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Abstract. Active Shape Models are a popular method for segment-
ing three-dimensional medical images. To obtain the required landmark
correspondences, various automatic approaches have been proposed. In
this work, we present an improved version of minimizing the description
length (MDL) of the model. To initialize the algorithm, we describe a
method to distribute landmarks on the training shapes using a confor-
mal parameterization function. Next, we introduce a novel procedure to
modify landmark positions locally without disturbing established corre-
spondences. We employ a gradient descent optimization to minimize the
MDL cost function, speeding up automatic model building by several
orders of magnitude when compared to the original MDL approach. The
necessary gradient information is estimated from a singular value de-
composition, a more accurate technique to calculate the PCA than the
commonly used eigendecomposition of the covariance matrix. Finally, we
present results for several synthetic and real-world datasets demonstrat-
ing that our procedure generates models of significantly better quality in
a fraction of the time needed by previous approaches.

1 Introduction

Since their introduction by Cootes et al. [1], Active Shape Models (ASMs) have
become popular tools for automatic segmentation of medical images. The main
challenge of the approach is the point correspondence problem in the model
construction phase: On every training sample for the ASM, landmarks have to
be placed in a consistent manner. While manual labeling is a time-consuming but
feasible solution for 2D models with a limited number of landmarks, it is highly
impractical in the 3D domain: Not only is the required number of landmarks
higher than in the 2D case, but it also becomes increasingly difficult to identify
and pinpoint corresponding points, even for experts.

⋆ c© Springer-Verlag Berlin Heidelberg 2005. This paper was published in G.E. Chris-
tensen and M. Sonka (Eds.): IPMI 2005, LNCS 3565, pp. 566–577, 2005
(http://www.springerlink.com/content/5ql808gwttth43ge/) and is made available as
an electronic reprint for personal use only.



Several automated methods to find the correspondences in 3D have been
proposed. Brett and Taylor [2] use a pairwise corresponder based on a symmet-
ric version of the ICP algorithm. All training shapes are decimated to generate
sparse polyhedral approximations and then merged in a binary tree, which is used
to propagate landmark positions. Shelton [3] measures correspondence between
surfaces in arbitrary dimensions by a cost function which is composed of three
parts representing Euclidean distance, surface deformation and prior informa-
tion. The function is minimized using a multi-resolution approach that matches
highly decimated versions of the meshes first and iteratively refines the results.
Paulsen and Hilger [4] match a decimated template mesh to all training shapes
using thin plate spline warping controlled by a small set of manually placed
anatomic landmarks. The resulting meshes are relaxed to fit the training shapes
by a Markov random field regularization. Another approach based on matching
templates is presented by Zhao and Teoh [5]: They employ an adaptive-focus
deformable model to match each training shape to all others without the need
for manually placed landmarks. The shape yielding the best overall results in
this process is subsequently used to determine point correspondences, enhanced
by a ”bridge-over” procedure for outliers.

A common characteristic of these methods is that they base their notion of
correspondence on general geometric properties, e.g. minimum Euclidean dis-
tance and low distortion of surfaces. A different approach is presented by Davies
et al. [6] who propose to minimize a cost function based on the minimum descrip-
tion length of the resulting statistical shape model. In a recent comparison [7],
this approach has shown to be superior to other correspondence methods. How-
ever, the optimization of the MDL criterion for 3D shapes is complex to im-
plement and computationally expensive. In this paper, we present an optimized
procedure for minimizing the description length which is easier to implement
and more efficient than the current method.

2 Fundamentals

2.1 Active Shape Models

The most popular kind of ASMs uses point distribution models (PDMs), which
represent each d-dimensional training sample as a set of n landmarks. For every
sample, landmark positions are defined by a single vector x, storing the coor-
dinates for landmark i at (xi, xi+n, xi+2n). The vectors of all training samples
form the columns of the landmark configuration matrix L. Applying principal
component analysis (PCA) to this matrix delivers the principal modes of varia-
tion pm in the training data. Restricting the model to the first c modes, all valid
shapes can be approximated by the mean shape x̄ and a linear combination of
displacement vectors:

x = x̄ +

c
∑

m=1

ympm (1)



Cootes used an eigenvector decomposition of the covariance matrix of L to
calculate the PCA [1], a method commonly employed for this purpose. However,
the same results can also be achieved by a singular value decomposition (SVD),
which is numerically more stable and thus more accurate when the covariance
matrix is ill-conditioned [8].

