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ABSTRACT 

 A novel cable-based metrology system is presented wherein six cables are connected in parallel from ground-

mounted string pots to the moving object or tool of interest.  Cartesian pose can be determined for feedback control and 

other purposes by reading the lengths of the six cables via the string pots and using closed-form forward pose 

kinematics.  This article focuses on a sculpting metrology tool, assisting a human artist in generating a piece from a 

computer model, but applications exist in manufacturing, rapid prototyping, robotics, and automated construction.  We 

present experimental data to demonstrate the operation of our system, we study the absolute accuracy and also 

measurement resolution, and we discuss various error sources.  The proposed real-time cable-based metrology system is 

less complex and more economical than existing commercial Cartesian metrology technologies. 

 

1.  INTRODUCTION 

Many applications in robotics, construction, and manufacturing require effective real-time measurement of 

Cartesian pose of end-effectors, tools, and materials.  Current technologies in use for pose metrology include machine 

vision, photogrammetry, theodolites, laser interferometry, magnetic tracking, stereo optical image registration, and 

acoustic methods; many of the technologies are complex and expensive.  The current article presents a novel system for 

Cartesian pose measurement using six cables (whose lengths are sensed via passive string pots with torsional-spring 

tensioning) connected to the end-effector.  The proposed system is relatively simple and economical. 

This idea is related to cable-suspended robots; the literature in this area is growing, starting with the NIST 

(National Institute of Standards and Technology) RoboCrane1 and the McDonnell-Douglas* Charlotte2.  The 

kinematics, dynamics, control, and applications of cable-suspended robots are topics of current interest3,4,5. 

NIST was also the innovator behind passive cable-based metrology.  The Robot Calibrator6 used three cables 

meeting at a single point, measured by three string encoders, and was used to calibrate a PUMA robot, position only.  A 

similar idea was implemented7 for partial-pose (position) calibration of an industrial robot, with experimental results.  

Jeong, et al.8, have also implemented a similar cable-based industrial robot pose-measuring system.  Their six-cable 

parallel wire mechanism is based on a (non-inverted) Stewart Platform.  No analytical solution to the forward pose 
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kinematics problem exists; instead they use a numerical approach.  SpaceAge Controls, Inc. has used spring-loaded 

cable/potentiometer position transducers for aircraft applications (such as aileron control) for thirty years 

(www.spaceagecontrol.com*). 

Another unique NIST application of cable-based metrology has been in conjunction with 

mathematician/sculptor Helaman Ferguson9 (www.helasculpt.com*).  To provide an innovative tool for assisting a 

human artist in generating a sculpture from a 3D complex mathematical surface in a computer model, three cable-based 

metrology systems have been developed.  The purpose of these is to provide Cartesian pose feedback for replicating the 

computer model in real-world materials.  The String-Pot 1 System again only provides 3D position feedback to the 

human, using three cables and string pots meeting in a single point.  The String-Pot 2 System allows for full 6-degree-

of-freedom (6-dof) pose (position and orientation) feedback to the human.  It is basically a passive RoboCrane, an 

inverted Stewart platform with six cables and string pots.  The sculpting tool is connected to the moving platform of the 

passive RoboCrane and the human sculptor stands within this moving platform.  These systems are documented in 

Bostelman10 and Ferguson11. 

The third cable-based metrology sculpting tool, developed at NIST, is the subject of this article.  Like the 

String-Pot 2 System, the current concept provides 6-dof pose measurement; however, the design has been changed from 

the symmetric RoboCrane-like structure to improve pose measurement and human interaction.  The next section 

presents the system description for this Six-Cable Hand-Directed Sculpting System.  The forward pose kinematics 

problem is important for calculating poses given the six sensed cable lengths; an analytical solution to the forward pose 

kinematics problem for the NIST system is presented.  This article also presents various kinematics issues including 

sculpting displacements for display to the human, Cartesian measurement uncertainty, calibration of fixed cable points, 

and workspace. We then present experimental data to demonstrate the effectiveness of our system; we then consider 

accuracy and error sources.  Sculpting metrology is an interesting application; however, various potential applications 

exist for this NIST cable-based metrology technology, including manufacturing, rapid prototyping, robotics, and 

automated construction.  This type of metrology system is adaptable to large-scale problems. 

 

2.  SYSTEM DESCRIPTION 

Figure 1 shows the arrangement of the six-cable hand-directed sculpting system.  The system is large: it stands 

almost 4.3 m (14 ft.) high and is supported by three 55-gallon drums on an equilateral triangle of side 3.0 m (10 ft.).  

The size and height of the sculpting tool is exaggerated in Figure 1 for clarity.  Figure 2 shows a photograph of the 

supporting frame. 

In Figure 1, the (irregular) tetrahedral base frame has vertices A, B, C, and D; the vertices of the moving, hand-

directed tool are P1, P2, and P3, and the cutting tip T is located at the origin of moving frame {T}.  The world coordinate 

frame is {0}; the origin of this frame is on the floor and directly under point C along the Z axis. 

                                                        
* The identification of any commercial product or trade name does not imply endorsement or recommendation by Ohio University or NIST. 
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The lengths of the six cables are Li, 6,,2,1 L=i .  Fixed points C1, C2, C3, A4, A5, and B6 are the cable contact 

points on the ground-mounted string pots, located near points C, A, and B, respectively.   Cable 1 connects C1 to P1, 

cable 2 connects C2 to P2, cable 3 connects C3 to P3, cable 4 connects A4 to P3, cable 5 connects A5 to P2, and cable 6 

connects B6 to P2.  The sides of the rigid moving platform triangle are s1, s2, and s3. 

TX

YT

TZ

Y0
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X0
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B
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2P

1L
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4L 5L
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Figure 1.  Six-Cable Metrology System Diagram           Figure 2.  Six-Cable Metrology System Photograph 

 

Figure 3 shows a photograph of the aluminum cross with eyebolts, representing the sculptor’s chainsaw in the 

NIST hardware.  Moving cable connection points P1, P2, and P3 are shown, with one, three, and two cables connecting, 

respectively.  The tip of the cross is the origin of the tool-tip frame {T}.  We assume that points P1, P2, and P3 are 

known in the {T} frame and then points C1, C2, C3, A4, A5, and B6 are known in the {0} frame. 

Figure 4 shows one of the six string pots, which are 10-turn potentiometers for measuring the length of each 

cable.  These string pots allow a length change of 2.54 m (100 inches) and are linear over their operating range.  A 

torsional spring maintains tension (about 2 N) on the cable at all times. 

 

   
Figure 3.  Chainsaw Proxy    Figure 4.  String Pot 
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3.  FORWARD POSE KINEMATICS 

Forward pose kinematics is required for Cartesian metrology over time.  Given the six cable lengths read from 

the string pots, we calculate the Cartesian pose (three translations and three rotations) in this section.  First, we derive a 

closed-form solution.  Due to the fact that the fixed cable points vary slightly as the cables rotate at different angles 

over their respective string pot pulleys (see Figure 4), this solution has some error; this is then corrected by an iterative 

solution, using the basic closed-form solution at each step. 

 
3.1  Nominal Closed-Form Solution  

The forward pose kinematics problem is stated: Given the six cable lengths Li, 6,,2,1 L=i , calculate the 

Cartesian pose of the chainsaw tip frame, expressed by homogeneous transformation matrix [ ]T0
T  or the six Cartesian 

pose numbers { } { } T
T zyx γβα=X0  (we use ZYX αβγ Euler angles12).  This pose can then be interpreted 

and used for the sculpting or other Cartesian task at hand.  Unlike many parallel robot forward pose kinematics 

problems, there exists a closed-form solution, and the computation requirements are not demanding.  There are multiple 

solutions, but the correct solution can generally be determined. 

