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Abstract

We propose a new approach for semantic segmentation

of 3D city models. Starting from an SfM reconstruction of

a street-side scene, we perform classification and facade

splitting purely in 3D, obviating the need for slow image-

based semantic segmentation methods. We show that a

properly trained pure-3D approach produces high quality

labelings, with significant speed benefits (20x faster) allow-

ing us to analyze entire streets in a matter of minutes. Addi-

tionally, if speed is not of the essence, the 3D labeling can

be combined with the results of a state-of-the-art 2D clas-

sifier, further boosting the performance. Further, we pro-

pose a novel facade separation based on semantic nuances

between facades. Finally, inspired by the use of architec-

tural principles for 2D facade labeling, we propose new

3D-specific principles and an efficient optimization scheme

based on an integer quadratic programming formulation.

1. Introduction

Increasingly, the topics of recognition and 3D recon-
struction are intermingled. On the one hand, adding 3D
features may aid recognition, on the other the knowledge
about object classes helps with their 3D modeling. In the
end, one can imagine feedback loops - cognitive loops if
you will (e.g. [47]) - where a system jointly evolves through
the solution spaces that each such subproblem (e.g. recog-
nition, 3D reconstruction) lives in. Human vision seems to
strive for such kind of unified, consistent interpretation and
the endeavour seems to serve us well.

This paper looks into the creation of semantic, 3D mod-
els of cities. The task comes with both the subtasks of
recognition and 3D modeling. Thus, the models should not
only consist of high-quality 3D models, but ought to come
with delineated functional units (e.g. windows, doors, bal-
conies, etc.). Although substantial effort has already gone
into the creation of 3D city models, efforts to render those
‘semantic’ are rather recent. One of the most important

♠ Indicates equal contribution.

steps to that effect is semantic facade parsing. Thus far,
it has been largely treated as a 2D pre-processing step. This
paper investigates whether it could benefit from a direct
coupling to the 3D data that mobile mapping campaigns
also produce. As a matter of fact, the paper presents an
entire pipeline for facades, from raw images to semantic 3D
model, with all steps carried out in 3D. As we will show,
our avoidance of any going back and forth between 2D and
3D leads to substantially shorter runtimes (20x faster).

In particular, we see three main contributions:

• an end-to-end facade modelling fully in 3D,

• a novel facade separation based on the results of se-
mantic facade analysis,

• a formulation and implementation of weak architec-
tural principles like alignment, symmetry, etc. in 3D.

2. Related work

As this work joins multiple research areas for the pur-
pose of 3D facade understanding and modeling, we will
briefly review the current state of the art in (1) 3D classi-
fication, (2) facade parsing and (3) facade separation.

2.1. 3D classification

A vast amount of work has dealt with the issue of 2D
classification. However, the bulk of 3D classification work
is rather recent, especially where 2D and 3D features are
used together. To the best of our knowledge, [9] were the
first to combine image classification and sparse 3D points
from SfM. [25] combine depth maps and appearance fea-
tures for better classification. In a similar vein, [32, 2] com-
bine LIDAR and image data.

Since then, recent works show the advantage of combin-
ing 3D and 2D for classification [42, 21, 19, 38, 56] or place
recognition [37] using LIDAR, 3D CAD or Kinect mod-
els. However, 3D is used in the context of improving 2D
recognition, as these approaches still heavily rely on 2D fea-
tures. Some even show that 2D information is much more
important than 3D descriptors [38]. In contrast, instead of
using 3D as useful aid for the 2D classifier, we design an
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Figure 1. Our approach. In contrast to the majority of current facade labeling methods, our approach operates completely in 3D space.
From left to right: (a) image-based SfM 3D point cloud (b) initial point cloud classification (c) facade splitting (d) structure modeling
through architectural principles and (e) projected original images onto estimated 3D model. The advantages of pure-3D approach range
from tremendous speed-up to complementarity with 2D classifiers.

exclusively 3D pipeline as a fast alternative to previous ap-
proaches, with competitive results.

