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3D Cable-Based Cartesian Metrology System

Robert L. Williams |
Ohio University, Athens, Ohio

James S. Albus and Roger V. Bostelman
NIST, Gaithersburg, MD

ABSTRACT

A novd cable-based metrology system is presented wherein six cables are connected in paralle from ground-
mounted string pots to the moving object or tool of interest. Cartesian pose can be determined for feedback control and
other purposes by reading the lengths of the six cables via the string pots and using closed-form forward pose
kinematics. This article focuses on a sculpting metrology tool, assisting a human artist in generating a piece from a
computer model, but applications exist in manufacturing, rapid prototyping, robotics, and automated construction. We
present experimental data to demonstrate the operation of our system, we study the absolute accuracy and also
measurement resolution, and we discuss various error sources. The proposed real-time cable-based metrology systemis

less complex and more economical than existing commercial Cartesian metrology technologies.

1. INTRODUCTION

Many applications in robotics, construction, and manufacturing require effective real-time measurement of
Cartesian pose of end-effectors, tools, and materials. Current technologies in use for pose metrology include machine
vision, photogrammetry, theodolites, laser interferometry, magnetic tracking, stereo optical image registration, and
acoustic methods; many of the technologies are complex and expensive. The current article presents a novel system for
Cartesian pose measurement using six cables (whose lengths are sensed via passive string pots with torsional-spring
tensioning) connected to the end-effector. The proposed system is reatively simple and economical.

This idea is related to cable-suspended robots; the literature in this area is growing, starting with the NIST
(National Institute of Standards and Technology) RoboCrane' and the McDonnel-Douglas Charlotte’.  The
kinematics, dynamics, control, and applications of cable-suspended robots are topics of current interest®*°,

NIST was also the innovator behind passive cable-based metrology. The Robot Calibrator® used three cables
meseting at a single point, measured by three string encoders, and was used to calibrate a PUMA robot, position only. A
similar idea was implemented’ for partial-pose (position) calibration of an industrial robot, with experimental results.

Jeong, et al.®, have also implemented a similar cable-based industrial robot pose-measuring system. Their six-cable

paralld wire mechanism is based on a (non-inverted) Stewart Platform. No analytical solution to the forward pose
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kinematics problem exists; instead they use a numerical approach. SpaceAge Controls, Inc. has used spring-loaded
cable/potentiometer  position transducers for aircraft applications (such as aileron control) for thirty years

(www.spaceagecontrol.com ).

Another unique NIST application of cablebased metrology has been in conjunction with

mathematician/sculptor Helaman Ferguson® (www.helasculpt.com’). To provide an innovative tool for assisting a

human artist in generating a scul pture from a 3D complex mathematical surface in a computer model, three cable-based
metrology systems have been developed. The purpose of theseis to provide Cartesian pose feedback for replicating the
computer moded in real-world materials. The String-Pot 1 System again only provides 3D position feedback to the
human, using three cables and string pots meeting in a single point. The String-Pot 2 System allows for full 6-degree-
of-freedom (6-dof) pose (position and orientation) feedback to the human. It is basically a passive RoboCrane, an
inverted Stewart platform with six cables and string pots. The sculpting tool is connected to the moving platform of the
passive RoboCrane and the human sculptor stands within this moving platform. These systems are documented in
Bosteman™ and Ferguson™.

The third cable-based metrology sculpting tool, developed at NIST, is the subject of this article. Like the
String-Pot 2 System, the current concept provides 6-dof pose measurement; however, the design has been changed from
the symmetric RoboCrane-like structure to improve pose measurement and human interaction. The next section
presents the system description for this Six-Cable Hand-Directed Sculpting System. The forward pose kinematics
problem is important for calculating poses given the six sensed cable lengths; an analytical solution to the forward pose
kinematics problem for the NIST system is presented. This article also presents various kinematics issues including
sculpting displacements for display to the human, Cartesian measurement uncertainty, calibration of fixed cable points,
and workspace. We then present experimental data to demonstrate the effectiveness of our system; we then consider
accuracy and error sources. Sculpting metrology is an interesting application; however, various potential applications
exist for this NIST cable-based metrology technology, including manufacturing, rapid prototyping, robotics, and
automated construction. This type of metrology system is adaptable to large-scale problems.

2. SYSTEM DESCRIPTION

Figure 1 shows the arrangement of the six-cable hand-directed sculpting system. The systemis large: it stands
amost 4.3 m (14 ft.) high and is supported by three 55-gallon drums on an equilateral triangle of side 3.0 m (10 ft.).
The size and height of the sculpting tool is exaggerated in Figure 1 for clarity. Figure 2 shows a photograph of the
supporting frame.

In Figure 1, the (irregular) tetrahedral base frame has vertices A, B, C, and D; the vertices of the moving, hand-
directed tool are P;, P,, and P;, and the cutting tip T is located at the origin of moving frame{T}. Theworld coordinate

frameis{0}; the origin of this frameis on the floor and directly under point C along the Z axis.

* The identification of any commercial product or trade name does not imply endorsement or recommendation by Ohio University or NIST.



The lengths of the six cablesare L;, i =1,2,---,6. Fixed points C,, C,, Cs, A4, As, and Bs are the cable contact
points on the ground-mounted string pots, located near points C, A, and B, respectively. Cable 1 connects C; to Py,
cable 2 connects C, to P,, cable 3 connects Cs to P, cable 4 connects A, to Ps, cable 5 connects As to P,, and cable 6
connects Bg to P,. The sides of therigid moving platform triangle are s, s, and Ss.

Figure 1. Six-Cable Metrology System Diagram Figure 2. Six-Cable Metrology System Photograph

Figure 3 shows a photograph of the aluminum cross with eyebolts, representing the sculptor’s chainsaw in the
NIST hardware. Moving cable connection points P;, P,, and P; are shown, with one, three, and two cables connecting,
respectively. The tip of the cross is the origin of the tool-tip frame {T}. We assume that points P;, P,, and P; are
known in the { T} frame and then points C,, C,, Cs, A4, As, and Bs are known in the {0} frame.

Figure 4 shows one of the six string pots, which are 10-turn potentiometers for measuring the length of each
cable. These string pots allow a length change of 2.54 m (100 inches) and are linear over their operating range. A

torsional spring maintains tension (about 2 N) on the cable at all times.

Figure 3. Chainsaw Proxy Figure 4. String Pot



3. FORWARD POSE KINEMATICS

Forward pose kinematics is required for Cartesian metrology over time. Given the six cable lengths read from
the string pots, we calculate the Cartesian pose (three translations and three rotations) in this section. First, we derive a
closed-form solution. Due to the fact that the fixed cable points vary slightly as the cables rotate at different angles
over ther respective string pot pulleys (see Figure 4), this solution has some error; this is then corrected by an iterative

solution, using the basic closed-form solution at each step.

3.1 Nominal Closed-Form Solution

The forward pose kinematics problem is stated: Given the six cable lengths L;, i =1,2,---,6, calculate the
Cartesian pose of the chainsaw tip frame, expressed by homogeneous transformation matrix l?TJ or the six Cartesian

pose numbers {OXT} ={x y z a B )} (weuseZYX aByEuler angles?). This pose can then be interpreted

and used for the sculpting or other Cartesian task at hand. Unlike many paralle robot forward pose kinematics
problems, there exists a closed-form solution, and the computation requirements are not demanding. There are multiple
solutions, but the correct solution can generally be determined.

