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Abstract

Learning from synthetic faces, though perhaps ap-
pealing for high data efficiency, may not bring sat-
isfactory performance due to the distribution dis-
crepancy of the synthetic and real face images. To
mitigate this gap, we propose a 3D-Aided Deep
Pose-Invariant Face Recognition Model (3D-PIM),
which automatically recovers realistic frontal faces
from arbitrary poses through a 3D face model in
a novel way. Specifically, 3D-PIM incorporates a
simulator with the aid of a 3D Morphable Model
(3D MM) to obtain shape and appearance prior for
accelerating face normalization learning, requiring
less training data. It further leverages a global-
local Generative Adversarial Network (GAN) with
multiple critical improvements as a refiner to en-
hance the realism of both global structures and lo-
cal details of the face simulator’s output using unla-
belled real data only, while preserving the identity
information. Qualitative and quantitative experi-
ments on both controlled and in-the-wild bench-
marks clearly demonstrate superiority of the pro-
posed model over state-of-the-arts.

1 Introduction

Even though (near-) frontal1 face recognition seems to be
solved under constrained conditions [Yim et al., 2015;
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1“Near frontal” faces are almost equally visible for both sides
and their yaw angles are within 10◦ from frontal view.

Figure 1: Face recognition with large pose variations. Top: Tra-
ditional face recognition system fails due to large pose variations.
Bottom: The proposed 3D-PIM recovers natural frontal face images
from arbitrary poses and recognizes the face correctly. Moreover,
our 3D-PIM model potentially benefits face attribute recognition.
Best viewed in color.

Schroff et al., 2015], the more general problem of face recog-
nition in the wild still needs more studies, desiderated by
many practical applications. Among various challenging fac-
tors, the one that harms face recognition performance ar-
guably the most is pose variation.

To address this challenge, some research attempts [Tran
et al., 2017; Huang et al., 2017] have been made to employ
synthetic frontal face images to learn pose-invariant mod-
els. However, naively learning from synthetic images can be
problematic due to the distribution discrepancy between syn-
thetic and real face images. The low-quality synthesized face
images would cause the learned face recognition model to
overfit to fake information only contained in synthetic images
and fail to generalize well on real faces. Manually increasing
the realism of the simulator is often expensive in terms of
time cost and manpower, if possible.

In this work, we propose a novel and unified deep neu-
ral network, termed as 3D-Aided Deep Pose-Invariant Face
Recognition Model (3D-PIM), which automatically recovers
natural frontal face images from arbitrary poses for pose-
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invariant face recognition. 3D-PIM effectively leverages a
3D face model and meanwhile overcomes the drawback of
low realism essentially. The 3D-PIM takes faces of arbi-
trary poses with other potential distracting factors (e.g., bad
illumination or different expressions) as input. It recovers
photo-realistic frontal faces with preserved discrimination
across different identities, offering appealing robustness to
pose variations, as illustrated in Fig. 1.

In particular, the 3D-PIM unifies a simulator for 3D face
reconstruction and frontal view synthesis, and a refiner for
realism refinement. The two components learn in a conju-
gated way. The simulator is aided by a 3D Morphable Model
(3D MM) [Blanz and Vetter, 1999] to provide shape and ap-
pearance prior for accelerating face normalization learning,
requiring less training data. The refiner is a global-local
Generative Adversarial Network (GAN) to improve the re-
alism of both global structures and local details of the sim-
ulator’s output using unlabeled real data, while preserving
the identity information. Different from vanilla GANs, 3D-
PIM introduces facial structure loss to address self-occlusion,
identity perception loss to preserve identity information of the
generated faces, and adversarial loss to avoid artifacts of both
global facial structures and local details which are critical for
face recognition. The refined synthetic frontal face images
present photo-realistic quality with well preserved identity
information, which facilitate pose-invariant model learning.
For stabilizing the training process of 3D-PIM, we update the
discriminator using a history of refined results.

We conduct extensive qualitative and quantitative experi-
ments on various benchmarks, including both controlled and
in-the-wild datasets. The results demonstrate the effective-
ness of 3D-PIM on recognizing faces with extreme poses and
also its superiority over the state-of-the-arts consistently on
all the benchmarks.