The system in Figure 1 can be viewed as a (non-symmetric) 3-2-1 Stewart Platform, whose forward pose 

kinematics problem has been presented13,14,15.  

The forward pose kinematics solution consists of finding the intersection point of three given spheres; this must 

be done three times in the following sequence.  Let us refer to a sphere as a vector center point c and scalar radius r: 

(c,r).  Moving points Pi are found first, represented by vectors expressed in {0}: iP0 , 3,2,1=i . 

1.  P2 is the intersection of: ( 5
0 A ,L5), ( 6

0 B ,L6), and ( 2
0 C ,L2). 

2.  P3 is the intersection of: ( 4
0 A ,L4), (P2,s1), and ( 3

0 C ,L3). 

3.  P1 is the intersection of: (P2,s3), (P3,s2), and ( 1
0 C ,L1). 

 
Where s1, s2, and s3 are the known fixed lengths of the moving platform: 321 PPs = , 132 PPs = , and 

213 PPs =  (see Figure 1). 

The closed-form intersection of three given spheres algorithm is given below, but let us first finish the forward 

pose kinematics solution, assuming iP0  are now known.  Given iP0 , we can calculate the orthonormal rotation matrix 

[ ] [ ]RR 00
iPT =  directly (we assume that frames {P1}, {P2}, {P3} (coordinate frames placed at points Pi), and {T} frames 

have identical orientation), using the definition12 that each column of this matrix expresses one of the XYZ unit vectors 

of {T} (or {Pi}) with respect to {0}: 
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iiii PPPP ZYX ˆˆˆ 0000 R       (1) 

 
The columns for (1) are calculated using (2), referring to Figure 1. 

1
0

3
0

1
0

3
0

0 ˆ
PP

PP

−

−
=

iPX      
2

0
4

0
2

0
4

0
0 ˆ

PP

PP

−

−
=

iPY       
iii PPP YXZ ˆˆˆ 000 ×=       (2) 

 
where P4 (not shown in Figure 1) is the midpoint of P1P3: 

iPX
s ˆ
2

02
1

0
4

0 





+= PP       (3) 

 
There are two solutions to the intersection point of three given spheres (see the following subsection); therefore, 

the forward pose kinematics problem yields a total of 23 = 8 mathematical solutions since we must repeat the algorithm 

three times.  Generally only one of these is the valid solution for the hand-directed sculpting tool.  Also, as seen in the 

spheres intersection algorithm below, solution singularities exist.  These issues will be dealt with later. 

 
3.1.1  Three Spheres Intersection Algorithm.  We now derive the equations and solution for the 

intersection point of three given spheres.  This solution is required (three separate times) by the forward pose kinematics 

solution above.  Let us assume that the three given spheres are ( 1c ,r1), ( 2c ,r2), and ( 3c ,r3).  That is, center vectors 

{ } Tzyx 1111 =c , { } Tzyx 2222 =c , { } Tzyx 3333 =c , and radii r1, r2, and r3 are known (The three sphere 

center vectors must be expressed in the same frame, {0} in this article; the answer will be in the same coordinate 

frame).  The equations of the three spheres are: 

( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( ) 2

3
2

3
2

3
2

3

2
2

2
2

2
2

2
2

2
1

2
1

2
1

2
1

rzzyyxx

rzzyyxx

rzzyyxx

=−+−+−

=−+−+−

=−+−+−

     (4) 

 
 Equations (4) are three coupled nonlinear equations in the three unknowns x, y, and z.  The solution 

will yield the intersection point { } Tzyx=P .  The solution approach is to expand equations (4) and combine them 

in ways so that we obtain ( )yfx =  and ( )yfz = ; we then substitute these functions into one of the original sphere 

equations and obtain one quadratic equation in y only.  This can be readily solved, yielding two y solutions.  Then we 

again use ( )yfx =  and ( )yfz =  to determine the remaining unknowns x and z, one for each y solution.  Let us now 

derive this solution. 

 First, expand equations (4) by squaring all left side terms.  Then subtract the third from the first and 

the third from the second equations, yielding (notice this eliminates the squares of the unknowns): 
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1131211 bzayaxa =++       (5) 

2232221 bzayaxa =++       (6) 

 
where: 

( )
( )
( )1313

1312

1311

2

2

2

zza

yya

xxa

−=
−=
−=

  

( )
( )
( )2323

2322

2321

2

2

2

zza

yya

xxa

−=
−=
−=

  
2
3

2
3

2
3

2
2

2
2

2
2

2
3

2
22

2
3

2
3

2
3

2
1

2
1

2
1

2
3

2
11

zyxzyxrrb

zyxzyxrrb

+++−−−−=

+++−−−−=
 

 
Solve for z in (5) and (6): 

y
a

a
x

a

a

a

b
z

13

12

13

11

13

1 −−=   y
a

a
x

a

a

a

b
z

23

22

23

21

23

2 −−=     (7,8) 

 
Subtract (7) from (8) to eliminate z and obtain ( )yfx = : 

( ) 54 ayayfx +==       (9) 

 

where:   
1

2
4 a

a
a −=   

1

3
5 a

a
a −=  

   
23

21

13

11
1 a

a

a

a
a −=   

23

22

13

12
2 a

a

a

a
a −=   

13

1

23

2
3 a

b

a

b
a −=  

 
Substitute (9) into (8) to eliminate x and obtain ( )yfz = : 

( ) 76 ayayfz +==       (10) 

 

where:   
23

22421
6 a

aaa
a

−−
=  

23

5212
7 a

aab
a

−
=  

 
Now substitute (9) and (10) into the first equation in (4) to eliminate x and z and obtain a single quadratic in y only: 

02 =++ cbyay       (11) 

where:   ( ) ( )
( ) ( ) 2

1
2
1

2
1

2
1177155

1761154

2
6

2
4

22

222

1

rzyxzaaxaac

zaayxaab

aaa

−+++−+−=

−+−−=
++=

 

 
There are two solutions for y: 

a

acbb
y

2

42 −±−=±       (12) 

 
To complete the intersection of three spheres solution, substitute both y values y+ and y- from (12) into (9) and (10): 

54 ayax += ±±        (13) 

76 ayaz += ±±        (14) 

 
In general there are two solutions, one corresponding to the positive and the second to the negative in (12).  

Obviously, the + and – solutions cannot be switched: 

{ } Tzyx +++   { } Tzyx −−−        (15) 
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Let us now present a simple example to demonstrate the solutions in the intersection of three spheres algorithm.  

Given three spheres (c,r): 

{ }( ) { }( ) { }( )3,131;5,003;2,000 TTT −     (16) 

 
The intersection of three spheres algorithm yields the following two valid solutions: 

{ } { } TTzyx 101=+++   { } { } TTzyx 8.06.01 −−=−−−             (17) 

 
These two solutions may be verified by a 3D sketch.  This completes the intersection of three spheres 

algorithm.  In the next subsections we finish the overall forward pose kinematics solution discussion by presenting 

several important topics: imaginary solutions, singularities, and multiple solutions. 

 
3.1.2  Imaginary Solutions.  The three spheres intersection algorithm can yield imaginary solutions.  This 

occurs when the radicand acb 42 −  in (12) is less than zero; this yields imaginary solutions for ±y , which physically 

means not all three spheres intersect.  If this occurs in the hardware, there is either a cable length sensing error or a 

modeling error, since the hardware assembles properly. 

A special case occurs when the radicand acb 42 −  in (12) is equal to zero.  In this case, both solutions have 

degenerated to a single solution, i.e. two spheres meet tangentially in a single point, and the third sphere also passes 

through this point.  This can happen in the hardware, for instance when point P2 lies on plane ABC (see Figure 1), plus 

either cables L2L5, L5L6, or L6L2 are collinear. 