In the 3D-only domain, a variety of local descriptors
have been introduced in recent years. Unfortunately, the
best performing features are typically expensive to calcu-
late, or limited to e.g. manifold meshes [20, 8, 22]. Further-
more, automatically obtained 3D is incomplete, containing
noise, holes and clutter. Thus, spin images [18] are still
a popular choice (shown to be robust in the presence of
noise [36]), combined with several low-level features such
as color, normals, histograms etc. [15, 29, 42, 33, 34, 43].
We follow this vein of research, carrying out facade labeling
completely in 3D: from using simple 3D features, point-
based classification with Random Forests, and with a 3D
Conditional Random Field smoothing. This results in com-
petitive results with significant speed benefits.

2.2. Facade parsing

For street scenes, classical image segmentation tech-
niques [40] have been extended with architectural scene
segmentation using color and contour features [3]. Addi-
tional sources of information such as a height prior [53, 54,
9] or object detectors [35, 27] are typically introduced on
top of local features. However, classification is performed
mainly on 2D images, whereas 3D is introduced only at a
procedural level [46, 41, 30].

To capture the structure inherent to facades, different ap-
proaches have been proposed. Several utilize shape gram-
mars to learn and exploit the structure in facades.

[1] model facades with stochastic context-free grammars
and rjMCMC sampling. [31] use regular grids to infer a
procedural CGA grammar for repetitive facades. [39] as-
sume multiple interlaced grids and provide a hierarchical
decomposition. A similar assumption of block-wise de-
compositions can be used to parse facades using a binary
split grammar [55]. [45] use a specialized Haussmannian
facade grammar coupled with a random walk optimization.
[44] extend this with a Reinforcement Learning-based op-
timization. [41] additionally use 3D depth information in a
GA optimization framework. [11] propose efficient DP sub-

problems which hard-code the structural constraints. Mov-
ing further away from hard-coded shape grammars, [35] use
irregular lattices to reduce the dimensionality of the pars-
ing problem, modeling symmetries and repetitions. [24]
relaxes the Haussmannian grammar to a graph grammar
where structure and position are optimized separately.

Moving entirely away from strict grammars, [12] use a
facade-specific segmentation together with learning weights
for different meta-features capturing the structure. [48]
model alignment and repetition through spatial relations in a
CRF framework. [27] suggest a three-layered approach in-
troducing 2D weak architectural principles instead of rigid
shape grammar rules.

To impose as few restrictions on the facade structure as
possible, we build upon the latter work by proposing novel
weak 3D architectural principles and an elegant optimiza-
tion formulation based on integer programming. This al-
lows us to handle a larger variety of architectural styles
and to obtain better facade reconstructions with significant
speedups over their 2D counterparts.

2.3. Facade separation

All of the aforementioned works on facade parsing as-
sume individual facades to be separated beforehand. Yet,
this separation is not trivial by far and quite a few automated
pipelines gloss over the issue.

In the full 3D domain, most work focuses on building
extraction, which deals with 2.5D height models and iden-
tifies individual building blocks and their roof types based
on height information [26].

Similar approaches have been adopted for street-level
data, where height is rightfully used as the most discrimi-
native feature [54, 58]. Other methods deal with repetitive
features that reoccur on one facade and not on neighbor-
ing facades [50]. These work well if the assumptions are
correct, i.e. the buildings have different heights and a quite
different appearance of their facades. However, some ar-
chitectural styles aim at similar appearances and heights.
Furthermore, methods working in 2D require the facades to
be completely visible in each image.



As an alternative to these approaches, we propose a se-
mantic facade separation which exploits the usually varying
layout of semantic structures in different facades. In con-
trast to methods for facade structure understanding [28, 49]
which require already split facades, we propose to use the
semantic scene knowledge to create these splits.