2 Related Work

Traditional face frontalization methods rely on 2D/3D lo-
cal texture warping [Zhu et al., 2015], statistical model-
ing [Sagonas et al., 2015], and deep learning based meth-
ods [Huang et al., 2017; Tran et al., 2017; Kan et al., 2014;
Yim et al., 2015]. For instance, Kan et al. [Kan et al., 2014]

use Stacked Progressive Auto-Encoders (SPAE) to rotate a
profile face to frontal. Despite encouraging results, the syn-
thesized faces lack fine details and tend to be blurry and
unreal under a large pose. The quality of synthesized im-
ages with current methods is still far from satisfactory for
recognizing faces with large pose variation. Deep learn-
ing methods often handle pose variance through a single
pose-agnostic or several pose-specific models with pooling
operation and specific loss functions [Cheng et al., 2017;
Zhao et al., 2017a; Li et al., 2016]. For instance, the VGG-
Face model [Parkhi et al., 2015] adopts the VGG architec-
ture [Simonyan and Zisserman, 2014]. The DeepFace [Taig-
man et al., 2014] model uses a deep CNN coupled with 3D
alignment. FaceNet [Schroff et al., 2015] utilizes the incep-
tion architecture. The DeepID2+ [Sun et al., 2015b] and
DeepID3 [Sun et al., 2015a] extend the FaceNet [Schroff et
al., 2015] model by including joint Bayesian metric learning

and multi-task learning. However, such data-driven methods
heavily rely on well annotated data. Collecting labeled data
covering all variations is expensive and even impractical.

Our proposed 3D-PIM is based on a similar idea with
TP-GAN [Huang et al., 2017] and DR-GAN [Tran et al.,
2017] that synthesize faces based on GAN framework, Sim-
GAN [Shrivastava et al., 2016] that learns from simulated
and unsupervised images, and DA-GAN [Zhao et al., 2017b]

that considers incorporating 3D MM [Blanz and Vetter, 1999]

as a prior during face syethesis. Our method differs from
them in following aspects: 1) 3D-PIM aims to recover photo-
realistic and identity-preserving frontal faces to address the
large pose variance issue in unconstrained face recognition,
whereas DA-GAN tries to synthesize profile faces for balanc-
ing pose distribution and SimGAN is designed for much sim-
pler scenarios (e.g., eye and hand image refinement); 2) TP-
GAN suffers from severe over-fitting risk and DR-GAN suf-
fers from identity information loss under large poses, which
limit their effectiveness in face recognition.

3 3D-Aided Deep Pose-Invariant Model

3.1 Simulator

Large pose variation is the main challenge to unconstrained
face recognition, and also the key obstacle for learning a well-
performing pose-invariant model. To address this problem,
we propose to impose a prior on the generation process, with
the aid of a 3D MM [Blanz and Vetter, 1999]. This reduces
the training complexity and leads to better empirical perfor-
mance with limited data.

The 3D MM is one of the most successful methods that de-
scribe the 3D face space. Constructed by linear combinations
of face scans in the PCA space, 3D MM can approximate an
arbitrary face shape with considerable accuracy.

S = S̄ +Aidαid +Aexpαexp, (1)

where S is the 3D face, S̄ is the mean shape, Aid denotes
the principle axes trained on the 3D face scans with neutral
expressions, αid denotes the identity coefficient vector, Aexp

denotes the principle axes trained on the offset between ex-
pression scans and neutral scans, and αexp is the expression
coefficient vector.

To fit 3D MM to a face image, we project the face model
onto the image plane with the Weak Perspective Projection:

s = fPR(α, β, γ)(S + t), (2)

where s is the 2D positions of 3D points on the image plane,
f is the scale factor, P is the the orthographic projection ma-

trix

[

1 0 0
0 1 0

]

, R(α, β, γ) is the 3 × 3 rotation matrix con-

structed with α–pitch, β–yaw, γ–roll, and t is the translation
vector.