The system in Figure 1 can be viewed as a (non-symmetric) 3-2-1 Stewart Platform, whose forward pose
kinematics problem has been presented™®***°,
The forward pose kinematics solution consists of finding the intersection point of three given spheres; this must

be done three times in the following sequence. Let us refer to a sphere as a vector center point ¢ and scalar radiusr:
(c.r). Moving points P; are found first, represented by vectors expressed in {0} : ° P,i=123.

1. P;istheintersection of: (°Az Ls), (°Bg,Le), and (°C,,Ly).

2. P;istheintersection of: (°A, L), (Pysy), and (°C, L.

3. P, istheintersection of: (P2,5s), (P5,52), and (°Cy ,Ly).

Where s;, s, and s; are the known fixed lengths of the moving platform: s; =[PP, s, =|PsRy, and
s; =|RP,| (seeFigure1).

The closed-form intersection of three given spheres algorithm is given below, but let us first finish the forward
pose kinematics solution, assuming 0 P, are now known. Given 0 P:, we can calculate the orthonormal rotation matrix
[? R] = [lélj R] directly (we assume that frames { Py}, { P2}, { Ps} (coordinate frames placed at points P;), and { T} frames

have identical orientation), using the definition™ that each column of this matrix expresses one of the XYZ unit vectors
of {T} (or {P;}) with respect to {0} :



[0r]=| %, o, °z W

The columns for (1) are calculated using (2), referring to Figure 1.

~ 0P3_0P1 ~ 0P4_0P2

0 0 05 _0yg OV
Xp = Yp = Zp="Xpx"Yp )
! 0P3_0P1 1 0P4_0P2 i i i
where P4 (not shown in Figure 1) is the midpoint of P,Ps:
°P,="P, 4{322)0)2!3. ©)

There are two solutions to the intersection point of three given spheres (see the following subsection); therefore,
the forward pose kinematics problem yields a total of 2° = 8 mathematical solutions since we must repeat the algorithm
three times. Generally only one of these is the valid solution for the hand-directed sculpting tool. Also, as seen in the

spheres intersection algorithm below, solution singularities exist. Theseissues will be dealt with later.

3.1.1 Three Spheres Intersection Algorithm. We now derive the equations and solution for the
intersection point of three given spheres. This solution is required (three separate times) by the forward pose kinematics

solution above. Let us assume that the three given spheres are (¢ ,r1), (C,,r2), and (cg,rs). That is, center vectors

a={x v z".c={x vy, z}',c3={xs ys; z3',andradiry, rp, and rs are known (The three sphere
center vectors must be expressed in the same frame, {0} in this article; the answer will be in the same coordinate

frame). The equations of the three spheres are:

(x=x%)* +(y=y)?

(x=% ) +(y-y,)*
(x=x)* +(y-ys)

(4)
2

Equations (4) are three coupled nonlinear equations in the three unknowns x, y, and z. The solution
will yield the intersection point P ={x y z}T . The solution approach is to expand equations (4) and combine them
in ways so that we obtain x = f(y) and z= f(y); we then substitute these functions into one of the original sphere

equations and abtain one quadratic equation in y only. This can be readily solved, yielding two y solutions. Then we
again use x = f(y) and z= f(y) to determine the remaining unknowns x and z, one for each y solution. Let us now
derive this solution.

First, expand equations (4) by squaring all left side terms. Then subtract the third from the first and

the third from the second equations, yielding (notice this diminates the squares of the unknowns):
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A X+a,y+tazz=h (5)

Ay X+ayYy+ayz=bh, (6)
where:
1 =2 X3 — X ay; =2 X3 — X
11 (3 1) 21 (3 2) b=t —t2=x2-yE-Z2 +x2 +y2+ 72
a12:2(y3—y1) a22:2(y3—y2) b =12 12 oy o \2 - 22 432 4 V2 4 72
a3 = 2(23 - ) 853 =223~ 2,) 2= T TR T TE TR TR
Solvefor zin (5) and (6):
Z:&—ﬂx—%y Z:b_z—ﬂx—%y (7,8)
&3 A3 A3 3 3 Ay
Subtract (7) from (8) to diminate z and obtain x = f (y):
x=t(y)=a,y+as )
a a
where: ay=-——2 =-=
4 a a5 a,
alzﬂ—% azzﬁ—% a3:&—i
Q3 8y &3 Qg A3 A3
Substitute (9) into (8) to diminate x and obtain z = f(y):
z=f(y)=agy+ay (10)
where: ag = — Ap18y ~ap a, = b, —ayas
a3 a3

Now substitute (9) and (10) into the first equation in (4) to eiminate x and z and obtain a single quadratic in'y only:
ay? +by+c=0 (11)
a=aj+1+a?
where b=2a,(as — % )-2y; +2a5(a; - z)
c=as(as —2x)+ay(a; 2z )+ x +y7 + 2 -1

There are two solutions for y:

_ -b++/b? -4ac

2a

Vs (12)

To complete the intersection of three spheres solution, substitute both y values y. and y. from (12) into (9) and (10):
Xy =84Ys t35 (13)
Z, =3gYs T3 (14)

In general there are two solutions, one corresponding to the positive and the second to the negative in (12).

Obviously, the + and — solutions cannot be switched:

T

X v z} ooy 2)t (15)



Let us now present a simple example to demonstrate the solutions in the intersection of three spheres algorithm.

Given three spheres (c,r):
o 0o d7.v2}(s 0 ¢7T.VE}f1 -3 173 (16)
Theintersection of three spheres algorithm yields the following two valid solutions:
x v z}TH1 0 )T { y. 2} {1 -06 -0 (17)

These two solutions may be verified by a 3D sketch. This completes the intersection of three spheres
algorithm. In the next subsections we finish the overall forward pose kinematics solution discussion by presenting

several important topics: imaginary solutions, singularities, and multiple solutions.

3.1.2 Imaginary Solutions. The three spheres intersection algorithm can yied imaginary solutions. This
occurs when the radicand b? —4ac in (12) is less than zero; this yields imaginary solutions for Y. , which physically

means not all three spheres intersect. If this occurs in the hardware, there is either a cable length sensing error or a

maodeling error, since the hardware assembles properly.

A special case occurs when the radicand b? —4ac in (12) is equal to zero. In this case, both solutions have
degenerated to a single solution, i.e. two spheres meet tangentially in a single point, and the third sphere also passes
through this point. This can happen in the hardware, for instance when point P, lies on plane ABC (see Figure 1), plus

ather cables L,Ls, LsLg, or LgL, are collinear.

3.1.3 Singularities. The three spheres intersection algorithm and hence the overall forward pose kinematics
solution is subject to singularities. These are all algorithmic singularities, i.e. division by zero in the mathematics, but
no problem exists in the hardware (no loss or gain in degrees of freedom). This subsection derives and analyzes the
algorithmic singularities for the three spheres intersection algorithm presented above. Different possible three spheres
intersection algorithms exist, by combining different equations starting with (4) and eiminating and solving for different
variablesfirst. Each has a different set of algorithmic singularities. We only analyze the algorithm presented above.