3. Our approach

Our goal is to estimate a semantically segmented 3D
scene starting from images of an urban environment as in-
put. As a first step, we obtain a set of semi-dense 3D points
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Figure 2. Qualitative results. Extremely challenging subset of
RueMonge2014, dubbed Sub28 in [34]. Interestingly, the 2D and
3D-based methods (third vs. fourth row) outperform each other
for different parts of the scene, while their combination (fifth row)
has the best performance.
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Figure 3. Parameters of the 3D classifier. Left: performance
(red) and test time (blue) w.r.t. the number of trees and the min-
imum number of observations per leaf. Right: the performance
of each descriptor part individually (and the final descriptor-desc)
using RF classifier.

from standard SfM/MVS algorithms [52, 14, 17].
Next, we classify each point Pi in the point cloud into

one semantic class Li (window, wall, balcony, door, roof,
sky, shop), using a Random Forest classifier trained on
light-weight 3D features (Sec. 3.1). Afterwards, we sepa-
rate individual facades by detecting differences in their se-
mantic structure (Sec. 3.2). Finally, we propose architec-
tural rules that express preferences such as the alignment or
co-occurrence of facade elements. These rules have two ef-
fects: they improve our results and directly return the high-
level 3D facade structure (Sec. 3.3).

3.1. Facade labeling

We create the initial labeling of the 3D scene by employ-
ing a Random Forest (RF) classifier on the following set
of descriptors for each 3D point Pi: mean RGB colors of
the point as seen in the camera images; the LAB values of
that mean RGB [34]; normal (n) at the 3D point; 3D ge-
ometry captured using the spin-image (SI) descriptor [18],
calculated on different scales; the point’s height (h) above
the estimated ground plane; its “inverse height” (h−1), de-
fined as the distance from the uppermost point of the facade
in the direction of the gravity vector; depth (dph) defined
as the distance of the point Pi to the approximate facade
plane. Since we do not have the facade separation available
yet, we estimate h−1 and dph from the subset of 3D points
assigned to their nearest camera. Thus, the full descriptor
per point Pi is:
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Once this 132-dimensional descriptor is known for each
point Pi, we train an RF classifier with a uniform class
prior. All classification parameters, such as scales of the
SI descriptor (0.15, 0.3, 0.45), number of trees (100) and
minimum leaf size (30) in the RF are determined using grid
search on out-of-bag (OOB) error estimates. The effect of
these parameters and the impact of each utilized 3D descrip-
tor on classifier performance are shown in Figure 3.



3.2. Facade splitting

Given the point cloud P = {Pi} and its labeling results
L = {Li} with the best class label Li assigned to each indi-
vidual 3D point Pi, we propose a novel method for separat-
ing individual facades. The underlying issue with previous
work is that typical features such as height or appearance
are too weak, especially in strongly regulated urban scenes,
such as Haussmannian architecture in Paris.

We propose a facade separation method that exploits se-
mantic nuances between facades. Despite the strong simi-
larity of buildings, even in Haussmannian style, each facade
shows individual characteristics such as window heights,
balcony placements and roof lines. This knowledge is only
available after performing semantic classification.

In order to separate facades into individual units, we ver-
tically split the dominant facade plane, by posing a label-
ing problem that assigns sites S = {si} (single connected
components within the classified point cloud P ) to facade
groups G = {gi} is defined as:

E(S) =
∑

Θ(gi, si) + λ ·
∑

Ψ(si, sj) (1)

where Θ(gi, si) determines the cost of assigning a site si
to a facade group gi, equal to its distance in 1D location.
The pairwise term Ψ(si, sj) encourages splits where there is
decreased likelihood of crossing any architectural elements,
such as windows or balconies. It aggregates the class labels
in vertical direction and estimates a ratio between wall class
(where the split should occur) and structural classes (such as
windows, balconies, etc. where no split should be selected).