The fitting process is to search the ground truth 2D co-
ordinates sGT of 3D points and estimate the 3D MM coef-
ficients {αid, αexp, f, R(α, β, γ), t} by minimizing the Eu-
clidean distance between s and sGT:

Lsim =
1

2n

n
∑

i=1

‖si − sGTi‖
2
2, (3)
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Figure 2: 3D-Aided Deep Pose Invariant Model (3D-PIM) for pose-invariant face recognition. The 3D-PIM contains a simulator and a
refiner, which learn in a conjugated way. The simulator is aided by a 3D MM. It localizes landmark points, estimates 3D MM coefficients,
and produces synthesis faces with normalized poses, which are fed to the refiner for realism refinement. The refiner is a global-local GAN
to improve the realism of both global structures and local details of the simulator’s output using unlabelled real data, while preserving the
identity information. 3D-PIM introduces facial structure loss (Lfs) to address self-occlusion, identity perception loss (Lip) to preserve identity
information of the generated faces, and adversarial loss (Ladv) to avoid artifacts. Best viewed in color.

where n is the number of the 2D facial landmarks.
Finally, we simulate frontal face images x′ in canonical

view from the input x under arbitrary poses, as shown in the
upper panel of Fig. 2. However, the performance of the simu-
lator decreases dramatically under large poses due to artifacts
and severe texture loss caused by self-occlusion, causing the
network to overfit to fake information only contained in syn-
thetic images and fail to generalize well on real data.

3.2 Refiner

In order to generate photo-realistic and identity-preserved
frontal face images which are truly beneficial for uncon-
strained face recognition, we further refine the above-
mentioned simulated frontal face images with the proposed
refiner network, which consists of a Global-Local Generator
(GLG) and a Global-Local Discriminator (GLD), learning in
a competitive way.

Global-Local Generator

Since convolutional filters are usually shared across all the
spatial locations, merely using a single-path generator cannot
learn filters that are powerful enough for both refining global
face structures and local details. To address this issue, we pro-
pose a Global-Local Generator (GLG), as inspired by [Huang
et al., 2017; Zhu et al., 2015], where one path aims to refine
the global sketch and the other to attend to refine local facial
details, as shown in the bottom panel of Fig. 2.

In particular, the global-path generator Gθg (with learnable
parameters θg) consists of a transition-down encoder and a

transition-up decoder. The local path generator Gθl also has
an auto-encoder architecture, containing three identical sub-
networks that learn separately to refine the following three
center-cropped local patches: eyes, nose, and mouth. These
patches are acquired by an off-the-shelf landmark detection
model. Given a simulated frontal face image x′, to effec-
tively integrate information from the global and local paths,
we first align the feature maps f l predicted by Gθl to a single
feature map according to a pre-estimated landmark location
template, which is further concatenated with the feature map
fg from the global path and then fed to following convolution
layers to generate the final refined image x̃. We also concate-
nate a Gaussian random noise z at the bottleneck layer of the
GLG to model variations of other factors besides pose, which
may also help recover invisible details. Instead of using only
the standard convolutional layers, we also employ a variant
called dilated convolution in GLG. Dilated convolution uses
kernels that are spread out, leading to a much larger input
area for computing each output pixel with the same number
of parameters and computational power. By using dilated
convolutions, the model can effectively “see” a larger area
of the input image when computing each output pixel than
with standard convolutional layers. This is important for our
refinement task, as the context information is critical for pro-
ducing plausible hypothesis for the missing regions.

Formally, let the input simulated frontal face image with
three landmark patches be collectively denoted as x′. Then
the refined face is x̃ = Gθ(x

′). The key requirement for the
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GLG is that the refined image x̃ should visually resemble a
real one and preserve the identity information as well as local
textures.

To this end, we propose to learn the parameters {θg, θli}
(here i=1, . . ., 3 index the three local-path models) by mini-
mizing the following composite losses:

LGθ
=− Ladv + λ0Lip + λ1Lrec + λ2Lfs + λ3LTV, (4)

where Ladv is the adversarial loss for adding realism to the
synthetic images and alleviating artifacts, Lip is the identity
perception loss for preserving the identity information, Lrec

is the reconstruction loss for encouraging multi-scale image
content consistency, Lfs is the facial structure loss for allevi-
ating self-occlusion issue, LTV is the total variation loss for
reducing spiky artifacts, and {λk}k=3

0
are weighting parame-

ters among different losses.
Lrec is introduced to enforce the multi-scale content con-

sistency between the final frontalized face and corresponding
ground truths, defined as Lrec = ‖x̃ − x̃GT‖/|x̃GT|, where
|x̃GT| is the size of x̃GT.

