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Computational Morphology is the analysis of form by computational means�

The present paper is more speci�cally about the construction and manipu�

lation of closed object boundaries through a set of scattered points in �D�

Results are developed in four successive stages of computational morphology�

�� impose a geometrical graph structure on the set of scattered points�

�� construct a polygonal boundary curve from this geometrical graph

structure�

	� build a hierarchy of polygonal approximations together with localization

information�


� construct a geometric continuous object boundary�

The economic advantage of this approach is that there is no dependency on

any speci�c data source� It can be used for various types of data sources or

when the source is unknown�

�� Introduction
The work described here deals with the computational aspects of geometry
with respect to form or shape information� that is� morphology� Morphol�
ogy is closely related to geometry� a computational geometric approach to the
analysis of form is called Computational Morphology ���	� In particular� this
paper is about the construction and subsequent manipulation of closed object
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boundaries from a set of points in �D� These points are scattered points� i�e�
no structural relationship between them is known in advance and they have
arbitrary position� We consider four stages of this task�


� Given a set of scattered points� construct a geometric structure on the
points�

�� Given a geometric structure on a set of scattered points� construct an
object boundary by �nding a closed polygon through all points�

� Given a closed object boundary� construct a hierarchy of approximations
and localization information�

�� Given a closed polygonal boundary� construct a geometrically smooth
�G��continuous� boundary curve�

In many applications in geometric modeling� computer graphics� and object
recognition� input data is available in the form of a set of �D coordinates that
are points on the boundary of an object� Such points can be synthetic or
measured from the boundary of an existing object� A collection of points�
however� is an ambiguous representation of an object� and can therefore not be
used directly in many applications� It is often essential to have a representation
of the whole boundary available that is unambiguously de�ning a valid object�
The boundary constructed from a set of points can for example be used for the
initial design of an artifact� for numerical analysis� or for graphical display�
The way in which the boundary points are acquired may give useful in�

formation in order to construct the whole boundary� but can also make the
construction method very dependent on the speci�c data source� If it is not
known how the data is obtained or if a single construction method is to be used
for data from various types of sources� then no structural relation between the
input points may be assumed� except that they all lie on the boundary of an
object� The order of the points in the input then provides no information on
their topological relation to each other� In particular� they do not lie on a
regular grid� but are scattered points� In this paper we assume no a priori
knowledge about any structural relation between the points�
The simplest boundary through a set of points is one that consists of straight

segments� making a �D simple closed polygonal curve� A simple closed polygon
must consist of N edges� with N the number of data points� A brute force
algorithm that tests all combinations of N edges out of all

�
N

�

�
possible edges

takes

�

���N
�

�
N

��

time� which is at least ��NN �� ���f�N�� can be read as �order exactly f�N���
O�f�N�� as �order at most f�N��� which gives an upper bound� and ��f�N�� as
�order at least f�N��� which gives a lower bound� all three �for largeN ��� This is
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clearly infeasible when N is large� We therefore exploit some geometric relation
between the data points� Section presents the ��Neighborhood Graph� which
describes the geometric structure on the set of data points� Section describes
how the ��Neighborhood Graph is exploited for the construction of a closed
polygonal object boundary�
In many real applications� a boundary constructed from a set of points con�

sists of thousands of faces� An approximation of the object� however� is often
su�cient� Localization provides bounding volume information� e�g� a sequence
of bounding rectangles containing pieces of the boundary� Such information is
useful for e�cient operations such as collision detection for robot motion plan�
ning� Approximation and localization can be combined in a single scheme� and
several levels of approximation and localization can be combined in a hierar�
chical way� Section presents a new hierarchical approximation and localization
scheme�
Polygonal boundaries are only C��continuous at the vertices� there the tan�

gent vectors instantly change direction� A smoother curve� consisting of curved
segments that interpolate the vertices and are smoothly connected� is often
desired� A curve that has a continuously changing tangent vector is called
G��continuous� Section presents a scheme to make the curve G��continuous�
Finally� Section presents some concluding remarks�

�� Point set analysis
In order to perform any geometric analysis on a set of scattered points� some
geometric structure must be imposed on it� Such a structure typically relates
points to each other if they satisfy some geometric property� and is represented
by a graph� Examples of such geometric graphs are the Nearest Neighbor
Graph� the Euclidean Minimal Spanning Tree� the In�nite Strip Graph ��	�
the Sphere of In�uence Graph ��
	� the Relative Neighborhood Graph �
�	� the
Gabriel Graph �

	� the Convex Hull� the Delaunay Triangulation ��	 and its
dual Voronoi Diagram ���	� the ��Shape ��	� and the ��Skeleton �
	� Section
presents the ��Neighborhood Graph� a parameterized geometric graph which
uni�es a number of the before�mentioned ones� The ��Neighborhood Graph is
used in Section for the construction of an object boundary through all data
points�

���� The ��Neighborhood Graph
The ��Neighborhood Graph has been introduced in ���	� Here we will consider
one particular form� To start with� let us consider the �D Delaunay Trian�
gulation on a set of points� The Delaunay Triangulation is a �lling of the
plane inside the Convex Hull of the point set by triangles with the following
properties�


� the vertices of each triangle are data points�

�� the disc touching the vertices of each triangle contains no other data point
in its interior�
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Figure �� Example Delaunay Triangulation and a few �largest empty discs��

�A disc is a �lled circle�� A region that contains no data point in its interior
is called empty� If no more than three data points lie on any empty disc� the
Delaunay Triangulation is uniquely de�ned� Otherwise the triangulation on
these speci�c points must be non�overlapping�
The Delaunay Triangulation can equivalently be de�ned as the collection of

all edges that have an empty disc touching its vertices� For all these edges
there are two largest possible empty discs touching their vertices� which either
touch a third point or have an in�nite radius� In this last situation the disc
degenerates to an empty half�plane� and the edge lies on the Convex Hull� Both
situations are illustrated in Figure 
� The radii of the two discs are a scaling
of the radius r of the smallest possible disc touching the two vertices� These
scaling factors are written as an expression 
��
� c�� with � � c � 
� The two
radii are thus r��
� c�� and r��
� c��� with � � c�� c� � 
�
The Delaunay Triangulation is a particular instance of the ��Neighborhood

Graph� which discriminates between the case that the centers of the discs lie
at opposite sides of the edge and the case that they lie at the same side� In the
latter case the parameter c� is taken negative� So� c� lies in the range ��
� 
	�
de�ning a radius of r��
 � jc�j�� Parameter c� still lies in the range ��� 
	�
The ��Neighborhood Graph that coincides with the Delaunay Triangulation is
denoted ����
� 
	� ��� 
	��
For each edge in the Delaunay Triangulation the union of two discs touching

its vertices is empty� i�e contains no data points� The ��Neighborhood Graph
also considers the case that only the intersection of two discs is empty� In that
case the parameter c� is taken negative� So� c� may lie in the range ��
� 
	�
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Figure �� Left� �� vertices� Right� the corresponding ����
� 
	� ��� 
	� �Delau�
nay Triangulation��

de�ning a radius of r��
�jc�j�� The graph ����
� 
	� �d� 
	� for some d � ��
� �	
is the Delaunay Triangulation plus all edges for which there are c� � ��
� 
	
and c� � �d� �	 such that the intersection of two discs touching their vertices
with radii r��
 � jc�j� and r��
 � jc�j� is empty� The smaller the value of d�
the smaller the area of the intersection� and the more edges are included in the
��Graph�
Each d � ��
� �	 yields one speci�c ��Graph from the whole spectrum of

graphs ���� � �	� �� � �	�� This spectrum uni�es a number of geometric graphs such
as the Convex Hull� the Delaunay Triangulation� the Gabriel Graph� and the
��Skeleton� into a continuum that ranges from the void to the complete graph�
The ��Graph provides a geometric structure for point pattern analysis and
can for example be used for geographics and network analysis� The graph
����
� 
	� �d� 
	�� d � ��
� �	 is the ��Graph that we use for boundary construc�
tion�
A formal de�nition and analysis and many examples of the ��Neighborhood

Graph are given in ���	� The �D ����
� 
	� �d� 
	� can be constructed in time
��N logN� for d � �� which is optimal� and O�N�� for d � �� Figure � gives
an example of a point set and the ����
� 
	� ��� 
	� on that set� The point set is
taken from the silhouette of Ucello�s chalice� which serves as the cover picture
of the journal �Computer Aided Geometric Design� �
�	�

�� Boundary construction
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The boundary construction problem that we deal with is stated as follows�
�nd a simple closed polygon through all data points of a given set� This task
is clearly underconstrained� so that a solution is not unique� Indeed� a set of
points is an ambiguous boundary representation� Some criterion is needed to
select the boundary that is considered the best among all solutions� However�
there is no known algorithm that generates all solutions e�ciently� In order
to avoid excessive time complexities some heuristic is needed� The heuristic
must be chosen so as to yield a boundary among all possible solutions that is
considered a likely boundary for the given point set�
One possibility is to �nd the boundary of minimal length� but this is NP�

hard� A heuristic algorithm for the D case is presented in �
�	 but may result
in an unnatural object boundary ��	� The method in �
�	 tries to �nd the simple
polygon in the Delaunay Triangulation that corresponds to the shortest tree
in the dual Voronoi Diagram� For objects that have no distinct skeleton this
method gives strange results� The methods in �	 and ��	 take the Delaunay
Triangulation and successively delete edges from the outside until the resulting
boundary passes through all data points� This constriction process can get
locked in the sense that no more edges can be deleted without yielding an
invalid boundary� while not yet all data points lie on the current boundary�
Moreover� not every non�degenerate Delaunay Triangulation contains a simple
closed polygon through all data points�

���� Boundary extraction from the ��Graph
This section is concerned with the construction of a boundary polygon by
constricting the ����
� 
	� �c� 
	�� c � ��
� �	 of the input point set� Note that
the hull of any ����
� 
	� �c� 
	�� c � ��
� �	 is the Convex Hull� Constricting the
hull of a graph is the process of deleting a hull edge from the graph in such a way
that the boundary of the new graph is properly de�ned �see below�� A ��Graph
from which edges are deleted is not a ��Graph anymore� but is called a pruned
��Graph� In order to �nd a boundary through all data points� a ����
� 
	� �c� 
	��
c � ��
� �	 is constricted on the basis of the geometric information in the graph�
until all data points lie on the pruned graph hull�
If three edges in the graph form a triangle and one of the edges is a hull

edge� the triangle is called a hull triangle� Our constriction process selects in
each iteration that hull edge which is the best candidate for deletion� Note that
deletion of an edge of a hull of a �pruned� ��Graph must keep the boundary a
simple polygon� Therefore� deletion is only allowed if the hull triangle vertex
vk opposite to a hull edge vivj is not already in the current boundary� A hull
edge vivj that satis�es this condition is called removable �with respect to vk��
The selection of the next removable edge vivj to be deleted is based on the

observation that the interior vertex vk of the hull triangle vivjvk that has the
largest angle � �vi� vk� vj� has the largest possibility to be seen or sensed from
outside the hull� Additionally� the change of shape of the hull is small� relative
to the size of the triangle�
The radius of the disc through vi� vj � vk is denoted by R�vi� vj � vk�� and is
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Figure �� Left� ��indicator 	 �� Right� ��indicator � ��

equal to r�vi� vj���
 � jdj� for some d � ��
� 
	� This value is used in the
following de�nition�

Definition � ���indicator� � Let vivj be an edge of an intermediate hull� let
vivk and vjvk be edges in the �possibly pruned	 ��Graph� and let d be such that
R�vi� vj � vk� � r�vi� vj���
� jdj�� The ��indicator of vivj with respect to vk is
jdj if the center of the circle through vi� vj � vk lies at the same side of vivj as
vk
 is �jdj if the center lies at the other side
 and is zero if d � ��

The magnitude of the ��indicator is calculated during construction of the
��Graph� and is stored in it�
The more negative the ��indicator� the closer vk lies to vivj � and the larger

is angle � �vi� vk� vj�� see Figure � Note that the ��indicator is independent
of the size of the triangle� The selection rule based on the ��indicator is the
following�

Selection rule
Delete the removable hull edge that has the smallest ��indicator�

This selection criterion combines a local measure �the ��indicator� and global
information �the smallest value�� and is orientation and scale independent�
Let us investigate the exact relation between the ��indicator �ind and angle