Theorem 1 Any m×n real matrix A with m ≥ n can be written as the product

A = UDVT (2)

where U and V are column orthogonal matrices of size m×n and n×n, respec-

tively, and D is a n × n diagonal matrix. Then U holds the eigenvectors of the

matrix AAT and D2 the corresponding eigenvalues.

Without calculating the covariance matrix, the PCA can thus be obtained by
the SVD of the matrix A = 1√

s−1
(L − L̄), where s is the number of samples

and L̄ a matrix with all columns set to x̄. In addition to the increased accuracy,
the matrices U and V allow calculating gradient information for the eigenvalues
which we will use during the optimization stage of the model-building process.

2.2 Correspondence by minimizing description length

A prerequisite for statistical shape models is a set of landmark points located at
corresponding positions on all training shapes. To quantify this correspondence,
the MDL approach introduced by Davies et al. [9] defines a cost function F
which is based on the minimum description length of the generated model. In
this work, we use a simplified version of the MDL as proposed by Thodberg [10],
where F is defined as:

F =
∑

m

Lm with Lm =

{

1 + log(λm/λcut) for λm ≥ λcut

λm/λcut for λm < λcut

(3)

This formulation features one free parameter λcut which represents the expected
noise in the training data. Since all shapes are rescaled to produce a mean shape
with RMS radius r = 1/

√
n for the PCA, the optimal value for λcut depends on

the original average radius of the training shapes r̄:

λcut =
(σ

r̄

)2

, (4)

where σ is the standard deviation of noise in the training data. In coherence
with the voxel quantization error, Thodberg choses σ = 0.3 and uses r̄ = 100 in
all his experiments. While we adopt the same σ-value, we modify r̄ depending
on the resolution of the images from which the training shapes are extracted.



3 Mesh Parameterization

To define an initial set of correspondences and a means of manipulating them
efficiently, we need a convenient parameter domain for our training shapes. For
closed 2D objects, the natural choice for this parameter domain is the arc-length
position on the contour: Choosing an arbitrary starting point and normalizing
the total arc-length to 1, all positions on the contour (i.e. all potential landmark
positions) can be described by a single parameter p ∈ [0..1].

In order to minimize complexity for the parameterization of 3D shapes, we
will restrict the discussion to closed two-manifolds of genus 0 (i.e. surfaces with-
out holes and self-intersections). Objects of this class are topologically equivalent
to a sphere and comprise most shapes encountered in medical imaging (e.g. liver,
kidneys and lungs). The task is to find a one-to-one mapping which assigns every
point on the surface of the mesh a unique position on the unit sphere, described
by two parameters longitude θ ∈ [0..2π] and latitude φ ∈ [0..π].

The mapping of an arbitrary shape to a sphere inevitably introduces some
distortion. There are a number of different approaches which attempt to mini-
mize this distortion, typically preserving either local angles or facet areas while
trying to minimize distortions in the other. An overview of recent work on this
topic can be found in [11].

For an initial parameterization, Davies uses diffusion mapping, a simplified
version of the method described by Brechbühler [12] which is neither angle- nor
area-preserving. Due to our optimization strategy (Sect. 4), our focus lies on
preserving angles: Moving neighboring points on the parameterization sphere
in a specific direction, we expect the corresponding landmarks on the training
shape to move in a coherent direction as well. This behavior is guaranteed by
conformal mapping functions, transformations that preserve local angles.

3.1 Creating a conformal mapping

Definition 1 Each training sample for the ASM is represented as a triangulated

mesh K = (V,E) with vertices u, v ∈ V and edges [u, v] ∈ E. The vertex positions

are specified by f : V → R3, an embedding function defined on the vertices of K.

A second function Ω : V → R3 specifies the coordinates as mapped on the unit

sphere, ∀v ∈ V : |Ω(v)| = 1.

Gu et al. present a variational method to create a conformal parameterization
in [13]. From an initial Gauss map, where Ω(v) represents the normal vector of v,
they use a gradient descent optimization to minimize the string energy of the
mesh, defined as:

E(K,Ω) =
∑

[u,v]∈E

ku,v‖Ω(u) − Ω(v)‖2 (5)

Minimizing the string energy with all edge weights ku,v set to 1 yields the
barycentric mapping, where each vertex is positioned at the center of its neigh-
bors. Subsequently, a conformal mapping can be obtained using edge weights



depending on the opposing angles α, β of the faces adjacent to [u, v] as in:

ku,v =
1

2
(cot α + cotβ) (6)

During the optimization process, all vertices must constantly be projected
back onto the sphere by Ω(u) = Ω′(u)/|Ω′(u)|. The formal correctness of this
approach was later proved in [14].