 
3.1.3  Singularities.  The three spheres intersection algorithm and hence the overall forward pose kinematics 

solution is subject to singularities.  These are all algorithmic singularities, i.e. division by zero in the mathematics, but 

no problem exists in the hardware (no loss or gain in degrees of freedom).  This subsection derives and analyzes the 

algorithmic singularities for the three spheres intersection algorithm presented above.  Different possible three spheres 

intersection algorithms exist, by combining different equations starting with (4) and eliminating and solving for different 

variables first.  Each has a different set of algorithmic singularities.  We only analyze the algorithm presented above. 

Inspecting the algorithm, represented in equations (4) – (15), we see there are four cases in which the algorithm 

experiences mathematical difficulty (we already discussed the imaginary solutions cases above and do not include them 

here); all involve division by zero: 

 
Singularity Conditions: 

0;0

0;0

1

2313

==
==

aa

aa
       (18) 

The first two singularity conditions: 
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( )
( ) 02

02

2323

1313

=−=
=−=

zza

zza
      (19) 

 
are satisfied when the centers of spheres 1 and 3 or spheres 2 and 3 have the same z coordinate, i.e. 31 zz =  or 32 zz = .  

These can occur for the Hand-Directed Sculpting Tool.  However, judicious choice of which are numbered spheres 1, 2, 

and 3 can completely avoid this algorithmic singularity; recall the chosen sphere intersection sequence for overall 

forward pose kinematics is given early in Section 3.1.  The fixed sphere centers 5
0 A  and 6

0 B  always have the same z 

coordinate; therefore in the first step they must appear as spheres 1 and 2.  In the second step, sphere centers 4
0 A  and 

P2 can have the same z coordinate and hence appear as spheres 1 and 2.  In the third and final step, moving sphere 

centers P2 and P3 can have the same z coordinate (this case is the nominal horizontal orientation) and hence appear as 

spheres 1 and 2.  In all cases fixed sphere center iC0 , 3,2,1=i , appears as the third sphere because its z coordinate 

will never be the same as any of the other fixed and moving sphere centers, for a normal human standing on the ground.  

Therefore, the algorithmic singularity conditions 1 and 2 pose no problem in the hardware. 

The third singularity condition, 

0
23

21

13

11
1 =−=

a

a

a

a
a       (20) 

Simplifies to: 

23

23

13

13

zz

xx

zz

xx

−
−

=
−
−

      (21) 

 
For this condition to be satisfied, the centers of spheres 1, 2, and 3 must be collinear in the XZ plane.  For the 

first use of the three spheres algorithm, fixed centers 5
0 A , 6

0 B , and 2
0 C  are never collinear.  For the second use of 

the three spheres algorithm, it is theoretically possible for the sphere centers 4
0 A , P2, and 3

0 C  to lie along the same 

line in the XZ plane.  However, in reality, we will define the useful workspace to be bounded by the tetrahedral frame; 

thus, this type of algorithmic singularity will occur only near the workspace edge AC in the hardware.  For the third use 

of the three spheres algorithm, it is again possible for the sphere centers P2, P3, and 1
0 C  to lie along the same line in the 

XZ plane.  In this case line P2P3 must also pass through 1
0 C , which means line P2P3 is collinear with the third cable.  

This case is far from nominal orientation ( 0=== γβα ).  Also, we define the boundary of the useful orientation 

workspace to be when a cable lies along one of the sides of the chainsaw.  Hence, singularity condition 3 lies along the 

edge of the useful workspace and thus presents no problem in the hardware if the user is properly instructed regarding 

workspace limitations.  A singularity-approaching algorithm can be developed to warn the user in these cases. 

The fourth singularity condition, 

01 2
6

2
4 =++= aaa       (22) 

Is satisfied when: 

12
6

2
4 −=+ aa        (23) 
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It is impossible to satisfy this condition as long as a4 and a6 (from (9) and (10)) are real numbers (this is the 

case in the hardware).  Thus, the fourth singularity condition is never a problem in the sculpting tool hardware. 

To summarize, this subsection analyzes the algorithmic singularity conditions for the three spheres intersection 

algorithm as applied to forward pose kinematics of the Hand-Directed Sculpting Tool.  Four singularity conditions were 

found and none present problems for the forward pose solution.  Only one subcase of the four was found to be a 

potential problem, but it lies on the boundary of the useful workspace.  To reach this conclusion, it was also important 

to order the spheres passed into the algorithm properly. 

 
3.1.4  Multiple Solutions.  In general the three spheres intersection algorithm yields two distinct, correct 

solutions ( ±  in (12-14)).  Since this algorithm is used three times in the overall forward pose kinematics solution, 23 = 

8 valid mathematical solutions exist.  Generally only one of these is the valid solution for the hand-directed sculpting 

tool pose.  Through exhaustive simulation of the forward pose kinematics solution throughout the useful workspace, it 

was found that generally the positive y solution should be used in the three spheres intersection algorithm.  However, an 

undesired result was sometimes found, illustrated in Figure 5. 

0X

Y0

0Z

P3

T

1P

P2

good

good

Tbad

P1bad

   

6L

B'6

Y0

Z0

6B6θ

6θ

X0

r

 
Figure 5.  Multiple Solution Trouble  Figure 6.  String Pot Pulley with Cable Angle 

 
In Figure 5, the left part is the actual pose, while the right part is the erroneous pose.  As seen in the figure, the 

solutions for P2 and P3 were as desired, but then point P1 was flipped over as shown; this is impossible in the hardware 

as cables would be twisted unless they were disconnected and reattached in the undesired pose.  To handle this type of 

problem in the forward pose kinematics solution, we write three inequalities, with respect to {0}, which must be 

satisfied for general operation of the tool: 

xx PP 31 <    yy PP 12 <    yy PP 32 <   (24) 

 
If the first inequality in x is not satisfied, we must use the negative y solution in the three spheres intersection 

algorithm when determining point P1 (the third step). 
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However, for the second and third y inequalities in (24), the positive and negative y solutions yield identical 

results and hence cannot be used to distinguish the correct solution to use.  Generally the positive y solution should be 

used in the three spheres intersection algorithm when determining points P2 and P3 (the first and second steps). 

A second type of multiple solution case exists within the workspace, potentially more problematic than the 

easily-detected case given above.  When the chainsaw is oriented so that P2 and P3 is in the workspace near AB, at many 

Z planes, it was observed that a second valid solution exists, with orientation much closer to the expected solution than 

the previous case of Figure 5.  In this case, the expected solution can be found by using the positive y solution in the 

three spheres intersection algorithm when determining point P1, but using the negative y solution in the three spheres 

intersection algorithm for both P2 and P3.  The trick is in detecting when this occurs because both orientations are 

similar, unlike the flipped multiple solution case.  This situation only occurs near the tetrahedral frame, which is to be 

avoided according to our singularity analysis. 

 
3.2  Iterative Forward Pose Kinematics Solution 

The preceding closed-form forward pose kinematics solution assumes that the ground-mounted fixed cable 

points C1, C2, C3, A4, A5, and B6 are constant.  However, as seen in Figure 6, these points change with cable angle θi 

(shown for cable 6 in Figure 6: contact point B6 moves to 6'B  due to cable/pulley angle θ6).  The closed-form solution 

assumed that all cables extend horizontally for A4, A5, B6 and vertically for C1, C2, C3.  That is, for instance, the point of 

contact was assumed to be the nominal B6 rather than the actual 6'B  in Figure 6.  Ignoring this issue leads to Cartesian 

position error norms of over 50 mm and Cartesian orientation error norms of over o2  in the worst cases (large cable 

angles).  Therefore, this section discusses an iterative solution to reduce this error (see16 for more details).  Each step of 

the iterative solution employs the closed-form solution from above. 