Since symmetry is an inherent feature of human facial
structures, Lfs is introduced within the Laplacian space to ex-
ploit this prior information and impose the symmetry con-
straint on the recovered frontal view for alleviating self-
occlusion issue:

Lfs =
1

W/2×H

W/2
∑

i

H
∑

j

|x̃i,j − x̃W−(i−1),j |, (5)

where W , H denote the width and height of the final recov-
ered frontal face image x̃, respectively.

The standard LTV is introduced as a regularization term on
the refined results to reduce spiky artifacts:

LTV =

W
∑

i

H
∑

j

√

(x̃i,j+1 − x̃i,j)2 + (x̃i+1,j − x̃i,j)2. (6)

Global-Local Discriminator

To add realism to the synthetic images to really benefit face
recognition performance, we need to narrow the gap between
the distributions of synthetic and real images. An ideal gener-
ator will make it impossible to classify a given image as real
or refined with high confidence. Meanwhile, preserving the
identity information is essential and critical for recognition.
An ideal generator will generate the refined face images that
have small intra-class distance and large inter-class distance
in the feature space spanned by the deep neural networks for
unconstrained face recognition. These motivate us to employ
an adversarial Global-Local Discriminator (GLD) which dis-
tinguishes real v.s. fake and identity information of global
facial structures and local details simultaneously.

To facilitate this process, we simply leverage the same
architecture respectively in the global-path encoder and the
local-path encoder as the global-path discriminator Dφg (with
learnable parameters φg) and the local-path discriminator
Dφl (with learnable parameters φl), which learn separately
without weight sharing, to avoid typical GAN tricks, as
shown in the bottom panel of Fig. 2. The feature maps from
Dφg and Dφl are further concatenated and fed into a fully

connected layer to compute Ladv and Lip, which serve as
a supervision to push the synthesized image to reside in the
manifold of photorealistic frontal view images, prevent blur
effect, and produce visually pleasing results while preserving
the identity information. In particular, Ladv is defined as

Ladv =
1

N

N
∑

i=1

−yi log[Dφ(x̃i)]− (1− yi) log[1−Dφ(x
Real
i )],

(7)

where N is the number of training samples, xReal denotes the
real frontal face image, and y is the binary label indicating the
image is synthesized or real.

An underlying problem of adversarial training is that the
discriminator only focuses on the latest refined results. This
lack of memory may cause 1) divergence of the adversarial
training, and 2) re-introduced artifacts by the refiner which
the discriminator has forgotten about. Any refined image gen-
erated by the refiner at any time during the entire training
procedure is a “fake” image for the discriminator. Hence, the
discriminator should be able to classify all these images as
fake. Based on this observation, we further extend the GLD
with an external buffer to improve the stability of adversarial
training by updating the GLD using a history of refined re-
sults, rather than only with those in the current minibatch, as
first introduced in [Shrivastava et al., 2016].

In order to preserve the identity discriminability of refined
face images, we define Lip with the multi-class cross-entropy
loss based on the output from the bottleneck layer of Dφ.

Lip =
1

N

N
∑

j=1

−Yj log[Dφ(x
Real
j )]− (1− Yj)log[1−Dφ(x

Real
j )]

−
1

N

N
∑

i=1

Yilog[Dφ(x̃i)]− (1− Yi)log[1−Dφ(x̃i)],

(8)

where Y is the identity ground truth.
Thus, minimizing Lip would encourage deep features of

the refined face images with the same identity to be close
to each other. If one visualizes the learned deep features in
the high-dimensional space, these learned deep features form
several compact clusters, and each cluster may be far away
from others. Each cluster has a small variance. In this way,
the refined face images are enforced with well preserved iden-
tity information.