Inspecting the algorithm, represented in equations (4) — (15), we see there are four cases in which the algorithm
experiences mathematical difficulty (we already discussed the imaginary solutions cases above and do not include them

here); all involve division by zero:

Sinqularity Conditions:

a13 = 0, a23 =0 (18)
a;=0a=0

Thefirst two singularity conditions:



&3 = 2(23 - Zl)
)

=0
a23=2(z3—z )=0

(19)

are satisfied when the centers of spheres 1 and 3 or spheres 2 and 3 have the same z coordinate, i.e. z =z; or z, = z3.

These can occur for the Hand-Directed Sculpting Tool. However, judicious choice of which are numbered spheres 1, 2,

and 3 can completely avoid this algorithmic singularity; recall the chosen sphere intersection sequence for overall

forward pose kinematics is given early in Section 3.1. The fixed sphere centers 0A5 and 0B6 always have the same z

coordinate; therefore in the first step they must appear as spheres 1 and 2. In the second step, sphere centers °A 4 and

P, can have the same z coordinate and hence appear as spheres 1 and 2. In the third and final step, moving sphere

centers P, and P; can have the same z coordinate (this case is the nominal horizontal orientation) and hence appear as

spheres 1 and 2. In all cases fixed sphere center 0Ci , 1=1,2,3, appears as the third sphere because its z coordinate

will never be the same as any of the other fixed and moving sphere centers, for a normal human standing on the ground.
Therefore, the algorithmic singularity conditions 1 and 2 pose no problem in the hardware.
Thethird singularity condition,

a = %21 (20)
&3 A3
Simplifiesto:
X37X _X37X
L3=4 L34

(21)

For this condition to be satisfied, the centers of spheres 1, 2, and 3 must be collinear in the XZ plane. For the

first use of the three spheres algorithm, fixed centers °A;, °Bg, and °C,, are never collinear. For the second use of

the three spheres algorithm, it is theoretically possible for the sphere centers °A4, P,, and 0C3 to lie along the same

line in the XZ plane. However, in reality, we will define the useful workspace to be bounded by the tetrahedral frame;

thus, this type of algorithmic singularity will occur only near the workspace edge AC in the hardware. For the third use

of the three spheres algorithm, it is again possible for the sphere centers P, P;, and 0C1 to liealong the samelinein the

XZ plane. In this case line P,P; must also pass through 0Cl, which means line P,Ps is collinear with the third cable.
This case is far from nominal orientation (a = =y =0). Also, we define the boundary of the useful orientation

workspace to be when a cable lies along one of the sides of the chainsaw. Hence, singularity condition 3 lies along the
edge of the useful workspace and thus presents no problem in the hardware if the user is properly instructed regarding
workspace limitations. A singularity-approaching algorithm can be developed to warn the user in these cases.

The fourth singularity condition,
a=aj+1+aZ =0 (22)
Is satisfied when:
a2 +al=-1 (23)
9



It is impossible to satisfy this condition as long as a, and as (from (9) and (10)) are real numbers (this is the
casein the hardware). Thus, the fourth singularity condition is never a problem in the sculpting tool hardware.

To summarize, this subsection analyzes the algorithmic singularity conditions for the three spheres intersection
algorithm as applied to forward pose kinematics of the Hand-Directed Sculpting Tool. Four singularity conditions were
found and none present problems for the forward pose solution. Only one subcase of the four was found to be a
potential problem, but it lies on the boundary of the useful workspace. To reach this conclusion, it was also important

to order the spheres passed into the algorithm properly.

3.1.4 Multiple Solutions. In genera the three spheres intersection algorithm yields two distinct, correct
solutions (+ in (12-14)). Since this algorithm is used three times in the overall forward pose kinematics solution, 2° =
8 valid mathematical solutions exist. Generally only one of these is the valid solution for the hand-directed sculpting
tool pose. Through exhaustive simulation of the forward pose kinematics solution throughout the useful workspace, it
was found that generally the positive y solution should be used in the three spheres intersection algorithm. However, an
undesired result was sometimes found, illustrated in Figure 5.

Tbad
Tgood
Ps

Pl

Plgood

P,

Zo
Figure>5. Mﬁltiple Solution Trouble Figure 6. String Pot Pulley with Cable Angle

In Figure 5, the left part is the actual pose, while the right part is the erroneous pose. As seen in the figure, the

solutions for P, and P; were as desired, but then point P; was flipped over as shown; this is impossible in the hardware

as cables would be twisted unless they were disconnected and reattached in the undesired pose. To handle this type of

problem in the forward pose kinematics solution, we write three inequalities, with respect to {0}, which must be
satisfied for general operation of the tool:

Pix <Py Py <Py Py <Py (24)

If the first inequality in x is not satisfied, we must use the negative y solution in the three spheres intersection
algorithm when determining point P, (the third step).

10



However, for the second and third y inequalities in (24), the positive and negative y solutions yied identical
results and hence cannot be used to distinguish the correct solution to use. Generally the positive y solution should be
used in the three spheres intersection algorithm when determining points P, and P; (the first and second steps).

A second type of multiple solution case exists within the workspace, potentially more problematic than the
easily-detected case given above. When the chainsaw is oriented so that P, and Ps is in the workspace near AB, at many
Z planes, it was observed that a second valid solution exists, with orientation much closer to the expected solution than
the previous case of Figure 5. In this case, the expected solution can be found by using the positive y solution in the
three spheres intersection algorithm when determining point P;, but using the negative y solution in the three spheres
intersection algorithm for both P, and Ps. The trick is in detecting when this occurs because both orientations are
similar, unlike the flipped multiple solution case. This situation only occurs near the tetrahedral frame, which is to be

avoided according to our singularity analysis.

3.2 lterative Forward Pose Kinematics Solution
The preceding closed-form forward pose kinematics solution assumes that the ground-mounted fixed cable
points C;, C,, Cs, A4, As, and Bg are constant. However, as seen in Figure 6, these points change with cable angle

(shown for cable 6 in Figure 6: contact point B moves to B'g due to cable/pulley angle &). The closed-form solution

assumed that all cables extend horizontally for A,, As, Bs and vertically for Cy, C,, C3. That is, for instance, the point of

contact was assumed to be the nominal Bg rather than the actual B'g in Figure 6. Ignoring this issue leads to Cartesian

position error norms of over 50 mm and Cartesian orientation error norms of over 2° in the worst cases (large cable
angles). Therefore, this section discusses an iterative solution to reduce this error (see™® for more details). Each step of
the iterative solution employs the closed-form solution from above.

The nominal horizontal and vertical cable cases are rare in actual operation; usually there is some cable angle
as pictured in Figure 6. Note that the cable angle is always identical to the pulley angle. For a positive angle (shown as
G5 positive is about X, into the page), the nominal point Bs has moved to actual contact point B'g and the sensed cable
length for the sixth cable is too short by rég (the cable length error is —r8g), where 65 is the cable/pulley angle (r =
11.11 mm (7/16”) for the contact pulley for all string pots). The cables are calibrated so that zero length is defined as
when the cabletip is at point Bs in Figure 6. Relative to nominal point Bg, the new fixed cable point can be calculated
using (25):

Bex
°B's={ Bg, —rsing; (25)
Bg, — 1 (1— cosHG)
The same statements can be made for negative cable/pulley angles as well: for negative cable angles, going

down in Figure 6, the new fixed point 0B'6 can still be calculated using (25) with — 6, and this time the sensed cable
11



length for the sixth cable is too long by rég. Similar formulas apply to points A4, As, C;, Cy, and Cs, but different

transformations are required for {0} coordinates.