3.2 Mapping landmarks

Following the preceding sections, the parameterization is defined by a spherical
mesh with the same topology as the training sample. In order to obtain the
3D position for an arbitrary landmark at the spherical coordinates (θ, φ), which
is generally not a vertex, we have to find the intersection between a ray from the
origin to (θ, φ) and the parameterization mesh. Since mapping landmarks is the
most computationally expensive part of the model-building process, an intelli-
gent search strategy of ordering the triangles according to the likelihood of ray
intersection speeds up the algorithm considerably. Intersected triangle indices for
each landmark are cached and, in the case of a cache miss, neighboring triangles
are given priority when searching for the ray intersection. To test a triangle for
intersection, we use the method described in [15], which conveniently produces
the barycentric coordinates of the intersection point. The same coordinates used
on the respective triangle of the training mesh yield the final landmark position.

4 Optimizing Landmark Correspondences

With an initial conformal parameterization Ωi for each training sample i, we can
acquire the necessary landmarks by mapping a set of spherical coordinates to
each shape. To optimize the point correspondences with the MDL criterion, two
possibilities are available: We can either change the individual Ωi and maintain
a fixed set of global landmarks or modify individual landmark sets Ψi.

In this work, we opted for the first alternative, which has the advantage
that the correspondence is valid for any set of points placed on the unit sphere.
Therefore, it is possible to alter number and placement of landmarks on the unit
sphere at any stage of the optimization, e.g. to better adapt the triangulation
to the training shapes. Moreover, we do not need to worry about the correct
ordering of landmarks: Since the valid set on the unit sphere is fixed, ensuring a
one-to-one mapping to the training shapes is sufficient.

4.1 Re-parameterization

To modify the individual parameterizations in an iterative optimization process,
we need a transformation function of the type Ω′ = Φ(Ω). In [6], Davies et al.
use symmetric theta transformations for that purpose: Employing a wrapped
Cauchy kernel with a certain width and amplitude, landmarks near the kernel



position are spread over the sphere, while landmarks in other regions of the
surface are compressed. By accumulating the effects of thousands of kernels at
different positions, arbitrary parameterizations can be created.

While this re-parameterization method produces the required effect, it is an
inefficient means of modifying surface parameterizations. The main disadvan-
tage is that it is a global modification, i.e. adding one new kernel modifies all
landmark positions on the object. Intuitively, it would be desirable to keep estab-
lished landmark correspondences stable. Therefore, we suggest a new method for
modifying parameterization functions based on kernels with strictly local effects.

We will assume that we know a principal direction (∆θ,∆φ) in which the
vertices of a local neighborhood on the parameterization mesh should move to
improve landmark correspondences. Then we define a Gaussian envelope function
to change each spherical coordinate by c(x, σ) · (∆θ,∆φ) with

c(x, σ) =

{

e
−x

2

2σ
2 − e

−(3σ)2

2σ
2 for x < 3σ

0 for x ≥ 3σ
(7)

The variable x denotes the Euclidean distance between the center of the kernel
and the specific vertex of the parameterization mesh, while σ specifies the size
of the kernel. The movements are cut off at 3σ to limit the range and keep
the modification local. During the course of the optimization, σ is decreased to
optimize larger regions at the beginning and details at the end. Three examples
for possible kernel configurations with different σ-values are shown in Fig. 1.

Fig. 1. Kernel configurations for σ values of 0.4, 0.3 and 0.2. Red colors mark regions
with large vertex movements, blue ones those with no modification.

The proposed method of modification does not work if a kernel includes
one of the poles of the spherical parameterization mesh (φ = 0 or φ = π)
because vertices would all move either toward or away from this point, depending
on ∆φ. Nevertheless, the positions of the different kernels have to change in
the course of the optimization in order to guarantee an equal treatment for all
vertices of the parameterization mesh. This limitation is overcome by defining



specific kernel configurations as shown in Fig. 1, which do not cover the pole
sections of the sphere. By keeping these configurations fixed and instead rotating
all parameterizations and the global landmark collection by a random rotation
matrix, the relative kernel positions are changed without touching a pole. The
random rotation matrices for these operations are acquired using the method
described in [16].