Each facade group gi is a label which defines a candidate
layout for an individual facade. It is determined by cluster-
ing features F capturing the differences between semantic
elements. These features are statistical measurements de-
fined as

Fi = [δTi , A
T

i , MajorTi , MinorTi , verthist(Ci)] (2)

where for each connected component, δ is the position
along the dominant plane, A is its area, Major, Minor are
the lengths of its axes and verthist is the histogram over
the class labels above and below this connected component.
These features are clustered using Affinity Propagation [13]
and determine the facade groups G.

The final assignment is optimized with a multi-label
graphcut [7, 6, 23], which assigns all original 3D points P
w.r.t. their distance to one of the facade groups G, and the
final labeling determines the number of facades.

For intermediate evaluation, we manually annotate the
splits between individual facades, and evaluate how many
facades were correctly separated. The achieved accuracy in
terms of correct facade-wise classification is 95.5% where
all but 3 facades have at least 97% 3D points assigned cor-
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Figure 4. Exemplar facade split projected into 2D for visualization
(top to bottom): 3D colored points, 3D classification, group pro-
totypes (here windows), unary/pairwise costs and final 1D group
assignment. Note the high similarity in appearance and height.

rectly. A baseline using F=RGB+intensity gives only 78%
overall, failing to split four and oversplitting additional five.

3.3. Weak architectural rules (WR)

In order to generate a more structured final output,
and inspired by the state-of-the-art 2D facade labeling ap-
proach [27] we use generic rules such as alignment, symme-

try, co-occurrence, and vertical region order. In contrast to
shape grammars [44], these rules are more generic, and can
be used for different architectural styles. The main idea of
this approach is that some rules are used to discover the can-
didate objects in the facade, while others score the elements
or modify their position and size.

3.3.1 3D rules (3DWR)

We propose a generalization of the 3D architectural prin-
ciples to 3D with several major differences. Unlike [27],
where initial elements are determined with a simple con-
nected component analysis on a binary 2D image, we dis-
cover them in a robust way directly in the point cloud. Sec-



ond, since our approach works with 3D boxes instead of
bounding rectangles, our approach implicitly models the z-
position (along the facade normal) and depth of each facade
element. Furthermore, we generalize the alignment rule to
synchronize same-class elements in the z-direction. This al-
lows us to naturally model facade configurations with inset
windows or extruding balconies. Finally, we formulate our
3D principles in a novel, elegant optimization framework.

Our goal is to find the optimal set of boxes (B) which
(1) fits well to the initial data labeling (L); (2) has well
aligned boxes; (3) does not contain overlapping elements
of the same class; (4) satisfies element co-occurrence, e.g. a
balcony should not appear if there is no window above it.
We formulate this optimization as follows:

argmin
B∈Bsuper

(

fdata(B, P, L) + falign(B)
)

.

s.t. coverlap(B) = 0

cco-occ(B) = 0

(3)

Generating the initial set of boxes. From our initial
point cloud labeling L, we generate an over-complete set
of boxes Bsuper. Note that in [27], the initial elements are
generated by finding connected components in a labeled 2D
image, followed by fitting of minimal bounding rectangles.
Performing the similar task in 3D raises two main issues.
First, we cannot use the 4- or 8-connected neighborhood
to discover the connected components, as we deal with 3D
points in continuous space. Second, the 2D approach often
generates too large elements, e.g. in presence of significant
noise, when distinct facade elements appear connected in L.

In our approach, for each object class c (window, bal-
cony, door) we create a binary labeling Lc, where Lc

i = 1
if Li = c and 0 otherwise. We extract the initial facade el-
ements from the labeling Lc by creating a K-nearest neigh-
bor graph in 3D (K = 7 in our experiments), and discarding
edges that connect nodes labeled with 1 and 0. We fit a 3D
box to each component, and add it to Bsuper.