We assume that only the type of angle shown in Figure 6 is significant (up-and-down); the secondary angle
(side-to-side) is generally smaller and will beignored in this analysis. However, to calculate the up-and-down angle, we
use the change in Z divided by the combined change in XY (below). So weignore the side-to-side angle, but this motion

affects the primary up-and-down angle. First, let us present formulas for calculating the six cable angles (6 is shown
in Figure 6 and required to calculate 0B'6 in (25); the remaining five angles are similarly defined and required). From

geometry of each cable between the fixed and moving cable connection points:

6 = tan_l(A%‘J i =456 (26)
i

A7y =Py = Ay, A4 = \/(P3X ~ Ag)’ + (P3y - A4y)2
where: Az5 =Py, — A, Axys = \/(PZX - A:')x)2 + (P2y - Asy )2

Az, =P,, - B
%= For ™ Bz Axyg = \/(sz ~Bex)* + (sz - Bﬁy)2
g = tan‘l(ﬂj i=123 @7)
Az
where Az =C,-P, Axy, = \/(Rx —Cy ) + (Ply _Ciy)z

Note the signs of the angles will be determined automatically in (26), even using the plain atan function; these

will be correctly determined by the sign of Az, . However, in (27), weforced Az to be always positive; further, we use
only the positive square root in Axy; , so we must determine the sign of the angles for i=12,3 by logic. Looking down

the X, axis from the right of the machine, angles 4 are positive when the tool tip places moving chainsaw point P;

forward of the vertical from fixed cable points C;. The sign conditions are:

6 ispositiveif Ry -Cy >0
6 iszeoif Ry -Ciy=0 =123 (28)
6 isnegativeif Ry -Ciy <0

All position vector components above are expressed in {0} coordinates. Note there is some error in these
formulas since we use the nominal fixed points to calculate all angles: we do not yet know the shifted fixed cable points.

In the kinematics iterative solution to follow, we can update the angles based on the shifted cable points to reduce this

error. Given the six cable angles, we can now present the formulas for the shifted fixed cable points (° B's wasgivenin

12



(25)). The shifted fixed cable points for C; are similar to ° B's, but the nominal cable location is vertical and the points
shift differently with respect to { 0} :
Cix
°ci={Cy +r(l-cos8) i=123 (29)
Cy,-rsné

The shifted fixed cable points for A; are identical to 0B'6 in (25), but these are expressed in different

coordinates, rotated by 120° about the Z, axis with respect to {0}, and with origins located on the nominal fixed cable
points A;. Thus, these formulas must be transformed to { 0} coordinates first as follows:
AA,
AAL =2 AA -rsing (30)
A Az~ r(l_ cosé, )

CA=ATAAY (31)
A A 0 cos120° -sin120° 0 °A,
X i 5 . 0
where: AA =184, t=10 o7 =| SiN120"  cos120° 0 A,
i y A 0 0 1 OA
e L0 0 o o0 1

Since this cable/pulley angle error can be quite significant, we now develop an iterative forward pose
kinematics solution incorporating the cable/pulley angles and shifted fixed cable points of (25-31). This solution must
be iterative because, given the six sensed cable lengths, we first use the nominal fixed cable points to calculate the
nominal Cartesian chainsaw pose (as in Section 3.1). But then we calculate the estimate for the six cable angles, which
shifts the fixed cable points and modifies the cable lengths;, we iterate until the Cartesian pose stops changing
(according to a user-defined solution tolerance). This iterative forward pose kinematics solution is summarized below:

Given L «nsed, the six cable lengths read from the string pots.

Calculate the closed-form forward pose kinematics solution as in Section 3.1.

Calculate the six cable/pulley angles and update the shifted fixed cable points (using (25-31)).
Modify the six cable lengths L ¢neeq by —+ 8 0N each cablei.

Repeat steps 2-4 until the changein Cartesian pose from the last step is sufficiently small.

g wdhE

Note it is important to always use the nominal fixed cable points in the shifted points formulas and to use the
nominal Leney @ each step when calculating new cable lengths; otherwise the solution will run away. Upon

implementation of this algorithm, it was discovered that only 3 to 5 iterations were required to reduce the translational

and rotational error normsto 0.02 mmand 0.01°, respectively.

13



An alternate method to solve this problem is through mechanical design: each string pot can be fitted with a
small plate with a small hole to guide each cable (in the nominal horizontal or vertical position) so that the ground-
mounted fixed cable points never change. This would have the additional benefit of keeping all cables on ther string
pot pulleys at all times (it is not uncommon for one or more cables to slip off during normal motions) and reducing
computation (no iteration required). However, the disadvantages of this mechanical solution are increased cable friction

and wear and sharper cable angles.

4. RELATED KINEMATICS ISSUES
This section presents required kinematics issues for implementation and use of the six-cable sculpting
metrology tool: Cartesian displacements for display to the operator, Cartesian measurement uncertainty given

uncertainty in cable length measurements, calibration of the fixed cable points, and system workspaces.

4.1 Displacements for Display

This section presents equations for displaying displacement errors to the human sculptor from the hand-directed
sculpting tool. Presented is the difference (error) between the target pose for the chainsaw and the current pose of the
chainsaw. That is, assume a target pose (or a trgjectory of target poses) is given for the sculpting tool. Let the target
pose be represented by coordinate frame { TARG} and let the current chainsaw pose be represented by {T}. The
sculptor’s goal isto drive{T} towards{ TARG} at al times, to execute the desired piece from a computer modd.

The pose displacement errors between the target and current poses are derived for display to the operator as

follows. It is easy for translations, and less straight-forward for rotations. For trandlation errors, the position error

vector P is found by vector subtraction:

0 0
Xg XTARG ~ XT
Op_ = _Jo ) 32
E=VYeEr~=Y Yrarc ™ YT (32)
0 0
Zg Zrprg T 4T

The result 0PE gives the XYZ displacements to translate the tool tip along, in the world coordinates, to drive

{T} towards{ TARG} .

Unfortunately, no description of orientation is a vector description. That is, we cannot simply subtract the
target and current Euler angles (or fixed angles), analogously to the translation difference (32). Instead, we can usethe
rotation matrix form to determine a difference (error) rotation matrix, and extract the error Z-Y-X (a—£-)) Euler angles

(identical to the error X-Y-Z (y—5-0 fixed angles”) from the difference rotation matrix. The difference rotation matrix

is lTARcT; RJ, expressing the orientation of { TARG} with respect to the current pose{ T} :
lTARcTa RJ = lB RJ[TARC(E) RJ = l? R_lllTARC(E) RJ = l? RT J[TARC(E) RJ (33)
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In (33) we take advantage of the beautiful property that R =R" for orthonormal rotation matrices2. Now
we extract the error Euler angles (or fixed angles) from lTARcT; RJ and display these to the operator. The result
ag, B, ye gives the Z-Y-X Euler rotational displacements to rotate the tool orientation about, with respect to world

coordinates, to drive { T} towards { TARG}. Note due to the definition of Euler angles, we must reverse the rotation
order and do the yabout X; rotation first, followed by S rotation about Yr and then a rotation about Zr. We cannot do
the rotations in any order as we can do for translations. In the case of fixed angles, we would first do the a rotation
about Z,, followed by £ rotation about Yo and then yabout Xo, again reverse the original definition, to drive{ T} toward
{TARG}.