Using Lip alone makes the results prone to annoying ar-
tifacts, because the search for a local minimum of Lip may
go through a path that resides outside the manifold of natural
face images. Thus, we combine Lip with Ladv as the final ob-
jective function for Dφ to ensure that the search resides in that
manifold and produces photo-realistic and identity-preserved
face image:

LDφ
= Ladv + λ4Lip, (9)

where λ4 is a weighting parameter between Ladv and Lip.

4 Experiments

We evaluate 3D-PIM qualitatively and quantitatively under
both controlled and in-the-wild settings for pose-invariant
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Table 1: Component analysis under Multi-PIE Setting-1.

Method ±90◦ ±75◦ ±60◦ ±45◦ ±30◦ ±15◦

b1 18.80 63.80 92.20 98.30 99.20 99.40

b2 33.00 76.10 95.20 97.90 99.20 99.80

w/o refiner 28.81 46.52 61.26 78.41 89.87 98.74

w/o Lrec 65.86 85.73 96.29 97.06 98.04 98.83

w/o Lip 66.70 86.53 97.10 98.44 98.93 99.15

w/o Ladv 67.13 87.97 97.51 98.75 99.14 99.40

w/o G
θl
i

67.35 88.20 97.74 98.12 98.59 99.10

w/o Lfs 68.61 89.49 98.03 98.85 99.10 99.32

w/o DC 69.76 90.65 98.19 98.76 99.02 99.18

w/o D
φl
i

70.77 91.67 98.21 99.03 99.17 99.37

w/o buffer 71.95 92.86 98.40 99.15 99.31 99.56

3D-PIM1 73.17 94.03 98.57 99.21 99.52 99.67

3D-PIM2 76.12 94.34 98.84 99.34 99.47 99.83

face recognition. For qualitative evaluation, we show visu-
alized results on Multi-PIE [Gross et al., 2010] benchmark
dataset. For quantitative evaluation, we evaluate face recog-
nition performance on Multi-PIE and IJB-A datasets.

Implementation Details Throughout the experiments, the
size of the RGB images of the input profile face (x), the sim-
ulator synthesis (x′), and the GLG prediction (x̃) is fixed as
128×128; the sizes of the three RGB local patches (i.e., eyes,
nose and mouth) are fixed as 80×40, 32×40, and 48×32, re-
spectively; the dimensionality of the Gaussian random noise
z is fixed as 100; the constraint factors λ0 to λ4 are em-
pirically fixed as 0.05, 1.0, 0.1, 5×10−4, and 0.1, respec-
tively; the batch size and learning rate are fixed as 16 and
3 × 10−5, respectively; we use the RAR [Xiao et al., 2016]

framework for landmark detection; we merge two popular
face models with Non-Rigid ICP [Amberg et al., 2007] to
construct our 3D MM; the identity basis (Aid) comes from
the BFM [Paysan et al., 2009] and the expression basis (Aexp)
comes from the Face Warehouse [Cao et al., 2014]; the pro-
posed network is implemented based on the publicly available
TensorFlow [Abadi et al., ] platform, which is trained using
Adam (β1=0.5) on a single NVIDIA TITAN X GPU with
12G memory.

4.1 Evaluations on Multi-PIE Benchmark

The CMU Multi-PIE dataset is the largest multi-view face
recognition benchmark, which contains 754,204 images of
337 identities from 15 view points and 20 illumination condi-
tions. We conduct experiments under two settings: Setting-
1 concentrates on pose, illumination, and minor expression
variations. It only uses the images in session one, which con-
tains 250 identities. The images with 11 poses within ±90◦

and 20 illumination levels of the first 150 identities are used
for training. For testing, one frontal view with neutral expres-
sion and illumination (i.e., ID07) is used as the gallery image
for each of the remaining 100 identities, and other images are
used as probes. Setting-2 concentrates on pose, illumination,
and session variations. It uses the images with neutral ex-
pression from all four sessions, which contains 337 identities.
The images with 11 poses within ±90◦, and 20 illumination
levels of the first 200 identities are used for training. For test-
ing, one frontal view with neural illumination is used as the
gallery image for each of the remaining 137 identities, and
other images are used as probes.
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Figure 3: Synthesized results of 3D-PIM and its variants.