The nominal horizontal and vertical cable cases are rare in actual operation; usually there is some cable angle 

as pictured in Figure 6.  Note that the cable angle is always identical to the pulley angle.  For a positive angle (shown as 

6θ ; positive is about X0 into the page), the nominal point B6 has moved to actual contact point 6'B  and the sensed cable 

length for the sixth cable is too short by 6θr  (the cable length error is 6θr− ), where 6θ  is the cable/pulley angle (r = 

11.11 mm (7/16”) for the contact pulley for all string pots).  The cables are calibrated so that zero length is defined as 

when the cable tip is at point B6 in Figure 6.  Relative to nominal point B6, the new fixed cable point can be calculated 

using (25): 

( )














−−
−=

66

66

6

6
0

cos1

sin'

θ
θ

rB

rB

B

z

y

x

B       (25) 

 
The same statements can be made for negative cable/pulley angles as well: for negative cable angles, going 

down in Figure 6, the new fixed point 6
0 'B  can still be calculated using (25) with 6θ− , and this time the sensed cable 
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length for the sixth cable is too long by 6θr . Similar formulas apply to points A4, A5, C1, C2, and C3, but different 

transformations are required for {0} coordinates. 

We assume that only the type of angle shown in Figure 6 is significant (up-and-down); the secondary angle 

(side-to-side) is generally smaller and will be ignored in this analysis.  However, to calculate the up-and-down angle, we 

use the change in Z divided by the combined change in XY (below).  So we ignore the side-to-side angle, but this motion 

affects the primary up-and-down angle.  First, let us present formulas for calculating the six cable angles (θ6 is shown 

in Figure 6 and required to calculate 6
0 'B  in (25); the remaining five angles are similarly defined and required).  From 

geometry of each cable between the fixed and moving cable connection points: 









∆
∆

= −

i

i
i xy

z1tanθ   6,5,4=i     (26) 

 

where:  

zz

zz

zz

BPz

APz

APz

626

525

434

−=∆
−=∆
−=∆

  

( ) ( )
( ) ( )
( ) ( )262

2
626

2
52

2
525

2
43

2
434

yyxx

yyxx

yyxx

BPBPxy

APAPxy

APAPxy

−+−=∆

−+−=∆

−+−=∆

 

 









∆
∆

= −

i

i
i z

xy1tanθ   3,2,1=i     (27) 

 

where:  izizi PCz −=∆   ( ) ( )22
iyiyixixi CPCPxy −+−=∆  

 
Note the signs of the angles will be determined automatically in (26), even using the plain atan function; these 

will be correctly determined by the sign of iz∆ .  However, in (27), we forced iz∆  to be always positive; further, we use 

only the positive square root in ixy∆ , so we must determine the sign of the angles for 3,2,1=i  by logic.  Looking down 

the X0 axis from the right of the machine, angles θi are positive when the tool tip places moving chainsaw point Pi 

forward of the vertical from fixed cable points Ci.  The sign conditions are: 

    iθ  is positive if   0>− iyiy CP  

iθ  is zero if   0=− iyiy CP  3,2,1=i        (28) 

    iθ  is negative if  0<− iyiy CP  

 
All position vector components above are expressed in {0} coordinates.  Note there is some error in these 

formulas since we use the nominal fixed points to calculate all angles: we do not yet know the shifted fixed cable points.  

In the kinematics iterative solution to follow, we can update the angles based on the shifted cable points to reduce this 

error.  Given the six cable angles, we can now present the formulas for the shifted fixed cable points ( 6
0 'B  was given in 
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(25)).  The shifted fixed cable points for Ci are similar to 6
0 'B , but the nominal cable location is vertical and the points 

shift differently with respect to {0}: 

( )
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−+=
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iiy

ix

i
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rC

C

θ
θ

sin

cos1'0 C   3,2,1=i   (29) 

 

The shifted fixed cable points for Ai are identical to 6
0 'B  in (25), but these are expressed in different 

coordinates, rotated by o120  about the Z0 axis with respect to {0}, and with origins located on the nominal fixed cable 

points Ai.  Thus, these formulas must be transformed to {0} coordinates first as follows: 
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Since this cable/pulley angle error can be quite significant, we now develop an iterative forward pose 

kinematics solution incorporating the cable/pulley angles and shifted fixed cable points of (25-31).  This solution must 

be iterative because, given the six sensed cable lengths, we first use the nominal fixed cable points to calculate the 

nominal Cartesian chainsaw pose (as in Section 3.1).  But then we calculate the estimate for the six cable angles, which 

shifts the fixed cable points and modifies the cable lengths; we iterate until the Cartesian pose stops changing 

(according to a user-defined solution tolerance).  This iterative forward pose kinematics solution is summarized below: 

1. Given Lsensed, the six cable lengths read from the string pots. 
2. Calculate the closed-form forward pose kinematics solution as in Section 3.1. 
3. Calculate the six cable/pulley angles and update the shifted fixed cable points (using (25-31)). 
4. Modify the six cable lengths Lsensed by –rθi on each cable i. 
5. Repeat steps 2-4 until the change in Cartesian pose from the last step is sufficiently small. 

 
Note it is important to always use the nominal fixed cable points in the shifted points formulas and to use the 

nominal Lsensed at each step when calculating new cable lengths; otherwise the solution will run away.  Upon 

implementation of this algorithm, it was discovered that only 3 to 5 iterations were required to reduce the translational 

and rotational error norms to 0.02 mm and o01.0 , respectively. 
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An alternate method to solve this problem is through mechanical design: each string pot can be fitted with a 

small plate with a small hole to guide each cable (in the nominal horizontal or vertical position) so that the ground-

mounted fixed cable points never change.  This would have the additional benefit of keeping all cables on their string 

pot pulleys at all times (it is not uncommon for one or more cables to slip off during normal motions) and reducing 

computation (no iteration required).  However, the disadvantages of this mechanical solution are increased cable friction 

and wear and sharper cable angles. 

 

4.  RELATED KINEMATICS ISSUES 

This section presents required kinematics issues for implementation and use of the six-cable sculpting 

metrology tool: Cartesian displacements for display to the operator, Cartesian measurement uncertainty given 

uncertainty in cable length measurements, calibration of the fixed cable points, and system workspaces. 

 
4.1  Displacements for Display 

This section presents equations for displaying displacement errors to the human sculptor from the hand-directed 

sculpting tool.  Presented is the difference (error) between the target pose for the chainsaw and the current pose of the 

chainsaw.  That is, assume a target pose (or a trajectory of target poses) is given for the sculpting tool.  Let the target 

pose be represented by coordinate frame {TARG} and let the current chainsaw pose be represented by {T}.  The 

sculptor’s goal is to drive {T} towards {TARG} at all times, to execute the desired piece from a computer model. 

The pose displacement errors between the target and current poses are derived for display to the operator as 

follows.  It is easy for translations, and less straight-forward for rotations.  For translation errors, the position error 

vector EP0 is found by vector subtraction: 
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The result EP0  gives the XYZ displacements to translate the tool tip along, in the world coordinates, to drive 

{T} towards {TARG}. 