The Cartesian displacement error formulas developed in this section should be displayed to the operator so that
the human can drive all tool-tip errors to zero for all sculpted poses. This subsection derived the formulas with respect
to the world frame; in practice, a relative mode will be used as often as the world mode. That is, the chainsaw frame
{T} will be touched to the sculpture material in three or more reference poses (called poses {m}, i =1,2,3,---); thiswill
align the real world with the same reference poses in the computer model. Sculpting motions will then be made relative
to one or more of these reference poses, rather than the world frame. Similar error formulas apply: simply replace

index O with the desired reference pose m in (32) and (33).

4.2 Cartesian Uncertainty

This section presents simulated Cartesian pose measurement uncertainty errors AX given a d uncertainty in
cable length measurements from the string pots. This section establishes a basdline regarding the sculpting tool
resolution for aiding a sculptor in generating a carving. This resolution varies with the nominal Cartesian pose.

We apply aforward pose kinematics method for determining Cartesian uncertainty, applied to a grid of nominal
poses (vertices of cubes of 0.5 m side, centered about the origin of {0}, for Z planes 0.25, 0.75, 1.25, and 1.75 m, for

‘al orientations’, see below). About each nominal pose Xnom (We first use inverse pose kinematics to determine the

nominal set of cable lengths L ,m), We form all possible permutations Lnom i%, i=12,...,6. For each of these

2°=64 permutations, we use forward pose kinematics to calculate X, the uncertain Cartesian pose in each case. For
each case we calculate the Cartesian error:
AX =X et = Xnom (34)

err

where AX ={x & & da JB I} isthe vector of Cartesian pose measurement uncertainty errors. For all 64
permutations, we average all Cartesian error components separately; note we must use absolute value for all error
components or the resulting average Cartesian uncertainty would always be zero. Then we calculate the translational

and rotational norms of the average Cartesian errors:

”e]' ” = \/d(gvg + @gvg + &gvg ”eR” = \/5a§vg + a-:Befvg + 5V§Vg (35)
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The error norms |ler|| and ||eg|| represent the Cartesian pose measurement uncertainty errors. These measures
are the length of the 3D diagonals of rectangular parallelopipeds bounded by Oxyg,Wavg:Hayy and
00 avg , PBavg » Wavg » the distance between the uncertain average and nominal Cartesian poses. We wish these metrics to

be as small as possible given a specific d, for a high-resolution machine,

As mentioned above, we consider ‘all possible orientations': at each tool tip grid point, let us consider all Euler
angles g =+45°, B=+45", y=+45" in al possible permutations with an angle step size of 15°. We have 7°=343
possible orientations at each tool tip point. For each point, among the 343 orientations, we will report the average

values over all orientations of the average |ler| and |eg|| over all forward pose kinematics permutations. Now, many

of these orientation combinations are outside the workspace, due to cable length limits; we skipped these conditions in
the data presented bel ow.

The grid described above is given in XY coordinates in Table I. The average Cartesian pose measurement
uncertainty error data for the grid of tool-tip points and ‘all possible orientations’ are presented in Tables 11-V, in the
same arrangement as Table | for each Z plane. From laboratory observations the cable measurement uncertainty
resolution is d = 0.05 mm. Note the equilateral triangle ABD in Figure 1 has sides of length 3.048 m (120 inches).
The units of translational error norms are mm and degrees for rotational error normsin Tables 11-V.

Tablel. Grid of X,Y Tool-Tip Points (m) for each Z Plane

-0.5,0.5 0,05 05,0.5
-0.5,0 0,0 05,0
-0.5,-0.5 0,-0.5 05,-05

With d = 0.05 mm, an important value for the trandational error normiis |ler| =+/3(0.05)* =0.0866 mm; at
this value, the Cartesian error is equivalent to d on each of &, dy, oz (of course the components can shift up and down

to till yield 0.0866 mm). A smaller error means the machine reduces the effect of d and a larger error means the

effects of d are amplified at the given pose. The units of |eg|| have been converted to degrees for the results tables

below.

Tablell. (Z=0.25 m) Trandational Errors (mm) Rotational Errors(°)
0.07 0.07 0.08 0.01 0.01 0.01
0.07 0.12 0.20 0.01 0.01 0.01
0.08 0.20 0.57 0.01 0.01 0.03

Tablelll. (Z=0.75 m) Trandational Errors (mm) Rotational Errors(°)
0.07 0.07 0.08 0.01 0.01 0.01
0.08 0.16 0.33 0.01 0.01 0.02
0.08 0.38 0.42 0.01 0.02 0.02
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TablelV. (Z=1.25m) Trandlational Errors (mm)

Rotational Errors(°)

0.07 0.07 0.11 0.01 0.01 0.01

0.08 0.21 0.39 0.01 0.01 0.03

0.11 0.41 0.45 0.01 0.03 0.03
TableV. (Z=1.75m) Tranglational Errors (mm) Rotational Errors(°)

0.07 0.08 0.24 0.01 0.01 0.02

0.09 0.34 0.61 0.01 0.02 0.04

0.39 0.36 0.27 0.02 0.03 0.02

From the Cartesian uncertainty error norms of Tables I1-V, for a given Z plane, most errors decrease to the
front and to the left in the workspace. This is due to longer cables yielding lower relative errors, for the same d. For
Tables I1-1V the largest error is in the lower right corner, for both translations and rotations; this point approaches a
singularity where two cables nearly become collinear. The machine will be unreliable near singularities in terms of
Cartesian uncertainties given finite cable length measurement uncertainties. In order to avoid algorithmic singularities
in forward pose kinematics, the moving cable connection points must stay away from the boundaries of the ground truss
defined by points A, B, and C. In Table V, this singularity has moved nearer the (2,3) and (3,2) locations.

Tables 11-V all have e ements where the average translational error norm is less than 0.0866 mm. Translational
errors under this value are good since this means that the cable sculpting tool is diminishing the effects of cable
measurement uncertainty d in these regions. All poses where the normalized translational error is greater than 0.0866
mm amplify the effects of cable measurement uncertainty d.

Generally all rotational errors given in Tables I1-V are very low (all rotational units are degrees). Due to the
relatively long rotational arms on the chainsaw between moving points Py, P,, and P;, and T, the rotational error is

diminished compared to the trandational error. All errors are in the hundredths of degree range. The worst rotational

error is 0.04°, which combines all three rotational axes. It appears that rotational errors will not cause any problemin
the sculpting tool. Thetranslational errors dominate; the worst of theseis only 0.61 mm.

Since the above grid of poses was central to the reachable workspace, we also checked the Cartesian
uncertainties at various outlying points, on the boundary of the reachable workspaces; we did not find higher errors for
these cases. Also, the above results are for the specific d of 0.05 mm observed in the system; though the forward pose
kinematics problem is non-linear, we found that doubling d to 0.10 mm roughly doubled al error normsin Tables 11-V.