4.2 Calculating MDL gradients

Given a kernel at a certain position, we need the direction (∆θ,∆φ) for the
movement which minimizes the cost function. Since all modifications of the pa-
rameterization change landmark positions on the training sample, the first step
is to quantify the effect landmark movements have on the MDL value. As shown
in [17], the work of Papadopoulo and Lourakis on estimating the Jacobian of the
SVD [18] can be used for that purpose, calculating the gradients of the MDL
objective function with respect to individual landmarks.

The calculation of the singular value derivatives does not add a significant
computational overhead. Given the centered and un-biased landmark configura-
tion matrix A from Sect. 2.1, the derivative for the m-th singular value dm is
calculated by:

∂dm

∂aij

= uim · vjm (8)

The scalars uim and vjm are elements of the matrices U and V from (2). Since
our MDL cost function uses λm = d2

m, we can derive the MDL gradients as

∂F

∂aij

=
∑

m

∂Lm

∂aij

with
∂Lm

∂aij

=

{

2uimvjm/dm for λm ≥ λcut

2dmuimvjm/λcut for λm < λcut

(9)

This derivation yields a 3D gradient for every landmark, revealing the influence
of its movements on the cost function. Two examples of the resulting gradient
fields are visualized in Fig. 2.

4.3 Putting it all together

The final step is to transform the calculated gradient fields into optimal kernel
movements k = (∆θ,∆φ) on the parameterization mesh. Using the chain rule,
we get:

∂F

∂k
=

∂F

∂aij

∂aij

∂k
(10)

We use finite differences to estimate the surface gradients ∂aij/∂k.
Both Davies [19] and Thodberg [10] describe cases in which the MDL op-

timization can lead to landmarks piling up in certain regions or collapsing to
a point. Davies keeps one shape as a master example with fixed landmarks to
prevent this effect while Thodberg suggests adding a stabilizing term to the cost



Fig. 2. Gradients of the MDL cost function visualized for two sample shapes. The value
of the directional derivative is color-coded ranging from blue for weak gradients to red
for the strongest gradients.

function. Since we have never observed the problematic behavior with our new
re-parameterization, we do not employ any of these methods.

In addition to modifying the mapping functions Ωi by re-parameterization,
other variables which influence landmark positions can be included in the opti-
mization. The rotation of each mapping Ωi determines the position of the first
landmark on the training shape and the relative orientation of all others. By
calculating gradients for rotating the parameterization mesh around the three
Euclidean axes and using those instead of the surface gradients ∂aij/∂k in (10),
we have an efficient method to optimize this variable.

Other possibilities for optimization include scale and rotation of the individ-
ual training shapes, which are normally determined by a generalized procrustes
matching. While we do optimize scale in our procedure, we did not notice sig-
nificant improvements in the resulting MDL values due to this step.

5 Results

5.1 Datasets

We tested the presented method on several synthetic and real-life datasets. Syn-
thetic data has the advantage that the global minimum of the MDL function is
known, since it can be calculated from the correspondences inherent for gener-
ated data. A tabular description of all employed datasets is given in Tab. 1.

5.2 Performance measures

In [19], Davies describes three measures to quantify the quality of the created
shape model: Generalization ability, specificity and compactness. The same mea-



Table 1. The collection of datasets used for the evaluation.

Cuboids Ellipsoids Lungs Livers

Origin synthetic synthetic clinical clinical
Mean size (radius in voxels) 100 100 25 70
Number of samples 20 20 18 21
Perceived sample variance low medium medium high
Sample complexity (# vertices) 486 962 3250–5000 1500–2000
Model complexity (# landmarks) 642 642 2562 2562

sures are also used in the comparison of different correspondence methods by
Styner et al. [7].

Generalization ability quantifies the capability of the model to represent new
shapes. It can be estimated by performing a series of leave-one-out tests on the
training set, measuring the distance of the omitted training shape to the closest
match of the reduced model. Specificity describes the validity of the shapes the
model produces. The value is estimated by generating random parameter values
from a normal distribution with zero mean and the respective standard deviation
from the PCA. The distance of the generated shape to the closest match of
the training set is averaged over a number of 10,000 runs. Compactness simply
measures the accumulative variance of the model. All measures are defined as
functions of the number of modes or parameters used by the model and displayed
as piecewise linear graphs. Smaller values indicate better models.

While generalization ability and specificity are well-established qualities in-
herent to a good model, compactness is an implementation specific measure: The
MDL approach assumes that low variances result in a good ASM, but this is no
imminent truth. We therefore restrict our evaluation to the first two measures.

