fairly flat distribution across the 12 months. This suggests
that users are not learning to completely avoid the non-C
mistakes over the course of the year.

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug

F
re
q
u
e
n
cy
 n
o
rm

a
li
ze
d

Months

Mistakes frequencies detailed

 Syntax

 SemanΑc

 Type

Figure 5: The development of normalized frequency
of mistakes categories over months. While the Syn-
tax errors tend to flatten after a while after each
term starting, the Semantic and Type ones increase.

0

0.005

0.01

0.015

0.02

0.025

Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug

F
re
q
u
e
n
cy
 n
o
rm

a
li
ze
d

Months

Mistakes frequencies detailed (without 'C')

 Syntax

 Seman?c

 Type

Figure 6: The development of normalized frequency
of mistakes categories over months, after omitting
Mistake C. The drop of the Syntax errors below the
other two categories is very clear, maintaining its
shape. This supports the importance of focusing
more on the Semantic and Type errors.

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug

U
se
rs

Months

Dis−nct users normalized on number of compila−ons

A

I

K

O

R

C

Figure 7: The development of normalized number
of distinct users over months, for some selected mis-
takes. Omitted mistakes have almost the same shape
as the ones presented, except C, and been removed
for clarity only. The curve representing Mistake C is
the most interesting one, showing that around quar-
ter of students learn to avoid it towards the mid of
the term.

0

50

100

150

200

250

300

Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug

T
im

e
‐t
o
‐F
ix
 (
m
e
d
ia
n
)

Months

 Syntax

 Seman?c

 Type

Figure 8: The development of the median of time-to-
fix over months for the mistakes’ categories. While
the Syntax mistakes are almost quick to fix and con-
sistent over time, the Semantic ones need more ef-
forts and this decreases a little over time. The Type
curve is interesting as it shows a sudden rise and
drop towards the end of the academic year, possibly
due to introducing advance types for students.

The time-to-fix statistics are shown in figure 8. Time-to-
fix of Syntax mistakes is almost flat, showing that they are
quick to fix, but students do not generally get faster at fixing
them. In contrast, Semantic mistakes show a decrease of the
time needed to fix over the course of the year, Type mistakes
show a strange, unexpected shape. The only interpretation
we can offer is that with the increase of topics introduced to
students, moving from primitive types to generic types and
inheritance, students tend to make more mistakes between
these ‘more difficult’ types.

5. CONCLUSIONS
The large sample-size of data from the Blackbox project

provides comprehensive information about the frequency,
spread of errors among users and time-to-fix of different Java
errors, shown in Table 1. Unlike many previous studies, the
analysis of errors is decoupled from compiler error messages.

Mismatched brackets and quotations – a syntax error –
are the most popular error category among novice program-
mers, but are also the quickest to be fixed. Other Syntax er-
rors are less frequent than Semantic and Type errors. With
the exception of mismatched brackets and quotations, Se-
mantic errors tend to appear higher than the other types.
Recent research has suggested that Java has syntax which
is not much better than an arbitrary choice of syntax for
learning [12], but perhaps the syntax of a language does not
matter as much as semantics. It is also clear that some of
the mistakes (especially L, F, H and G) are particularly low
frequency, in contrast to Hristova et al.’s [6] original aim to
find the top 20 errors.

Global starts and finishes of the northern hemisphere’s
academic terms are detectable, and they have an effect on
the frequency of Mistakes and time needed to fix them. The
frequency of different classes of mistake changes over time:
Semantic mistakes tend to increase in frequency later on in
courses, while Syntax mistakes decrease.

We should be careful not to over-interpret this result as
it is greatly affected by which mistakes we included in the
study, but our results suggest that semantic errors are a
more serious challenge than syntax errors.

The mistakes in this study were automatically detected
using a set of tools. If these tools were not sufficiently ac-
curate in picking up mistakes, this could have affected our
results, and are thus a threat to validity. To this end, the
source code is freely available (see section 3.2) in case further
investigation is warranted.

6. REFERENCES
[1] M. Ahmadzadeh, D. Elliman, and C. Higgins. An

analysis of patterns of debugging among novice
computer science students. In Proceedings of the 10th

Annual SIGCSE Conference on Innovation and

Technology in Computer Science Education, ITiCSE
’05, pages 84–88, New York, NY, USA, 2005. ACM.

[2] N. C. C. Brown and A. Altadmri. Investigating novice
programming mistakes: educator beliefs vs. student
data. In Proceedings of the tenth annual conference on

International computing education research, pages
43–50. ACM, 2014.

[3] N. C. C. Brown, M. Kölling, D. McCall, and I. Utting.
Blackbox: A large scale repository of novice
programmers’ activity. In Proceedings of the 45th

ACM Technical Symposium on Computer Science

Education, SIGCSE ’14, pages 223–228, New York,
NY, USA, 2014. ACM.

[4] P. Denny, A. Luxton-Reilly, and E. Tempero. All
syntax errors are not equal. In Proceedings of the 17th

ACM Annual Conference on Innovation and

Technology in Computer Science Education, ITiCSE
’12, pages 75–80, New York, NY, USA, 2012. ACM.

[5] T. Dy and M. M. Rodrigo. A detector for non-literal
Java errors. In Proceedings of the 10th Koli Calling

International Conference on Computing Education

Research, Koli Calling ’10, pages 118–122, New York,
NY, USA, 2010. ACM.

[6] M. Hristova, A. Misra, M. Rutter, and R. Mercuri.
Identifying and correcting Java programming errors
for introductory computer science students. In
Proceedings of the 34th SIGCSE Technical Symposium

on Computer Science Education, SIGCSE ’03, pages
153–156, New York, NY, USA, 2003. ACM.

[7] J. Jackson, M. Cobb, and C. Carver. Identifying top
Java errors for novice programmers. In Frontiers in

Education, 2005. FIE ’05. Proceedings 35th Annual

Conference, Oct 2005.

[8] M. C. Jadud. Methods and tools for exploring novice
compilation behaviour. In Proceedings of the Second

International Workshop on Computing Education

Research, ICER ’06, pages 73–84, New York, NY,
USA, 2006. ACM.

[9] D. McCall and M. Kölling. Meaningful categorisation
of novice programmer errors. In Frontiers In

Education Conference, pages 2589–2596, 2014.

[10] P. M. Sadler, G. Sonnert, H. P. Coyle, N. Cook-Smith,
and J. L. Miller. The influence of teachers’ knowledge
on student learning in middle school physical science
classrooms. American Educational Research Journal,
50(5):1020–1049, 2013.

[11] E. Soloway and S. Iyengar, editors. Empirical Studies

of Programmers: Papers Presented at the First

Workshop on Empirical Studies of Programmers.
Intellect Books, 1986.

[12] A. Stefik and S. Siebert. An empirical investigation
into programming language syntax. Trans. Comput.

Educ., 13(4):19:1–19:40, Nov. 2013.

[13] E. S. Tabanao, M. M. T. Rodrigo, and M. C. Jadud.
Predicting at-risk novice Java programmers through
the analysis of online protocols. In Proceedings of the

Seventh International Workshop on Computing

Education Research, ICER ’11, pages 85–92, New
York, NY, USA, 2011. ACM.

	Introduction
	Related Work
	Method
	Student Mistakes
	Student data

	Results
	Mistakes Overview
	Mistakes Over Time

	Conclusions
	References