For the 0.05 mm d value, our results show that the Cartesian resolution varies between 0.07 and 0.61 mm for

translations and between 0.01° and 0.04° for rotations (both measures are combined for the three XYZ axes). These
Cartesian uncertainty values are very small considering the large scale of the sculpting problem. According to scul ptor
Helaman Ferguson, a Cartesian resolution of 1 cm is sufficient for large sculpting projects. This subsection shows that

al translational Cartesian uncertainties are far below this 1 cm level. Since the system is a hand-directed metrology
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system driven by a human, a much more significant source of problems is tremors and errors from the human hands.
The chainsaw further is very heavy; thus a gravity offload system will help the human maintain desired resolution; the

metrology system resolution is more than that required.

4.3 Calibration of Fixed Cable Points
What if the locations of the fixed cable points A4, As, Bs, C1, C,, and C; are not known precisdy? This section
presents a method for calibration of these points given length readings from three known poses within the workspace.

That is, touching the tool tip to a known XYZ pasition, plus a known orientation, we read the six cable lengths via the
string pots. This is performed for three distinct poses [%T], [T(;T], and [T(;T] , and the following mathematics calcul ates

the vector positions of fixed cable connection points A, As, Bs, C1, C,, and C;. Thefirst step in the solution process is

to determine the chainsaw cable attachment points P,, P,, and P3, one set for each given (touched) pose:

lpngle?TJlPT”jT_l i=123 =123 (36)
In this subsection, point P; is defined as:
IDijx
°Pj =4Ry (37)
PIjZ

where OPij is the position vector to moving cable connection point P, for the j" given pose (i =1,2,3 and j =1,2,3).

0 Pij is extracted as the last column, first three rows, of (36).

To solve this overall calibration problem, let us first consider only cable 4, which connects fixed point A4
(unknown) to moving point P; (known in three poses from (36)), via length L4 (known in the three poses from the fourth
string pot). The key to the problem is to recognize that A, is the intersection of three spheres, whose centers are the

three known points P and whose radii are the three sensed values Ly, j =1,2,3. Note we define Lj; as the sensed length

for cablei, in thej™ given pose (i =1,2,---,6 and j =1,2,3). The equations for these three spheres are:

(A4x — P )2 + (A4y — Py )2 + (A4z - P312)2 =%
(A4x - I:>32x)2 + (A4y - I:)32y)2 + (A4z - I3322)2 = Liz (38)

(A4x — Pa3y )2 + (A4y - I:>33y)2 + (A4z - I3332)2 = L§13
The unknown point A, may easily be found using the Intersection of Three Spheres algorithm developed earlier

for Forward Pose Kinematics. This algorithm appears in (4-15).

To finish the calibration of fixed cable points A4, As, Bs, Ci, Cp, and Cs, simply apply the three spheres
intersection algorithm six times (including the case described above), as follows:

1. C, istheintersection of: (°Pyy.L1), (°Ppo L1o), (°Py3,L19)

2. C,istheintersection of: (°Pyy,Lar), (OPyy L), (°Pog,Las)
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3. Csistheintersection of: (°Pa;,Lar), (°Psy,La), (OPas, L)

4. A,istheintersection of: (°Pay,Lar), (°Pay,Lao), (OPag,Lag)
5. As is theintersection of: (°Pyy,Ls1), (°Pyy ,Lss), (°Pog,Lss)
6. Bsis theintersection of: (°Py; ,Ler), (PPyy .Les), (°Pyg,Les)

Note in each case, the spheres’ intersection is found from the same moving cable connection point and the same
cable, but for three different known poses and measured lengths. Now, since we use the same sphere intersection
algorithm from forward pose kinematics, this fixed cable points calibration is subject to the same imaginary solutions,
multiple solutions, and algorithmic singularities problems. If imaginary solutions result, this means one or more
spheres do not intersect; this means there is a modeling or sensing error. The multiple solutions will cause no trouble,
since approximate values for the fixed cable points are known. Further, if a different Z valueis chosen for each of the
known poses, and if the known orientations are kept to nominal (i.e a ==y =0), none of the algorithmic
singularities will be a problem.

The methods in this subsection will work well only if the fixed cable points are truly fixed (see Section 3.2 and
Figure 6). Otherwise, there will be some error due to the cable/pulley angles shifting the cable contact points. Thus,
fixed point calibration is another reason to add a plate with a fixed hole to each of the string pots. If this mechanical
guide is not added, an iterative procedure similar to Section 3.2 may be implemented to reduce this error in the fixed
cable point calibration due to cable/pulley angles.

4.4 Workspaces

The workspace is defined as the 3D volume that is attainable by the tip {T} of the six-cable hand-directed
sculpting metrology tool, both in position and orientation. We are interested in three types of workspace: reachable,
zero-orientation, and dexterous. The reachable workspace is the 3D volume reachable by the tool tip regardiess of
orientation; if a point is reachable in only one specific orientation, it is considered part of the reachable workspace. The
zero-orientation workspace is that 3D volume that can be reached by the tool tip with the constraint of nominal

orientation only, a = 8=y =0. The dexterous workspace is that 3D volume reachable by the tool tip in all possible
orientations. For most paralld robots, the dexterous workspace vanishes, so we must define a limit on dexterous
workspace, such as +£30° on a, S, and ). Generaly, the zero-orientation workspace is a subset of the reachable
workspace, and the dexterous workspace is a subset of the zero-orientation workspace.

The workspaces are limited by the 2.54 m (100 inch) string pot cable excursions. For the hardware, the length
constraints are 1.778< L; £4.318 m (70< L; <170 inches) for i =123 and 0<L; <254 m (0<L; <100 inches)
for i =4,5,6. Note we added cable extensions of 1.778 m (70 inches) to cables 1, 2, and 3 to bring the tool to normal

heights for sculptors standing on the floor. We have developed a geometric workspace determination method for certain
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planesm. However, in this section we use a numerical computer method to determine the 3D reachable, zero-

orientation, and + 30° dexterous workspaces.
In the numerical workspace results presented below, we discretized the possible pose space as follows. We

search over all pertinent XY points with A, =A, =0.05 m. For the reachable and dexterous workspaces, we vary

a,B,y over dl possible permutations in the ranges +30°, with A, =Az =A, =10". All Z planes have the same XY

plane limits in the workspace plots below; the ABD equilateral frame is shown for reference in each. We consider nine
Z planes, evenly spaced within the workspace; the workspace plots below follow the Z-plane arrangement shown in
Table VI (m):

TableVI. Z-planes (m) for Numerical Workspace Deter mination

0 04 0.8
1.2 1.6 2.0
24 2.8 3.2

Figures 7a-c present the numerical reachable, zero-orientation, and +30° dexterous workspaces, respectively,
for the hand-directed sculpting tool. These show the theoretical workspace extents; the useful workspaces are bounded

by the planes of the tetrahedral frame. The dexterous workspace is dependent on the limited angle ranges chosen. For

instance, the + 45° dexterous workspace (not shown) is nearly void; in that case, there is a small workarea on Z planes

0.8, 1.2, and 1.6; the remaining Z planes are completely blank.

f(('

® v e
- a . =
® . . e

Figure 7a. Numerical Reachable Workspace Figure?b. Numerical Zero-Orientation Workspace
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Figure 7c. Numerical Dexterous Workspace
The axis units in Figures 7a-c are m (the equilateral triangle *V’ shown has sides of length 3.048 m). The X,
limits are -2 to 4 m and the Y, limits are -4 to 2 m for all subplots in Figures 7. This concludes our presentation of

workspace. For more details on workspace, plus al topics in Sections 3 and 4, including simulation examples for all of

the related kinematics problems, please see™®.