Unfortunately, no description of orientation is a vector description.  That is, we cannot simply subtract the 

target and current Euler angles (or fixed angles), analogously to the translation difference (32).  Instead, we can use the 

rotation matrix form to determine a difference (error) rotation matrix, and extract the error Z-Y-X (α−β−γ) Euler angles 

(identical to the error X-Y-Z (γ−β−α) fixed angles12) from the difference rotation matrix.  The difference rotation matrix 

is [ ]RT
TARG , expressing the orientation of {TARG} with respect to the current pose {T}: 

[ ] [ ][ ] [ ][ ] [ ][ ]RRRRRRR 000100
0 TARG

T
TTARGTTARG

TT
TARG === −    (33) 
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In (33) we take advantage of the beautiful property that TRR =−1  for orthonormal rotation matrices12.  Now 

we extract the error Euler angles (or fixed angles) from [ ]RT
TARG  and display these to the operator.  The result 

EEE γβα ,,  gives the Z-Y-X Euler rotational displacements to rotate the tool orientation about, with respect to world 

coordinates, to drive {T} towards {TARG}.  Note due to the definition of Euler angles, we must reverse the rotation 

order and do the γ about XT rotation first, followed by β rotation about YT and then α rotation about ZT.  We cannot do 

the rotations in any order as we can do for translations.  In the case of fixed angles, we would first do the α rotation 

about Z0, followed by β rotation about Y0 and then γ about X0, again reverse the original definition, to drive {T} toward 

{TARG}. 

The Cartesian displacement error formulas developed in this section should be displayed to the operator so that 

the human can drive all tool-tip errors to zero for all sculpted poses.  This subsection derived the formulas with respect 

to the world frame; in practice, a relative mode will be used as often as the world mode.  That is, the chainsaw frame 

{T} will be touched to the sculpture material in three or more reference poses (called poses {mi}, L,3,2,1=i ); this will 

align the real world with the same reference poses in the computer model.  Sculpting motions will then be made relative 

to one or more of these reference poses, rather than the world frame.  Similar error formulas apply: simply replace 

index 0 with the desired reference pose mi in (32) and (33). 

 
4.2  Cartesian Uncertainty 

This section presents simulated Cartesian pose measurement uncertainty errors ∆X given a δl uncertainty in 

cable length measurements from the string pots.  This section establishes a baseline regarding the sculpting tool 

resolution for aiding a sculptor in generating a carving.  This resolution varies with the nominal Cartesian pose. 

We apply a forward pose kinematics method for determining Cartesian uncertainty, applied to a grid of nominal 

poses (vertices of cubes of 0.5 m side, centered about the origin of {0}, for Z planes 0.25, 0.75, 1.25, and 1.75 m, for 

‘all orientations’, see below).  About each nominal pose Xnom (we first use inverse pose kinematics to determine the 

nominal set of cable lengths Lnom), we form all possible permutations 2
lL

inom
δ± , 6,,2,1 K=i .  For each of these 

26=64 permutations, we use forward pose kinematics to calculate Xerr, the uncertain Cartesian pose in each case.  For 

each case we calculate the Cartesian error: 

nomerr XXX −=∆       (34) 

 

where { } Tzyx δγδβδαδδδ=∆X  is the vector of Cartesian pose measurement uncertainty errors.  For all 64 

permutations, we average all Cartesian error components separately; note we must use absolute value for all error 

components or the resulting average Cartesian uncertainty would always be zero.  Then we calculate the translational 

and rotational norms of the average Cartesian errors:  

222
avgavgavgT zyxe δδδ ++=   222

avgavgavgRe δγδβδα ++=    (35) 
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The error norms Te  and Re  represent the Cartesian pose measurement uncertainty errors.  These measures 

are the length of the 3D diagonals of rectangular parallelopipeds bounded by avgavgavg zyx δδδ ,,  and 

avgavgavg δγδβδα ,, , the distance between the uncertain average and nominal Cartesian poses.  We wish these metrics to 

be as small as possible given a specific δl, for a high-resolution machine. 

As mentioned above, we consider ‘all possible orientations’: at each tool tip grid point, let us consider all Euler 

angles o45±=α , o45±=β , o45±=γ  in all possible permutations with an angle step size of o15 .  We have 73=343 

possible orientations at each tool tip point.  For each point, among the 343 orientations, we will report the average 

values over all orientations of the average Te  and Re  over all forward pose kinematics permutations.  Now, many 

of these orientation combinations are outside the workspace, due to cable length limits; we skipped these conditions in 

the data presented below. 

The grid described above is given in XY coordinates in Table I.  The average Cartesian pose measurement 

uncertainty error data for the grid of tool-tip points and ‘all possible orientations’ are presented in Tables II-V, in the 

same arrangement as Table I for each Z plane.  From laboratory observations the cable measurement uncertainty 

resolution is δl = 0.05 mm.  Note the equilateral triangle ABD in Figure 1 has sides of length 3.048 m (120 inches).  

The units of translational error norms are mm and degrees for rotational error norms in Tables II-V. 

Table I.  Grid of X,Y Tool-Tip Points (m) for each Z Plane 
-0.5,0.5 0,0.5 0.5,0.5 
-0.5,0 0,0 0.5,0 

-0.5,-0.5 0,-0.5 0.5,-0.5 
 

With δl = 0.05 mm, an important value for the translational error norm is ( ) 0866.005.03 2 ==Te  mm; at 

this value, the Cartesian error is equivalent to δl on each of zyx δδδ ,,  (of course the components can shift up and down 

to still yield 0.0866 mm).  A smaller error means the machine reduces the effect of δl and a larger error means the 

effects of δl are amplified at the given pose.  The units of Re  have been converted to degrees for the results tables 

below. 

Table II. (Z=0.25 m) Translational Errors (mm)  Rotational Errors ( o ) 
0.07 0.07 0.08  0.01 0.01 0.01 
0.07 0.12 0.20  0.01 0.01 0.01 
0.08 0.20 0.57  0.01 0.01 0.03 

 

Table III. (Z=0.75 m) Translational Errors (mm)  Rotational Errors ( o ) 
0.07 0.07 0.08  0.01 0.01 0.01 
0.08 0.16 0.33  0.01 0.01 0.02 
0.08 0.38 0.42  0.01 0.02 0.02 
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Table IV. (Z=1.25 m) Translational Errors (mm)   Rotational Errors ( o ) 
0.07 0.07 0.11  0.01 0.01 0.01 
0.08 0.21 0.39  0.01 0.01 0.03 
0.11 0.41 0.45  0.01 0.03 0.03 

 

Table V. (Z=1.75 m) Translational Errors (mm)    Rotational Errors ( o ) 
0.07 0.08 0.24  0.01 0.01 0.02 
0.09 0.34 0.61  0.01 0.02 0.04 
0.39 0.36 0.27  0.02 0.03 0.02 

 
From the Cartesian uncertainty error norms of Tables II-V, for a given Z plane, most errors decrease to the 

front and to the left in the workspace.  This is due to longer cables yielding lower relative errors, for the same δl.  For 

Tables II-IV the largest error is in the lower right corner, for both translations and rotations; this point approaches a 

singularity where two cables nearly become collinear.  The machine will be unreliable near singularities in terms of 

Cartesian uncertainties given finite cable length measurement uncertainties.  In order to avoid algorithmic singularities 

in forward pose kinematics, the moving cable connection points must stay away from the boundaries of the ground truss 

defined by points A, B, and C.  In Table V, this singularity has moved nearer the (2,3) and (3,2) locations. 

Tables II-V all have elements where the average translational error norm is less than 0.0866 mm.  Translational 

errors under this value are good since this means that the cable sculpting tool is diminishing the effects of cable 

measurement uncertainty δl in these regions.  All poses where the normalized translational error is greater than 0.0866 

mm amplify the effects of cable measurement uncertainty δl. 

Generally all rotational errors given in Tables II-V are very low (all rotational units are degrees).  Due to the 

relatively long rotational arms on the chainsaw between moving points P1, P2, and P3, and T, the rotational error is 

diminished compared to the translational error.  All errors are in the hundredths of degree range.  The worst rotational 

error is o04.0 , which combines all three rotational axes.  It appears that rotational errors will not cause any problem in 

the sculpting tool.  The translational errors dominate; the worst of these is only 0.61 mm. 