However, since the labeling Lc can be quite noisy, we
clean it up with the generalization of the morphological
opening (erosion followed by dilation) operator to 3D. The
erosion operator changes the label of a point to 0 if any of
its K nearest neighbors is labeled with 0, while the dila-
tion performs the opposite process. By varying the number
of subsequent erosions and dilations, we generate multiple
overlapping proposals for each facade element, with differ-
ent degrees of smoothing – all used to augment Bsuper.

Finally, we use the symmetry principle to add elements
which are potentially missing in the scene. We detect the
main vertical symmetry plane of the facade, mirror all ele-
ments and add them to Bsuper.

Best set of boxes. We pose the search problem in Eq. 3
as an integer quadratic program (IQP) with linear con-
straints. Each box Bi ∈ B is assigned an indicator variable

xi ∈ x, which is equal to 1 if the box is selected in the set,
0 otherwise. The IQP is formulated as follows:

min wT
datax+

1

2
xTQalignx

s.t. Coverlapx ≤ 1

Cco-occx ≥ 0

xi ∈ {0, 1}

(4)

For each box Bi with label c, we set the data term
wdata(i) = |L(Bi) = c| − |L(Bi) 6= c|, and then normalize
wdata to sum up to unity.

The alignment term is defined for pairs of boxes Bi and
Bj . We distinguish 6 types of alignment: top and bottom,
left and right, back and front. For each type, two boxes are
aligned if the corresponding edges of the boxes are within
a threshold (equal to half the median size of objects of the
same class, in the appropriate direction).

Qalign(i, j) =

{

−a if Bi and Bj are aligned a times

0 otherwise.

(5)

To make sure that the resulting quadratic program is con-
vex, we make the resulting matrix diagonally dominant, and
therefore positive semi-definite:

Qalign(i, i) =
∑

j,j 6= i

|Qalign(i, j)| (6)

Every row of the overlap constraint matrix Coverlap ensures
that a pair of same-class overlapping boxes (IOU>0) Bi and
Bj cannot be selected at the same time (xi + xj ≤ 1). The
co-occurrence principle prohibits balconies without at least
one window on top:

Cco-occ(i, j) =



















−1 if i = j and Bi is a balcony.

1 if Bi is a balcony and

Bj is an adjacent window.

0 otherwise.

(7)

The optimization in Eq. 4 is solved using the MOSEK
mixed-integer solver via the CVX software package [16].

Locations and sizes of boxes. The optimization of Eq. 3
does not modify the size or location of the selected boxes.
Following [27], we use a modified alignment principle. The
objective function is defined as the sum of Tukey’s bounded
influence functions [57] evaluated on absolute differences
of bounding box edge positions, for all pairs of boxes.
We solve for the box locations and sizes using a Quasi-
Newton optimization approach. In essence, this optimiza-
tion “snaps” the borders of nearly-aligned elements to com-
mon alignment lines. Note that in the 3D case, this process
implicitly results in depth-aligned windows and balconies.



Point cloud labeling Low-res PCL High-res PCL
Method Accuracy Timing Accuracy Timing

3D
RF+MAP 51.42

15min
55.65

76min
RF+3D CRF 52.09 56.39

2D

L1+majority vote 54.68

302min
53.37

305minL1+MAP 55.35 54.06

L1+3D CRF 55.72 54.30

L2+majority vote 56.10

382min
54.74

385minL2+MAP 55.95 54.71

L2+3D CRF 56.32 54.95

3D+2D

[34] 42.32 15min 39.92 23min
RF+L1+MAP 60.16

317min
61.15

381min
RF+L1+3D CRF 60.05 61.21

RF+L2+MAP 60.44
397min

61.31
461min

RF+L2+3D CRF 60.43 61.39

Table 1. Semantic segmentation of point clouds: accuracy for various methods on
the RueMonge2014 dataset. We report the results on the low- and high-resolution
point clouds as PASCAL IOU accuracy in %. The evaluation time includes feature
extraction, classification, and optional 3D projection.
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Figure 5. PCL labeling: accuracy vs. test time for two
different point cloud resolutions generated by CMP. We
also show the performance of our RF method on the
point clouds generated by SfM and PMVS. The number
of vertices per cloud is shown in parentheses.