Component Analysis

We first investigate different architectures and loss func-
tion combinations of 3D-PIM to see their respective roles
in pose-invariant face recognition. We compare 11 variants
of 3D-PIM, i.e., different face recognition network architec-
tures (3D-PIM1: ResNet-50 [He et al., 2016] vs. 3D-PIM2:
Light CNN-29 [Wu et al., 2015]), w/o refiner (recognition
with simulator output), w/o local-path generator Gθl

i
, w/o

dilated convolution (DC), w/o local-path discriminator Dφl
i
,

w/o buffer, w/o Lrec, w/o Ladv, w/o Lfs, and w/o Lip, in each
case.

Averaged Rank1 recognition rates are compared in Setting-
1 in Tab. 1. The results on the profile images serve as our
baselines (i.e., b1 and b2). The results of the middle panel
variations are all based on Light CNN-29. By comparing
the results from the top and bottom panels, we observe that
our 3D-PIM is not restricted to the face recognition backbone
architecture used, since similar improvements (e.g. 54.37%
v.s. 43.12% under ±90◦) can be achieved with our joint
3D-aided frontal face reconstruction and global-local realism
refinement framework. The refiner, reconstruction loss, and
identity perception loss contribute the most to improving the
face recognition performance, especially for large pose cases.
The adversarial training, global-local refiner, facial structure
loss, and DC collaboratively add realism to the simulator, for
both global facial structures and local details, which are ben-
eficial for improving the recognition performance. Although
not apparent, the buffer also helps improve the recognition
performance. It is especially useful for stabilizing the train-
ing process.

Fig. 3 illustrates the perceptual performance of these vari-
ants. As expected, the inference results without refiner, Lrec,
and Lip deviate from the true appearance severely. The syn-
thesis without adversarial training and buffer tends to present
unnatural artifacts while that without facial structure loss
sometimes shows factitious asymmetrical effect. The synthe-
sis without the local-path generator and discriminator tends
to lose local details while that without DC tends to lose high-
frequency information.

Qualitative Results

Most previous works on face frontalization address problems
within a pose range of ±60◦, since it is commonly believed
with a pose larger than 60◦, it is difficult for a model to gener-
ate faithful frontal images or learn discriminative yet general-
izable facial representations. However, the proposed 3D-PIM
is able to recover high-fidelity and identity-preserved frontal
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Table 2: Rank1 recognition rates (%) under Multi-PIE Setting-1/Setting-2.

Method ±90◦ ±75◦ ±60◦ ±45◦ ±30◦ ±15◦

CPF [Yim et al., 2015] - / - - / - - / 61.90 71.65 / 79.90 81.05 / 88.50 89.45/95.00

DR-GAN [Tran et al., 2017] - / - - / - - / 83.20 - / 86.20 - / 90.10 - / 94.00

TP-GAN [Huang et al., 2017] 64.03 / 64.64 84.10 / 77.43 92.93 / 87.72 98.58 / 95.38 99.85 / 98.06 99.78 / 98.68

3D-PIM 76.12 / 86.73 94.34 / 95.21 98.84 / 98.37 99.34 / 98.81 99.47 / 99.48 99.83 / 99.64

Table 3: Face recognition performance comparison on IJB-A. The results are averaged over 10 testing splits.

Method
Verification Identification

TAR@FAR=0.01 TAR@FAR=0.001 TAR@FAR=0.0001 FNIR@FPIR=0.01 Rank1

OpenBR [Klare et al., 2015] 0.236±0.009 0.104±0.014 - 0.934±0.017 0.246±0.011

GOTS [Klare et al., 2015] 0.406±0.014 0.198±0.008 - 0.953±0.024 0.433±0.021

Pooling faces [Hassner et al., 2016] 0.309 - - - 0.846

Triplet Similarity [Sankaranarayanan et al., 2016] 0.790±0.030 0.590±0.050 - 0.444±0.065 0.880±0.015

VGG-Face [Parkhi et al., 2015] 0.805±0.030 - - 0.539±0.077 0.913±0.011

PAMs [Masi et al., 2016] 0.826±0.018 0.652±0.037 - - 0.840±0.012

DR-GAN [Tran et al., 2017] 0.831±0.017 0.699±0.029 - - 0.901±0.014

Triplet Embedding [Sankaranarayanan et al., 2016] 0.900±0.010 0.813±0.002 - 0.247±0.030 0.932±0.010