Since the above grid of poses was central to the reachable workspace, we also checked the Cartesian 

uncertainties at various outlying points, on the boundary of the reachable workspaces; we did not find higher errors for 

these cases.  Also, the above results are for the specific δl of 0.05 mm observed in the system; though the forward pose 

kinematics problem is non-linear, we found that doubling δl to 0.10 mm roughly doubled all error norms in Tables II-V. 

For the 0.05 mm δl value, our results show that the Cartesian resolution varies between 0.07 and 0.61 mm for 

translations and between o01.0  and o04.0 for rotations (both measures are combined for the three XYZ axes).  These 

Cartesian uncertainty values are very small considering the large scale of the sculpting problem.  According to sculptor 

Helaman Ferguson, a Cartesian resolution of 1 cm is sufficient for large sculpting projects.  This subsection shows that 

all translational Cartesian uncertainties are far below this 1 cm level.  Since the system is a hand-directed metrology 
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system driven by a human, a much more significant source of problems is tremors and errors from the human hands.  

The chainsaw further is very heavy; thus a gravity offload system will help the human maintain desired resolution; the 

metrology system resolution is more than that required. 

 
4.3  Calibration of Fixed Cable Points 

What if the locations of the fixed cable points A4, A5, B6, C1, C2, and C3 are not known precisely?  This section 

presents a method for calibration of these points given length readings from three known poses within the workspace.  

That is, touching the tool tip to a known XYZ position, plus a known orientation, we read the six cable lengths via the 

string pots.  This is performed for three distinct poses [ ]T0
1T , [ ]T0

2T , and [ ]T0
3T , and the following mathematics calculates 

the vector positions of fixed cable connection points A4, A5, B6, C1, C2, and C3.  The first step in the solution process is 

to determine the chainsaw cable attachment points P1, P2, and P3, one set for each given (touched) pose: 

[ ] [ ][ ]100 −= TTT ij

jjij

P
TTP   3,2,1=i   3,2,1=j   (36) 

In this subsection, point Pij is defined as: 

















=

ijz

ijy

ijx

ij

P

P

P

P0       (37) 

 

where ijP0  is the position vector to moving cable connection point Pi, for the jth given pose ( 3,2,1=i  and 3,2,1=j ).  

ijP0  is extracted as the last column, first three rows, of (36). 

To solve this overall calibration problem, let us first consider only cable 4, which connects fixed point A4 

(unknown) to moving point P3 (known in three poses from (36)), via length L4 (known in the three poses from the fourth 

string pot).  The key to the problem is to recognize that A4 is the intersection of three spheres, whose centers are the 

three known points P3j and whose radii are the three sensed values L4j, 3,2,1=j .  Note we define Lij as the sensed length 

for cable i, in the jth given pose ( 6,,2,1 L=i  and 3,2,1=j ).  The equations for these three spheres are: 

( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( ) 2
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334
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LPAPAPA

LPAPAPA

LPAPAPA

zzyyxx

zzyyxx

zzyyxx

=−+−+−

=−+−+−

=−+−+−

    (38) 

The unknown point A4 may easily be found using the Intersection of Three Spheres algorithm developed earlier 

for Forward Pose Kinematics.  This algorithm appears in (4-15). 

To finish the calibration of fixed cable points A4, A5, B6, C1, C2, and C3, simply apply the three spheres 

intersection algorithm six times (including the case described above), as follows: 

1.  C1 is the intersection of:  ( 11
0 P ,L11), ( 12

0 P ,L12), ( 13
0 P ,L13) 

2.  C2 is the intersection of: ( 21
0 P ,L21), ( 22

0 P ,L22), ( 23
0 P ,L23) 
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3.  C3 is the intersection of:  ( 31
0 P ,L31), ( 32

0 P ,L32), ( 33
0 P ,L33) 

4.  A4 is the intersection of: ( 31
0 P ,L41), ( 32

0 P ,L42), ( 33
0 P ,L43) 

5.  A5 is the intersection of: ( 21
0 P ,L51), ( 22

0 P ,L52), ( 23
0 P ,L53) 

6.  B6 is the intersection of: ( 21
0 P ,L61), ( 22

0 P ,L62), ( 23
0 P ,L63) 

 
Note in each case, the spheres’ intersection is found from the same moving cable connection point and the same 

cable, but for three different known poses and measured lengths.  Now, since we use the same sphere intersection 

algorithm from forward pose kinematics, this fixed cable points calibration is subject to the same imaginary solutions, 

multiple solutions, and algorithmic singularities problems.  If imaginary solutions result, this means one or more 

spheres do not intersect; this means there is a modeling or sensing error.  The multiple solutions will cause no trouble, 

since approximate values for the fixed cable points are known.  Further, if a different Z value is chosen for each of the 

known poses, and if the known orientations are kept to nominal (i.e. 0=== γβα ), none of the algorithmic 

singularities will be a problem. 

The methods in this subsection will work well only if the fixed cable points are truly fixed (see Section 3.2 and 

Figure 6).  Otherwise, there will be some error due to the cable/pulley angles shifting the cable contact points.  Thus, 

fixed point calibration is another reason to add a plate with a fixed hole to each of the string pots.  If this mechanical 

guide is not added, an iterative procedure similar to Section 3.2 may be implemented to reduce this error in the fixed 

cable point calibration due to cable/pulley angles. 

 
4.4  Workspaces 

The workspace is defined as the 3D volume that is attainable by the tip {T} of the six-cable hand-directed 

sculpting metrology tool, both in position and orientation.  We are interested in three types of workspace: reachable, 

zero-orientation, and dexterous.  The reachable workspace is the 3D volume reachable by the tool tip regardless of 

orientation; if a point is reachable in only one specific orientation, it is considered part of the reachable workspace.  The 

zero-orientation workspace is that 3D volume that can be reached by the tool tip with the constraint of nominal 

orientation only, 0=== γβα .  The dexterous workspace is that 3D volume reachable by the tool tip in all possible 

orientations.  For most parallel robots, the dexterous workspace vanishes, so we must define a limit on dexterous 

workspace, such as o30±  on α, β, and γ.  Generally, the zero-orientation workspace is a subset of the reachable 

workspace, and the dexterous workspace is a subset of the zero-orientation workspace. 

The workspaces are limited by the 2.54 m (100 inch) string pot cable excursions.  For the hardware, the length 

constraints are 318.4778.1 ≤≤ iL  m ( 17070 ≤≤ iL  inches) for 3,2,1=i  and 54.20 ≤≤ iL  m ( 1000 ≤≤ iL  inches) 

for 6,5,4=i .  Note we added cable extensions of 1.778 m (70 inches) to cables 1, 2, and 3 to bring the tool to normal 

heights for sculptors standing on the floor.  We have developed a geometric workspace determination method for certain 
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planes16.  However, in this section we use a numerical computer method to determine the 3D reachable, zero-

orientation, and o30± dexterous workspaces. 

In the numerical workspace results presented below, we discretized the possible pose space as follows.  We 

search over all pertinent XY points with 05.0=∆=∆ yx  m.  For the reachable and dexterous workspaces, we vary 

γβα ,,  over all possible permutations in the ranges o30± , with o10=∆=∆=∆ γβα .  All Z planes have the same XY 

plane limits in the workspace plots below; the ABD equilateral frame is shown for reference in each.  We consider nine 

Z planes, evenly spaced within the workspace; the workspace plots below follow the Z-plane arrangement shown in 

Table VI (m): 

Table VI.  Z-planes (m) for Numerical Workspace Determination 
0 0.4 0.8 

1.2 1.6 2.0 
2.4 2.8 3.2 

 

Figures 7a-c present the numerical reachable, zero-orientation, and o30±  dexterous workspaces, respectively, 

for the hand-directed sculpting tool.  These show the theoretical workspace extents; the useful workspaces are bounded 

by the planes of the tetrahedral frame.  The dexterous workspace is dependent on the limited angle ranges chosen.  For 

instance, the o45±  dexterous workspace (not shown) is nearly void; in that case, there is a small workarea on Z planes 

0.8, 1.2, and 1.6; the remaining Z planes are completely blank. 