3.3.2 Ortho + 2D rules (2DWR)

The existing 2D method [27] requires rectified 2D images
and labelings as input to its third layer. Therefore, we create
a “virtual 2D” input for each facade. We start by a least-
square plane fit to the 3D points of the facade. The points
P and their labels L are then projected onto the plane. The
ortho labeling is generated by uniformly sampling points on
this plane, and finding the nearest projected point for each
pixel. The downside of this method is that useful 3D infor-
mation is lost in the process. Furthermore, the processing
time is increased due to the overhead of 2D-3D projections.

4. Evaluation

We consider three tasks pertaining to facade labeling:
point cloud labeling, image labeling, and facade parsing.
In all experiments, to evaluate the semantic segmentation
results, we use the PASCAL-VOC IoU segmentation accu-
racy, averaged per class and shown qualitatively in Figure 8.

Datasets. We perform exhaustive evaluations on the
only publicly available, street-side facade dataset Rue-
Monge20142 introduced by [34]. As we focus on point
cloud labeling, we consider only the vertices from their
mesh, which we name ‘Low-res’, since it was generated
by 2.7x subsampling the original, ‘High-res’ mesh pro-
duced by the CMPMVS algorithm [17] in 270 minutes.
For reconstruction speedup, one could use [4, 5] who
densely reconstruct the scene on a single core in roughly
two seconds/image (14 min), or the commercial version of
the CMPMVS algorithm [10] which reconstructs the same
scene on the GPU in only 4 minutes. For completeness, we
evaluate our 3D classifier on two additional point clouds:

2http://varcity.eu/3dchallenge/

sparse ‘SfM’ (using VisualSFM [51], 13 min) and semi-
dense ‘PMVS’ (using [14], 21 min).

4.1. Point cloud labeling

We compare several approaches for 3D point cloud la-
beling, see Table 1 and Figure 2. First, as the example of
a purely-3D approach, we use our initial Random Forest
classifier (RF+MAP). The result is then smoothed with a 3D
Conditional Random Field (RF+3D CRF). The Potts model-
based pairwise potentials are defined over a 4-nearest neigh-
bor graph of the point cloud.

This result is compared with state-of-the-art 2D facade
labeling. We use the publicly available 3-layered ap-
proach [27], and refer to the first two layers of this method
as L1 (superpixel classification) and L2 (L1+object detec-
tors+pixel CRF). The resulting semantic segmentation of
images is projected and aggregated in the point cloud by
either majority voting from different cameras, or using the
aforementioned 3D CRF.

Finally, we combine the results of 3D and 2D methods
using the CRF, resulting in a higher performance at the cost
of evaluation time. We compare these hybrid methods to
the recent approach that combines 2D and 3D for facade
labeling [34], and observe significant improvement in qual-
ity. It is worth noting that the joint 2D+3D approach gives
the best performance but at a 26x slower speed and with a
modest 8% accuracy gain over the 3D-only approach. The
high-res point cloud increases the performance of the 3D-
only classifier by 4% but at the cost of a 5x slower speed.

4.2. Image parsing

Comparison to 2D methods is additionally performed in
the image domain, by back-projecting our point cloud label-



Image labeling Low-res PCL High-res PCL
Method Accuracy Timing Accuracy Timing

3D
RF+MAP 52.85

21min
57.82

85min
RF+3D CRF 53.22 58.13

2D
L1 54.46 299min 54.46 299min
L2 57.53 379min 57.53 379min

3D+2D

[34] 41.34 15min n/a n/a
RF+L1+MAP 61.58

324min
63.08

390min
RF+L1+3D CRF 61.27 62.87

RF+L2+MAP 61.95
404min

63.32
470min

RF+L2+3D CRF 61.73 63.13

Table 2. Semantic segmentation of street-side images: accuracy for various methods
on the RueMonge2014 dataset. The results are shown for the test set of 202 test
images. The 2D results are obtained by running the first two layers (L1 and L2)
of the 3Layer method [27], and projecting the point cloud classification onto the
original images. The PASCAL IOU accuracy is shown in % over the image domain.
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Figure 6. Image labeling: accuracy vs. test time for two
different PCL resolutions.