5. EXPERIMENTAL RESULTS

This section presents experimental results from the NIST cable-based metrology system. Three experiments
are presented, typical of the many diverse motions we have tested in the lab: an absolute, combined-axis translational
motion, an absolute rotation about a single Cartesian axis, plus rdative surface motions on a torus. We present
experimental data and compare it to simulated motions. We also present a discussion of absolute accuracy,
measurement resolution, and errors, plus ideas for design improvements.

The six identical string pots in our system are ten-turn potentiometers allowing a length change of 2.54 m (100
inches). The nylon-coated, 0.5 mm diameter, twisted stainless sted cable winds around the internal potentiometer drum

in a single layer (thus, no error due to the cable winding onto itself). The manufacturer states the temperature range as

-40 to 200 °C and the temperature-dependent cable elongation as 158x10% °C . A torsional spring maintains tension
(about 2 N) on each cable at all times; we have developed a method to calculate the load the human exerts to overcome
the cables’ tension for any Cartesian motion, but this is not significant and hence not presented (in some cases the cable
tensions help rather than hinder the specific motion). The experimental results in this section were obtained using a
light proxy cross for the sculptor’s chainsaw; for the production model we are designing a gravity-offload assist
mechanism for unloading the human as much as possible. The six string pot potentiometer voltage readings are sent to
the PC via an external interface box and an internal PClI DAQ (data acquisition) card. LabView software is used for
the metrology system, with Matlab™ calculating the Cartesian pose for LabView' at each cycle, running at 10 Hz.

" The identification of any commercial product or trade name does not imply endorsement or recommendation by Ohio University or NIST.
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5.1 Experiment 1: Absolute, Combined-Axis Translational Motion

The first experiment involved a straight-line translational motion in the combined XY, absolute directions. A

heavy Aluminum straight edge was aligned by a =-30" about Z, on a lab table just over 1 m high. The human guided
the tool tip along this edge on the table top, attempting to maintain the initial orientation. The commanded initial and

final poses for this case were:

X; ={~0.0429 05588 1.0160 -30 0 ¢ X; ={0.6170 01778 1.0160 -30 0 ¢

The experimental (solid) and simulated (dashed) cable lengths are plotted below for motion along the straight
XoYo linein Figure 8a, followed by the experimental (solid) and simulated (dashed) absolute Cartesian pose variablesin
Figure 8b. Figure 8c presents the same X,Y, data as that of Figure 8b, but plotted Y, vs. X, rather than vs. time. The
absolute x error of 32 mm is evident at the end of motion in the XoY, plane. Figure 8c shows the desired and measured

straight linein Cartesian space. Figure 8d shows the experimental environment for this case.

11 T T 4 T T T T
| | | | | | | |
| | | | B el e ittt Bl
| e ———— E o N S
™ T R N R e
| | | | | | | |
0.9 L L L L 4 L L L L
0 2 4 8 0 2 4 6 8
time (sec) time (sec) time (sec) time (sec)
Figure 8a. Cable Lengths, XY Motion Figure 8b. Cartesian Pose, XY Motion
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Figure 8c. Absolute Cartesian Pose, XY, Motion Figure8d. Lab Table, XoYo Motion

The agreement is good as seen in the above plots. We can see significant human error during motion,
especially in cables 1 and 2 (it appears that these cables dwell during motion due to human inputs, where they should

change continuously and smoothly as shown in the dashed lines), plus all three Cartesian Euler angles. The average o

angle seems to be off by 1°, but this could be due to workspace placement of the straight line or human motion error as
much as metrology system error. Sinceit is difficult to read in the above scale, the worst absolute error magnitudes for
this motion are given in the table below, for each axis, absolute values (mm and degrees); these values are the

maximum error at the start or end since significant human errors may occur in between.
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TableVIIl. Absolute Errors, XoYo Translational Motion

X (mm)

y (mm)

z (mm)

a(’)

B()

y()

| Maximum Absolute Error

32

12

4

1.6

19

2.0

The errors may be decreased by implementing a relative mode, wherein subsequent poses are measured with
respect to a defined reference pose(s). Errors decrease because the uncertainty of the absolute reference to the world
frame is removed. Also, as we will discuss later, much of the error is due to imperfect human-guided motions and

workspace measurements, rather than the metrology system itself.

5.2 Experiment 2: Absolute, Single-Axis Rotational Motion

The second experiment involved a single-axis rotation, a, about the absolute Z, axis. The tool tip was
supported on the lab tabletop, over 1 m high. Taking care not to change the translational location of the toal tip, the
human rotated the tool about its tip, also attempting to maintain nominal zero orientation for Sand . The commanded
initial and final poses for this case were:

X; ={~0.0302 01778 1.0160 0 0 ¢ X; ={-0.0302 01778 1.0160 45 0 ¢

The experimental (solid) and simulated (dashed) cable lengths are plotted in Figure 9a for rotation about Z,, followed
by the experimental (solid) and simulated (dashed) Cartesian pose variables in Figure 9b.
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Figure9a. CableLengths, a Motion Figure9b. Cartesian Pose, a Motion

The agreement is good as seen in the above plots. We can see significant human error during motion,
especially in maintaining fixed toal tip position. Sinceit is difficult to read in the above scale, the worst absolute error
magnitudes for this motion are given in the table below, for each axis, absolute values (mm and degrees); these values

are the maximum error at the start or end since significant human errors may occur in between.
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TableVIIl. Absolute Errors, a Rotational Motion
a Rotation x(mm) | y(mm) | z(mm) a(’) B(°) y(°)
| Maximum Absolute Error 12 19 8 1.1 2.5 1.7

Again, the errors may be decreased using relative mode, and much of the error is due to human-guided motions

and workspace measurements, rather than the metrology system itself.

5.3 Experiment 3: Relative Torus Surface Motions

Experiment 3 involved tracing the surface of a torus mode (see Figure 10a, made of Styrofoam, whereas the
real-world material would be granite) with the tool tip (Figure 10b). We have two sub-experiments, tracing the larger,
outer diameter in the XY plane and also tracing the smaller, cross sectional circle diameter in the YZ plane;, the torusis
placed on the lab tabletop for both. For both sub-experiments, the tool is kept radial to the appropriate circle at all
times, so that only one Euler angle varies (a and y; respectively); the remaining angles are kept to nominal and the other
tranglations are kept in the respective planes of motion. In both cases, the relative translational measurement results
(Figures 11a and 12a) are given relative to a reference point defined in each case to be the center of the circle of
interest. This removes the absolute frame world uncertainty (the above descriptions are for attempted motion relative to
the torus, not the world frame). In Figures 11a and 12 a, the dashed lines show the edges of the torus, while the solid
lines show the measured data. Figures 11b and 12 b show the associated relative Euler angles measured during these

torus experiments.