 

   
Figure 7a.  Numerical Reachable Workspace Figure 7b.  Numerical Zero-Orientation Workspace 
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Figure 7c.  Numerical Dexterous Workspace 

The axis units in Figures 7a-c are m (the equilateral triangle ‘V’ shown has sides of length 3.048 m).  The X0 

limits are -2 to 4 m and the Y0 limits are -4 to 2 m for all subplots in Figures 7.  This concludes our presentation of 

workspace.  For more details on workspace, plus all topics in Sections 3 and 4, including simulation examples for all of 

the related kinematics problems, please see16. 

 

5.  EXPERIMENTAL RESULTS 

This section presents experimental results from the NIST cable-based metrology system.  Three experiments 

are presented, typical of the many diverse motions we have tested in the lab: an absolute, combined-axis translational 

motion, an absolute rotation about a single Cartesian axis, plus relative surface motions on a torus.  We present 

experimental data and compare it to simulated motions.  We also present a discussion of absolute accuracy, 

measurement resolution, and errors, plus ideas for design improvements. 

The six identical string pots in our system are ten-turn potentiometers allowing a length change of 2.54 m (100 

inches).  The nylon-coated, 0.5 mm diameter, twisted stainless steel cable winds around the internal potentiometer drum 

in a single layer (thus, no error due to the cable winding onto itself).  The manufacturer states the temperature range as 

-40 to 200 Co  and the temperature-dependent cable elongation as 158x10-6/ Co .  A torsional spring maintains tension 

(about 2 N) on each cable at all times; we have developed a method to calculate the load the human exerts to overcome 

the cables’ tension for any Cartesian motion, but this is not significant and hence not presented (in some cases the cable 

tensions help rather than hinder the specific motion).  The experimental results in this section were obtained using a 

light proxy cross for the sculptor’s chainsaw; for the production model we are designing a gravity-offload assist 

mechanism for unloading the human as much as possible.  The six string pot potentiometer voltage readings are sent to 

the PC via an external interface box and an internal PCI DAQ (data acquisition) card.  LabView* software is used for 

the metrology system, with Matlab* calculating the Cartesian pose for LabView* at each cycle, running at 10 Hz. 

                                                        
* The identification of any commercial product or trade name does not imply endorsement or recommendation by Ohio University or NIST. 
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5.1  Experiment 1: Absolute, Combined-Axis Translational Motion 

The first experiment involved a straight-line translational motion in the combined X0Y0 absolute directions.  A 

heavy Aluminum straight edge was aligned by o30−=α  about Z0 on a lab table just over 1 m high.  The human guided 

the tool tip along this edge on the table top, attempting to maintain the initial orientation.  The commanded initial and 

final poses for this case were: 

{ }00300160.15588.00429.0 −−=iX   { }00300160.11778.06170.0 −=fX  

The experimental (solid) and simulated (dashed) cable lengths are plotted below for motion along the straight 

X0Y0 line in Figure 8a, followed by the experimental (solid) and simulated (dashed) absolute Cartesian pose variables in 

Figure 8b.  Figure 8c presents the same X0Y0 data as that of Figure 8b, but plotted Y0 vs. X0 rather than vs. time.  The 

absolute x error of 32 mm is evident at the end of motion in the X0Y0 plane.  Figure 8c shows the desired and measured 

straight line in Cartesian space.  Figure 8d shows the experimental environment for this case. 
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Figure 8a.  Cable Lengths, XY Motion  Figure 8b.  Cartesian Pose, XY Motion 
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Figure 8c.  Absolute Cartesian Pose, X0Y0 Motion Figure 8d.  Lab Table, X0Y0 Motion 

 
The agreement is good as seen in the above plots.  We can see significant human error during motion, 

especially in cables 1 and 2 (it appears that these cables dwell during motion due to human inputs, where they should 

change continuously and smoothly as shown in the dashed lines), plus all three Cartesian Euler angles.  The average α 

angle seems to be off by o1 , but this could be due to workspace placement of the straight line or human motion error as 

much as metrology system error.  Since it is difficult to read in the above scale, the worst absolute error magnitudes for 

this motion are given in the table below, for each axis, absolute values (mm and degrees); these values are the 

maximum error at the start or end since significant human errors may occur in between. 
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Table VII.  Absolute Errors, X0Y0 Translational Motion 
 x (mm) y (mm) z (mm) α ( o ) β ( o ) γ ( o ) 

Maximum Absolute Error 32 12 4 1.6 1.9 2.0 
 
 The errors may be decreased by implementing a relative mode, wherein subsequent poses are measured with 

respect to a defined reference pose(s).  Errors decrease because the uncertainty of the absolute reference to the world 

frame is removed.  Also, as we will discuss later, much of the error is due to imperfect human-guided motions and 

workspace measurements, rather than the metrology system itself. 

 
5.2  Experiment 2: Absolute, Single-Axis Rotational Motion 

The second experiment involved a single-axis rotation, α, about the absolute Z0 axis.  The tool tip was 

supported on the lab tabletop, over 1 m high.  Taking care not to change the translational location of the tool tip, the 

human rotated the tool about its tip, also attempting to maintain nominal zero orientation for β and γ.  The commanded 

initial and final poses for this case were: 

{ }0000160.11778.00302.0−=iX   { }00450160.11778.00302.0−=fX  

 
The experimental (solid) and simulated (dashed) cable lengths are plotted in Figure 9a for rotation about Z0, followed 

by the experimental (solid) and simulated (dashed) Cartesian pose variables in Figure 9b. 
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Figure 9a.  Cable Lengths, α Motion  Figure 9b.  Cartesian Pose, α Motion 

 

 The agreement is good as seen in the above plots.  We can see significant human error during motion, 

especially in maintaining fixed tool tip position.  Since it is difficult to read in the above scale, the worst absolute error 

magnitudes for this motion are given in the table below, for each axis, absolute values (mm and degrees); these values 

are the maximum error at the start or end since significant human errors may occur in between. 
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Table VIII.  Absolute Errors, α Rotational Motion 
α Rotation  x (mm) y (mm) z (mm) α ( o ) β ( o ) γ ( o ) 

Maximum Absolute Error 12 19 8 1.1 2.5 1.7 
 

 Again, the errors may be decreased using relative mode, and much of the error is due to human-guided motions 

and workspace measurements, rather than the metrology system itself. 

 
5.3  Experiment 3: Relative Torus Surface Motions 

 Experiment 3 involved tracing the surface of a torus model (see Figure 10a, made of Styrofoam, whereas the 

real-world material would be granite) with the tool tip (Figure 10b).  We have two sub-experiments, tracing the larger, 

outer diameter in the XY plane and also tracing the smaller, cross sectional circle diameter in the YZ plane; the torus is 

placed on the lab tabletop for both.  For both sub-experiments, the tool is kept radial to the appropriate circle at all 

times, so that only one Euler angle varies (α and γ, respectively); the remaining angles are kept to nominal and the other 

translations are kept in the respective planes of motion.  In both cases, the relative translational measurement results 

(Figures 11a and 12a) are given relative to a reference point defined in each case to be the center of the circle of 

interest.  This removes the absolute frame world uncertainty (the above descriptions are for attempted motion relative to 

the torus, not the world frame).  In Figures 11a and 12 a, the dashed lines show the edges of the torus, while the solid 

lines show the measured data.  Figures 11b and 12 b show the associated relative Euler angles measured during these 

torus experiments. 