Figure 7. Estimated 3D facades. All reconstructed facades in the RueMonge2014 test set. Our method performs automatic separation of
facades and analyzes the 3D structure of facade elements. The final results are obtained by fitting 3D boxes to the discovered objects and
texturing with ortho-images. Please zoom in to view 3D structure, or consult the detailed view in Figure 8.

ing L onto the perspective images, and filling out gaps with
nearest-neighbor interpolation, see Table 2. In the image
domain, a similar behavior is observed, as the 3D-only ap-
proach achieves the highest speed and competitive results
to the 2D-only classification, which is only 4% better but
18x slower. The complementary combination of 2D and 3D
again achieves top performance (63.32%), outperforming
the existing method [34] by over 20%.

4.3. Facade parsing

We compare our 3D version of the weak architectural
rules (3DWR) with its 2D counterpart (2DWR) from [27],
see Table 3. The evaluation is performed in the original
point cloud, by concatenating the individual facade label-
ings (3D) or back-projecting the labeled ortho-images (2D).

We test three different classifiers as input to this stage,
based on features from 3D, 2D and 2D+3D. Our 3DWR ap-
proach outperforms its 2D counterpart in all cases except
when using the 2D-only input. However, the most obvi-
ous improvement is the speed of our IQP optimization com-
pared to the approach in [27].

Overall, top performance is achieved by a combination
of 2D and 3D features and pure 3D weak architectural prin-

ciples in 325 minutes (317 for initial labeling + 8 for weak
rules). The fastest, yet still competitive performance uses
only 3D features and 3D weak principles, which requires
roughly 20 minutes from start (point cloud) to end (textured
3D models) for the full street.

A visual comparison of the stages is shown in Figure 8,
including the original color point cloud, initial classifica-
tion, the result of 3D weak architectural rules using the best
classifier, and final geometry-correct textured models. For
an overview of all facades reconstructed in 3D, see Figure 7.

5. Conclusion

In this work we proposed a new approach for 3D city
modelling using 3D semantic classification, 3D facade split-
ting, and 3D weak architectural principles. Our method pro-
duces state-of-the-art results in terms of both accuracy and
computation time. The results indicate that 3D-only classi-
fication is feasible and leads to tremendous speedups.

In future work, we plan to provide feedback to the origi-
nal SfM point cloud creation to also tie in that process.



Facade parsing Low-res PCL High-res PCL
Method Input classification Accuracy Timing Accuracy Timing

2DWR [27]
3D: RF+3D CRF 49.59

802min
49.54

885min2D: L1+3D CRF 54.04 53.29

3D+2D: RF+L1+3D CRF 58.81 58.40

3DWR (Ours)
3D: RF+3D CRF 52.24

8min
56.35

10min2D: L1+3D CRF 55.39 53.56

3D+2D: RF+L1+3D CRF 60.83 59.89

Table 3. Semantic segmentation of street-side point clouds using weak architectural rules (WR) on the RueMonge2014 dataset. We compare
the original 2D version applied on virtual ortho-images, and our proposed 3D method, for the three representative classifiers from Table 1.
The PASCAL IOU accuracy is shown in %. The test time does not include the time needed for the initial point cloud classification.
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Figure 8. Qualitative results. We show examples of automatically obtained facades using our method. From top to bottom: initial colored
point cloud (Low-res), initial classification, estimated boxes using weak 3D rules; and –as we suggested that 3D semantic interpretation
can be used to estimate 3D shape– automatically generated 3D models of the facades textured by projecting ortho images.
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