Figure 10a. Styrofoam Torus Figure 10b. Chainsaw
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Figure 12b. Associated Relative Euler Angles

In the experiment of Figures 11, the human guided thetool tip from right to left, radially along the torus surface

as shown; not quite one-fourth of the torus was traversed since the Euler angle a starts from its initial value (defined in

In the experiment

the relative mode to be zero) and rotates in the negative direction about the Z axis to around —80°.

of Figures 12, the human guided the tool tip from up to down, radially along the torus surface as shown; not quite one-

sixth of the torus was traversed in this case since the Euler angle ystarts from itsinitial value and rotates in the positive
26

direction about the X axis to nearly 60°.



The metrology system displays in real-time (at a rate of 10 Hz) to the human operator: the six potentiometer
voltages, the six calibrated cable lengths, and the Cartesian pose (three vector position components and three Euler
angles). The Cartesian pose can be displayed ether absolute, with reference to the world frame {0}, or reative, with
reference to one or more poses defined by touching the tool tip to the material under development or other items in the
workspace. Figure 13 shows another type of real-time visual feedback from the metrology system to the operator. This
figure shows the four views (isometric and three planar projections) of the virtual CAD mode for the 3D surface to be
sculpted (in this case, a torus); this can be defined in an absolute or relative mode (relative mode seems to be more
useful in the lab). A relative mode is used in Figure 13, where the reference point is an asterisk shown on the torus
surface (at [0 0 Q]), with associated desired orientation (three mutually-orthogonal lines whose origin is the asterisk), in
this case lined up with the XYZ axes shown. The floating pose shown is the actual tool-tip location, which updates (in
position and orientation) every tenth of a second. A representation of a diamond-tipped chainsaw blade is shown in all
views. The operator can move the tool-tip until it coincides with the target pose, in this case the reference pose shown
on the torus. The system gives the operator the relative difference between target and current poses (three relative

vector position components and three relative Euler angles) to aid in reaching the desired pose.

o5

Figure 13. Virtual Surface with Pose Updated in Real-Time
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5.4 Experimental Error Discussion

This subsection enumerates and discusses the various error sources in laboratory experiments concerning the

above results. The potential error sources are many, as given in the following list.

Cable/pulley errors as discussed in Section 3.2. The results presented do not use the iterative forward pose
kinematics solution; however, when we did apply this iterative solution to check the effect on errors, nearly all
cases were basically indistinguishable. The iterative procedure required 2-4 iterations at each step to achieve

trandational and rotational error tolerances to 0.02 mmand 0.01°, respectively. So, this source of error can be
significant as discussed in Section 3.2; however, the experiments measured motions largely staying near the
central plane containing points A4, As, and Bs and thus this type of error is small in our results.

In the hardware chainsaw proxy, the current design allows points P;, P,, and P; to slide significantly around a
2.54 cm (1 in) eyebolt. Wetried to manage this during data collection, but it should be improved in design.

We cannot know exact values for the fixed cable connection points A4, As, Bs, C1, C,, Cs; Section 4 presents an
on-line method which may help, but there will always be some error here.

It is difficult to measure precise Cartesian positions and orientations in the workspace of the metrology system;
such values are used as the perfect measure that the experimental data is compared with.

In areated vein, we do not know the precise location and orientation of the lab bench in the metrology system
workspace that was so central to generating straight lines and singe-axis rotations. We assumed it was
perfectly aligned in the XYZ directions of {0} and also that the various edges were perfectly straight. This
assumption is reasonable but not perfect.

The cable calibrations are not exact; they can be improved but will never be perfect.

There is a large potential error from the human attempting to provide smooth motion as desired, but not
succeeding perfectly. Cartesian orientations can be especially tricky to generate, but precise positions are
challenging too.

The experimental trgjectory data of this section all assume that the ‘perfect’” simulation for comparison occurs
with constant velocity. In the real world, the human naturally acceerates to constant velocity from rest and
then decelerates to zero veocity (this can be seen in the a plot of Figure 9b, where the a slope starts and ends
at zero). Of coursg, this can be modded in simulation, but it is difficult to determine the level and time of
accderation and decderation, which change with each new experiment.

Cables 4 and 5 can easily jump off their pulleys, causing erroneous length readings. While this did not occur
for the data presented (we repeated any cases when this did happen), thisis a potential problem in practice.

Some of these error sources can be ameliorated by design improvements. In particular, the idea discussed at

the end of Section 3.2, of placing a plate with a small hole for the cable near the nominal fixed cable points for each

string pot, would help us to know the exact fixed cable points better and to avoid the cable/pulley errors, diminating the

need for iterative solutions altogether. A better design is required for moving cable connection points Py, P,, and P; to

largely prevent their sliding relative to the tool. Clearly a precise calibration rig (a known cube for instance, placed

precisaly in the workspace) would help immensely in calibrating the cables, fixed cable connection points, and guiding

the human in more precise motions; however, thisis not realistic for sculpting or automated construction environments.

Despite these various error sources, we found reasonable results in the experiments. Section 4.2 presents the

simulated Cartesian measurement resolution over various positions and orientations in the workspace. We found this

measurement resolution to be grand overkill, generally down in the hundredths of mm! This is simply based on how

many digits we can reliably read from the string pot voltages. It is likely that a drifting voltage power supply to the
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string pots and thermal expansion of the cables themsalves may have more of an effect. For most, if not all, large-scale
operations, the measurement resolution requirements will not be nearly so demanding as hundredths of mm.

Regarding absolute Cartesian accuracy, we initially observed errors of up to 50 mm or more for translations

and up to 10° for rotations, comparing the experimental data with the off-line simulation, which was assumed to

represent the real-world perfectly (which it cannot, of course). Upon improving our calibration procedures, we reduced

this absolute Cartesian error generally to the 5-10 mm range for trandations and less than 2° for rotations. We
encountered absolute accuracies of 10-30 mm in the extreme (e.g. see Tables VII and VII1), but these relate to human
error as much as systemic error.  These numbers can apply to each Cartesian axis simultaneously, though we observed
much better accuracies for many specific motions. Sculptor Helaman Ferguson believes that 10 mm accuracy is fine
for large sculptures.

Regarding relative Cartesian accuracy (making Cartesian motions relative to defined reference poses on the
material for sculpting), we expect lower errors than the absolute Cartesian accuracies since this mode removes the
dependence on a well-known absolute world frame. Our lab experience indicates that the relative mode is preferable to

absolute mode in our metrology system.

6. CONCLUSION

This article has presented a novel system for passive-cable-based Cartesian pose metrology. Six cables are
connected to a moving body; six string pots (tensioning the cables via torsional springs) independently read the six cable
lengths and analytical forward pose kinematics was presented to calculate the Cartesian pose in real time. Several
important kinematics issues were also addressed related to cable-based metrology. The proposed system was
introduced as a sculptor’s aid, but there are many potential applications in manufacturing, rapid prototyping, robotics,
and automated construction.

We presented experimental results, compared these with simulated motion results, and discussed the sources of
error. Our experimental data and laboratory experience indicates that our system shows promise as a real-time,

economical, accurate, safe, smple, and effective Cartesian pose metrology tool.
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