5.3 Comparison with current standard

For all datasets described in Sect. 5.1, Active Shape Models have been generated
using the gradient descent technique (GD) proposed in this paper and using the
current standard approach (STD) by Davies [19]. Our GD-algorithm was imple-
mented in C++ and run on a 3.0GHz Intel Pentium 4 with Windows XP and
512MB of memory. The code makes use of the Hyper-Threading architecture
to optimize several samples concurrently. The STD-experiments were performed
using the original Matlab code on a 2.8GHz Intel Xenon with Linux and 2GB
of memory. After optimization, the global landmark sets of the GD-optimized
models were adjusted to match the landmark distributions of the STD-models.
For the evaluation, all models were rescaled to the same dimensions as the aver-
age training sample. The results of the experiments are summarized in Tab. 2.
For our GD-optimization, we list additional intermediate values for the point at
which the MDL values surpasses the results of the STD-method.

The GD-optimization reaches the same MDL values as the converged STD-
method up to 5,000 times faster and produces distinctly better final results. Gen-



eralization ability and specificity values for all datasets are displayed in Fig. 3.
In accordance with the MDL values, models optimized with our GD-method
exhibit significantly better generalization ability and specificity values.

Table 2. Resulting MDL values at different stages of optimization using the gradient
descent (GD) and standard (STD) method for all datasets. Times are given in hours
and minutes.

Cuboids Ellipsoids Lungs Livers
Optimization Time MDL Time MDL Time MDL Time MDL

Initial values 0:00 1305 0:00 1288 0:00 1216 0:00 2323
STD (converged) 63:24 1297 63:24 1284 432:00 1203 432:00 2275
GD (intermediate) 0:01 1246 0:01 1254 0:05 1180 0:07 2263
GD (converged) 0:36 1243 2:43 1247 17:03 1160 14:45 2140

6 Conclusions

As demonstrated in the preceding section, our gradient descent optimization pro-
duces significantly better models than the current standard approach while at
the same time being several orders of magnitude faster. Highly detailed models
containing over 2,500 landmarks can be successfully optimized in less than 20
hours on a normal desktop PC. This significant performance gain opens up new
possibilities for building larger and more detailed 3D ASMs. Excluding the plat-
form difference, a major part of the improvements can be attributed to our novel
method of local parameter modification controlled by the estimated gradients of
the MDL cost function. As the lower MDL values after optimization indicate,
our method is less sensitive to convergence to local minima than the original ap-
proach. It offers an efficient, robust and versatile approach to automatic model
building that should further propagate the use of 3D ASMs in clinical practice.
To represent more complex shapes (e.g. brain ventricles), the mesh surface could
be cut and parameterized over multiple domains instead of a single sphere.

Future research will investigate in how far the established correspondences
can be used to reorganize landmarks after the optimization in order to repre-
sent the geometry of the model optimally with a minimum number of points.
Additionally, the stability of our re-parameterization method against landmark
collapse has to be verified using a larger number of test datasets.
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Fig. 3. Graphs of generalization ability and specificity for different numbers of modes
for all datasets. In addition to the results after standard optimization and our gradient
descent method, the initial values before optimization are displayed as orientation.
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Davies, R.H.: Evaluation of 3D correspondence methods for model building. In:
Proc. IPMI. (2003) 63–75

8. Kalman, D.: A singularly valuable decomposition: The SVD of a matrix. College
Math Journal 27 (1996) 2–23

9. Davies, R.H., Twining, C.J., Cootes, T.F., Waterton, J.C., Taylor, C.J.: A min-
imum description length approach to statistical shape modelling. IEEE trans.
Medical Imaging 21 (2002) 525–537

10. Thodberg, H.H.: Minimum description length shape and appearance models. In:
Proc. IPMI. (2003) 51–62

11. Floater, M.S., Hormann, K.: Surface parameterization: a tutorial and survey. In
Dodgson, N.A., Floater, M.S., Sabin, M.A., eds.: Advances in Multiresolution for
Geometric Modelling. Mathematics and Visualization. Springer, Berlin, Heidelberg
(2005) 157–186
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15. Möller, T., Trumbore, B.: Fast, minimum storage ray-triangle intersection. Journal
of Graphics Tools 2 (1997) 21–28

16. Arvo, J.: Fast random rotation matrices. In Kirk, D., ed.: Graphics Gems III.
Academic Press (1992) 117–120
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