� �vi� vk� vj�� According to the sine rule� sin�� �vi� vk� vj�� � r�vi� vj��R�vi� vj � vk��
By de�nition of �ind� we have r�vi� vj��R�vi� vj � vk� � 
 � j�indj� If �ind � ��
then 
 � �ind � r�vi� vj��R�vi� vj � vk�� and if �ind � �� then 
 � �ind �
� � r�vi� vj��R�vi� vj � vk�� So� if �ind � �� then � �vi� vk� vj� increases when
r�vi� vj��R�vi� vj � vk� increases� if �ind � �� then � �vi� vk� vj� increases when
�� r�vi� vj��R�vi� vj � vk� increases� The largest value of 
��ind is obtained for
the smallest value of �ind� leading to the selection criterion stated above�
Consider a hull edge v�v� as in Figure �� with hull triangles v�v�v�� v�v�v��

and v�v�v�� In this example� the ��indicator with respect to v� is smaller than
those with respect to v� and v�� If v�v� is selected for deletion because it has
the smallest ��indicator of all removable hull edges� the edges v�v� and v�v�
must also be deleted in order to have a properly de�ned boundary� If v�v�
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Figure �� Boundary edge in a �D ����
� 
	� �c� 
	�� c � ��
� ���

Figure 	� Left� ����
� 
	� ��� 
	� with the constructed boundary� Right� the
constructed boundary�

is not removable with respect to v� but is removable with respect to v�� and
v�v� is selected for deletion due to the ��indicator with respect to v�� then v�v�
and v�v� must be deleted� In general� if hull edge vivj is deleted due to the
��indicator with respect to vk� any edge crossing vivjvk must also be deleted�
Selection and deletion of a hull edge is repeated until all vertices are part

of the boundary polygon� For most practical cases the constriction process
on a ����
� 
	� ��� 
	�� i�e� the Delaunay Triangulation� successfully results in a
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Hamilton polygon� The constriction process can get locked however� no more
edges can be deleted without causing the boundary to be invalid� while not
yet all vertices lie on the hull� Also� not all Delaunay Triangulations contain
a Hamilton polygon� In both cases the constriction process can be performed
on a ����
� 
	� �c� 
	�� c � �� which contains more edges than the Delaunay
Triangulation� thus providing more degrees of freedom in the constriction�
The time complexity of the entire constriction algorithm is O�E logE�� with

E the number of edges in the ��Graph ���	� Figure � illustrates the constriction
algorithm on the ����
� 
	� ��� 
	� of Figure ��

�� Hierarchical approximation and localization
Two facilities are often used for e�cient manipulation of complex polygonal
objects consisting of many faces� approximation and localization� which can
both be performed hierarchically� The purpose of both techniques is to avoid
unnecessary processing of much morphological detail�
If the vertices of the polygon lie on a regular grid� �nding an approximation

or localization is a simpler task than for an arbitrary vertex connectivity struc�
ture� or topology� In the following we will only consider approximation and
localization schemes for arbitrary topologies�
The min�� approximation problem for a polygonal curve is the problem of

�nding an approximation polygon with the minimal number of vertices and
with the error within a given bound� The min�
 problem is the problem of
�nding an approximation polygon with the minimal error and a given number
of vertices� Algorithms for both optimality problems are discussed by �
�	� A
sequence of successively more detailed approximations requires the iterative
application of these algorithms� However� in general this yields no hierarchy of
approximations� and it is computationally expensive� The iterative end point
�t method for approximating plane polylines is described in ��	� It starts with
connecting two initial end points� If the error is larger than a chosen bound� the
vertex that determines the error is connected with the two end points� yielding
two new line segments� The process is repeated for the new line segments�
This method is also known� especially in the cartography community� as the
Douglas�Peucker algorithm� after ��	� This scheme provides no localization
information� The strip tree �
	 is a localization scheme that stores bounding
areas of the open polylines approximated by the iterative end point �t method�
The bounding areas are enclosing rectangles which are called strips� A level
in the tree corresponds to a collection of strips enclosing the boundary� rather
than to an approximation polygon� A variant of the strip tree is the Binary
Line Generalization �BLG� tree �
�	� used for Geographic Information System
applications�
In the next section I will present a hierarchical approximation and localiza�

tion scheme which is computationally e�cient for hierarchical operations such
as intersection and point�in�object tests�

���� The Flintstone scheme
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Figure 
� �D Flintstones� Left� F �P � � D�vp� vs� vq� �D�vp� vs� vr�� Right�
F �P � � D�vp� vs� vq� �H�vp� vs� vq��

The approximation algorithm is based on the way the localization of a part
of the closed polygon� which is an open polyline� is performed� The bounding
area of such an open polyline is called a Flintstone� Note that the bounding
areas enclose parts of the object�s boundary� not the object�s body�
The disc touching points a� b� and c is denoted D�a� b� c�� The half�plane con�

taining c and whose boundary passes through a and b is denoted by H�a� b� c��
A half�plane can be considered as a disc with a radius of �� Before present�
ing the approximation algorithm� the basic bounding area� Flintstone� must be
de�ned�

Definition � �Flintstone� � Let P be an open polyline with endpoints vp
and vs� Let vq be a vertex of P such that D�vp� vs� vq� contains all vertices
lying in H�vp� vs� vq�� If P � H�vp� vs� vq�� then the Flintstone F of P is
dened as F �P � � D�vp� vs� vq��H�vp� vs� vq�� Otherwise F �P � is the smallest
of D�vp� vs� vq� � D�vp� vs� vr� and D�vp� vs� vq� 	 D�vp� vs� vr�� where vr is a
vertex of P not in H�vp� vs� vq� such that D�vp� vs� vr� contains all vertices in
H�vp� vs� vr��

Paraphrasing� F �P � is the smallest intersection or union of two discs touching
vp and vs that contains vp � � � vs� Note that such a vertex vq in the de�nition
always exists� The de�nition is illustrated in Figure � for the case that the
�intstone is an intersection of two discs or a disc and a half�plane� It is easily
veri�ed that P � F �P �� so that F �P � is indeed a bounding area for P �
The hierarchical approximation of a closed polygon of N vertices starts with

the calculation of the smallest bounding disc �SBD�� that is� the smallest disc
that contains all vertices� This disc touches at least two vertices� say vi and vj �
i � j� If more than two vertices lie on the boundary of the smallest bounding
disc� we take two vertices that are farthest apart� Edge vivj is the zeroth order
approximation of the polygon� dividing it into two polylines vivi�� � � � vj and
vjvj�� � � � vi �here and in the rest of this section the indices are taken modulo
N��
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For the next level in the hierarchy of approximations� let us consider a poly�
line P � vp � � � vs� The approximation depends on the �intstone F �P �� If
F �P � � D�vp� vs� vq� � H�vp� vs� vq�� then P is approximated by the edges
vpvq and vqvs� If F �P � � D�vp� vs� vq� � D�vp� vs� vr� and if the radius of
D�vp� vs� vq� is smaller than the radius of D�vp� vs� vr�� then P is approximated
by the edges vpvq and vqvs� otherwise by vpvr and vrvs� If instead F �P � �
D�vp� vs� vq� 	D�vp� vs� vr� and if the radius of D�vp� vs� vq� is larger than the
radius of D�vp� vs� vr�� then P is approximated by the edges vpvq and vqvs� oth�
erwise by vpvr and vrvs� In other words� the new edges are made with either
vq or vr� whichever lies on the disc that contributes most to the �width� of the
Flintstone�
An edge vpvs is not subdivided if p�
 � s� in which case this edge is in the

original polygon� In order to construct the complete hierarchy� the iteration is
performed until all vertices are contained in the approximation polygon� which
then coincides with the original one� By de�nition� an edge vpvp�� has no
�intstone�
If there exists a disc touching vp and vs that contains vp�� � � � vs��� then the

�intstone bounding vp�� � � � vs�� is the intersection of two discs or a disc and a
half�plane� By construction of the approximation� each approximated polyline
is contained in a disc� So� all �intstones are the intersection of two discs or a
disc and a half�plane� In particular the degenerate case that a �intstone is the
union of a half�plane and a disc simply cannot occur� That would be the case
if a vertex vi� p � i � s� lies on the line through vp and vs and outside the line
segment vpvs� but by construction of the approximation� this never happens�
The shape of the intersection of two discs gave rise to the name ��intstone��
A binary tree is a natural data structure to store the hierarchical approx�

imation� The root� level zero of the tree� contains vertices vi and vj � The
left subtree stores vertices vi��� � � � � vj�� such that the symmetric or in�x or�
der traversal yields the successive vertices of the polygon� The right subtree
stores vertices vj��� � � � � vi�� analogously� A level�� approximation simply cor�
responds to the levels �� � � � � � of the tree� The bounding areas are stored as
follows� The root stores the smallest bounding disc� A node containing vertex
vq at level �� � � 
� of the tree� contains D�vp� vs� vq� and D�vp� vs� vr�� where
vp is the predecessor and vs the successor of vq at approximation level ��
The worst case time complexity to build the complete Flintstone tree is