Template Adaptation [Crosswhite et al., 2017] 0.939±0.013 0.836±0.027 - 0.226±0.049 0.928±0.001

NAN [Yang et al., 2016] 0.941±0.008 0.881±0.011 - 0.183±0.041 0.958±0.005

DA-GAN [Zhao et al., 2017b] 0.976±0.007 0.930±0.005 - 0.110±0.039 0.971±0.007

ℓ2-softmax [Ranjan et al., 2017] 0.970±0.004 0.943±0.005 0.909±0.007 0.085±0.041 0.973±0.005

3D-PIM 0.989±0.002 0.977±0.004 0.953±0.012 0.064±0.045 0.990±0.002

Figure 4: Comparison of face frontalization results. Each block
shows a distinct identity under different poses along with other un-
constrained factors (e.g., expression, illumination) (row. 1), the raw
simulated faces (row. 2), and the refined results by 3D-PIM (row. 3);
for each identity, an enlarged ground truth frontal face image is pro-
vided for reference (col. 1).

faces under very large poses. The recovered face images in
the frontal view are visualized in Fig. 4 (a). We observe that
the 3D-PIM consistently recovers faces well for all cases, and
the recovered frontal face images are intuitively beneficial for
pose-invariant face recognition.

Quantitative Results

Tab. 2 shows the face recognition performance comparison
of our 3D-PIM with other state-of-the-arts in Setting-1 and
Setting-2. 3D-PIM consistently achieves the best perfor-
mance across all poses, especially for large yaw angles. In
particular, for Setting-1, 3D-PIM outperforms TP-GAN and
c-CNN Forest by 12.09% and 28.86% under ±90◦, respec-
tively. Note that TP-GAN has the same face recognition back-
bone as ours, and c-CNN Forest is an ensemble of three mod-
els which is much more complex than 3D-PIM. For Setting-2,
3D-PIM outperforms TP-GAN by 22.09% under ±90◦, and
outperforms TP-GAN and DR-GAN by 10.65% and 15.17%
under ±60◦, respectively.

4.2 Evaluations on IJB-A Benchmark

IJB-A contains 5,397 images and 2,042 videos from 500 sub-
jects, captured from in-the-wild environment to avoid near
frontal bias. For training and testing, 10 random splits are
provided by each protocol, respectively. It contains two tasks,
face verification and face identification. The performance is
evaluated by TAR@FAR, FNIR@FPIR, and Rank metrics,

respectively.
The performance comparison of 3D-PIM with other state-

of-the-arts on IJB-A unconstrained face verification and iden-
tification protocols are given in Tab. 3. With the injec-
tion of photo-realistic and identity-preserved frontal faces
generated by 3D-PIM without extra human annotation ef-
forts, our “recognition via generation” method outperforms
the 2nd-best by 4.40% for TAR@FAR=0.0001 of verifica-
tion, 1.70% for Rank1 of identification close set and 2.10%
for FNIR@FPIR=0.01 of identification open set. This well
shows the promising potential of recovered frontal view face
images by 3D-PIM on large-scale and challenging uncon-
strained face recognition.

5 Conclusion

We proposed a novel 3D-Aided Deep Pose-Invariant
Face Recognition Model (3D-PIM) for photo-realistic and
identity-preserved frontal face synthesis and a “recognition
via generation” framework to address the challenging face
recognition with large pose variations. 3D-PIM unifies a sim-
ulator for 3D face reconstruction and frontal view synthesis,
and a refiner for realism refinement, which learn in a conju-
gated way. The simulator is aided by a 3D MM to provide
shape and appearance prior for accelerating face normaliza-
tion learning, requiring less training data, and the refiner is a
global-local GAN to improve the realism of both global fa-
cial structures and local details of the simulator’s output us-
ing unlabeled real data while preserving identity information.
Comprehensive experiments demonstrate the superiority of
3D-PIM over state-of-the-arts. We plan to apply 3D-PIM to
other transfer learning applications in future.
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