 

      
 

Figure 10a.  Styrofoam Torus    Figure 10b.  Chainsaw 
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Figure 11a.  XY Relative Torus Measurement  Figure 11b.  Associated Relative Euler Angles 
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Figure 12a.  YZ Relative Torus Measurement  Figure 12b.  Associated Relative Euler Angles 

 

 In the experiment of Figures 11, the human guided the tool tip from right to left, radially along the torus surface 

as shown; not quite one-fourth of the torus was traversed since the Euler angle α starts from its initial value (defined in 

the relative mode to be zero) and rotates in the negative direction about the Z axis to around o80− .  In the experiment 

of Figures 12, the human guided the tool tip from up to down, radially along the torus surface as shown; not quite one-

sixth of the torus was traversed in this case since the Euler angle γ starts from its initial value and rotates in the positive 

direction about the X axis to nearly o60 . 
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 The metrology system displays in real-time (at a rate of 10 Hz) to the human operator: the six potentiometer 

voltages, the six calibrated cable lengths, and the Cartesian pose (three vector position components and three Euler 

angles).  The Cartesian pose can be displayed either absolute, with reference to the world frame {0}, or relative, with 

reference to one or more poses defined by touching the tool tip to the material under development or other items in the 

workspace.  Figure 13 shows another type of real-time visual feedback from the metrology system to the operator.  This 

figure shows the four views (isometric and three planar projections) of the virtual CAD model for the 3D surface to be 

sculpted (in this case, a torus); this can be defined in an absolute or relative mode (relative mode seems to be more 

useful in the lab).  A relative mode is used in Figure 13, where the reference point is an asterisk shown on the torus 

surface (at [0 0 0]), with associated desired orientation (three mutually-orthogonal lines whose origin is the asterisk), in 

this case lined up with the XYZ axes shown.  The floating pose shown is the actual tool-tip location, which updates (in 

position and orientation) every tenth of a second.  A representation of a diamond-tipped chainsaw blade is shown in all 

views.  The operator can move the tool-tip until it coincides with the target pose, in this case the reference pose shown 

on the torus.  The system gives the operator the relative difference between target and current poses (three relative 

vector position components and three relative Euler angles) to aid in reaching the desired pose. 
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Figure 13.  Virtual Surface with Pose Updated in Real-Time 
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5.4  Experimental Error Discussion 

 This subsection enumerates and discusses the various error sources in laboratory experiments concerning the 

above results.  The potential error sources are many, as given in the following list. 

• Cable/pulley errors as discussed in Section 3.2.  The results presented do not use the iterative forward pose 
kinematics solution; however, when we did apply this iterative solution to check the effect on errors, nearly all 
cases were basically indistinguishable.  The iterative procedure required 2-4 iterations at each step to achieve 

translational and rotational error tolerances to 0.02 mm and o01.0 , respectively.  So, this source of error can be 
significant as discussed in Section 3.2; however, the experiments measured motions largely staying near the 
central plane containing points A4, A5, and B6 and thus this type of error is small in our results. 

• In the hardware chainsaw proxy, the current design allows points P1, P2, and P3 to slide significantly around a 
2.54 cm (1 in) eyebolt.  We tried to manage this during data collection, but it should be improved in design. 

• We cannot know exact values for the fixed cable connection points A4, A5, B6, C1, C2, C3; Section 4 presents an 
on-line method which may help, but there will always be some error here. 

• It is difficult to measure precise Cartesian positions and orientations in the workspace of the metrology system; 
such values are used as the perfect measure that the experimental data is compared with. 

• In a related vein, we do not know the precise location and orientation of the lab bench in the metrology system 
workspace that was so central to generating straight lines and singe-axis rotations.   We assumed it was 
perfectly aligned in the XYZ directions of {0} and also that the various edges were perfectly straight.  This 
assumption is reasonable but not perfect. 

• The cable calibrations are not exact; they can be improved but will never be perfect. 
• There is a large potential error from the human attempting to provide smooth motion as desired, but not 

succeeding perfectly.  Cartesian orientations can be especially tricky to generate, but precise positions are 
challenging too. 

• The experimental trajectory data of this section all assume that the ‘perfect’ simulation for comparison occurs 
with constant velocity.  In the real world, the human naturally accelerates to constant velocity from rest and 
then decelerates to zero velocity (this can be seen in the α plot of Figure 9b, where the α slope starts and ends 
at zero).  Of course, this can be modeled in simulation, but it is difficult to determine the level and time of 
acceleration and deceleration, which change with each new experiment. 

• Cables 4 and 5 can easily jump off their pulleys, causing erroneous length readings.  While this did not occur 
for the data presented (we repeated any cases when this did happen), this is a potential problem in practice. 

 
Some of these error sources can be ameliorated by design improvements.  In particular, the idea discussed at 

the end of Section 3.2, of placing a plate with a small hole for the cable near the nominal fixed cable points for each 

string pot, would help us to know the exact fixed cable points better and to avoid the cable/pulley errors, eliminating the 

need for iterative solutions altogether.  A better design is required for moving cable connection points P1, P2, and P3 to 

largely prevent their sliding relative to the tool.  Clearly a precise calibration rig (a known cube for instance, placed 

precisely in the workspace) would help immensely in calibrating the cables, fixed cable connection points, and guiding 

the human in more precise motions; however, this is not realistic for sculpting or automated construction environments. 

 Despite these various error sources, we found reasonable results in the experiments.  Section 4.2 presents the 

simulated Cartesian measurement resolution over various positions and orientations in the workspace.  We found this 

measurement resolution to be grand overkill, generally down in the hundredths of mm!  This is simply based on how 

many digits we can reliably read from the string pot voltages.  It is likely that a drifting voltage power supply to the 
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string pots and thermal expansion of the cables themselves may have more of an effect.  For most, if not all, large-scale 

operations, the measurement resolution requirements will not be nearly so demanding as hundredths of mm. 

 Regarding absolute Cartesian accuracy, we initially observed errors of up to 50 mm or more for translations 

and up to o10  for rotations, comparing the experimental data with the off-line simulation, which was assumed to 

represent the real-world perfectly (which it cannot, of course).  Upon improving our calibration procedures, we reduced 

this absolute Cartesian error generally to the 5-10 mm range for translations and less than o2  for rotations.  We 

encountered absolute accuracies of 10-30 mm in the extreme (e.g. see Tables VII and VIII), but these relate to human 

error as much as systemic error.  These numbers can apply to each Cartesian axis simultaneously, though we observed 

much better accuracies for many specific motions.  Sculptor Helaman Ferguson believes that 10 mm accuracy is fine 

for large sculptures. 

 Regarding relative Cartesian accuracy (making Cartesian motions relative to defined reference poses on the 

material for sculpting), we expect lower errors than the absolute Cartesian accuracies since this mode removes the 

dependence on a well-known absolute world frame.  Our lab experience indicates that the relative mode is preferable to 

absolute mode in our metrology system. 

 

6.  CONCLUSION 

This article has presented a novel system for passive-cable-based Cartesian pose metrology.  Six cables are 

connected to a moving body; six string pots (tensioning the cables via torsional springs) independently read the six cable 

lengths and analytical forward pose kinematics was presented to calculate the Cartesian pose in real time.  Several 

important kinematics issues were also addressed related to cable-based metrology.  The proposed system was 

introduced as a sculptor’s aid, but there are many potential applications in manufacturing, rapid prototyping, robotics, 

and automated construction. 

We presented experimental results, compared these with simulated motion results, and discussed the sources of 

error.  Our experimental data and laboratory experience indicates that our system shows promise as a real-time, 

economical, accurate, safe, simple, and effective Cartesian pose metrology tool. 
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