��N�� and the storage complexity is linear ��	� Figure � shows a few approx�
imations of an arbitrary polygon �which happens to be the outer border of the
mainland of The Netherlands� Belgium and Luxembourg�� The lower right ap�
proximation is obtained by only re�ning an edge if the approximation error of
that edge �rather than the whole polygon� is larger than a given bound� Such
an approximation is called adaptive�

	� Smooth boundary construction
Smooth boundaries can easily be constructed by piecewise polynomials� The
B�ezier formulation is a convenient method to describe other polynomial schemes
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Figure �� G��continuity conditions for two B�ezier segments�

as well as to develop new schemes� �B�ezier curves and surfaces were indepen�
dently developed by de Casteljau at the Citro en and by B�ezier at the Renault
automobile company� but de Casteljau�s development was never published� so
that this curve and surface scheme was named after B�ezier�� The B�ezier formu�
lation is often used because of the geometrical signi�cance of the coe�cients�
A B�ezier curve of degree n is de�ned as

P �t� �

nX
i��

piB
n
i �t��

with Bn
i the Bernstein polynomials

Bn
i �u� �

�
n

i

�
ui�
� u�n�i� � � u � 
�

which are often called blending functions and the pi are called weights or control
points�

���� G��continuous boundary curve
In this section we construct a smooth boundary as a G��continuous closed
B�ezier curve� It is readily veri�ed that P ��� � p� and P �
� � pn� so that
the curve interpolates the �rst and last control points� The derivative has the
following form�

P 	�
�u� � n

n��X
i��

�pi�� � pi�B
n��
i �u��

In particular P 	�
��� � n�p� � p�� and P 	�
�
� � n�pn � pn���� so that the
tangent vector at P ��� lies on the line through p� and p� and the tangent
vector at P �
� lies on the line through pn�� and pn�
Let us consider two B�ezier segments P with control points pi and Q with

control points qi� and a common end point� say P �
� � Q���� so that pn � q��
As is just shown� the tangent vector at P �
� has direction pn � pn�� and the
tangent vector at Q��� has direction q�� q�� So� for the two tangent vectors to
have the same direction� pn��� pn � q� and q� should be collinear� see Figure ��






Note that a common tangent line is not su�cient for G��continuity� since the
tangent vectors must additionally have the same direction� In other words� the
two curves must have the same orientation� otherwise they join with a sharp
cusp�
First we estimate the tangent vector at each vertex� then we construct a G�

curve that interpolates vertices and tangent vectors� Let us denote the tangent
vector at data point vi with Ti� This tangent line can be estimated by weighting
the vectors �vi � vi��� and �vi�� � vi� and normalize the weighted sum�


� Weight by length� take �vi � vi��� � �vi�� � vi�� giving vi�� � vi��� and
normalize to unit length� The reasoning behind this method is that the
larger of the segments vi��vi and vivi�� corresponds to a larger part of
the curve� and should a!ect the tangent vector most�

�� Weight uniformly� take �vi � vi����kvi� vi��k� �vi�� � vi��kvi��� vik�
and normalize to unit length�

� Weight by inverse length� take �vi�vi����kvi�vi��k
���vi���vi��kvi���

vik
�� and normalize to unit length� The idea of this method is that a close

neighboring vertex knows more about the local curve tangent and should
have a larger weight than the far vertex�

All these methods only take into account the neighboring vertices vi�� and
vi��� Other methods could be applied that use more vertices and for example
estimate the tangent line by a least�squares �t� The analogue of method 

for surface normal estimation has been reported to work well �
�	� therefore
method 
 is used here�
In order to get a closed G� curve we construct a B�ezier segment between

each pair of consecutive vertices� Let us consider the degree n B�ezier segments
P between vi�� and vi� and Q between vi and vi�� �again the indices are
considered modulo N�� In order to interpolate the vertices� we must set p� �
vi��� pn � q� � vi� and qn � vi��� For the derivative vectors P 	�
�
� and
Q	�
��� to be collinear� pn�� and q� must lie on the line through Ti� denoted by
T linei� If T linei�� intersects T linei� and T linei intersects T linei��� we can set
n � �� p� to T linei���T linei� and q� to T linei�T linei��� The resulting B�ezier
segments are then completely de�ned� and have collinear tangent vectors� All
other segments are de�ned in the same way� so that a closed quadratic curve is
constructed� However� with only tangent line continuity the tangent vectors can
still have opposite directions� which gives sharp cusps� i�e� not G��continuity�
In order to ensure G��continuity we need more degrees of freedom� This is

obtained by using one more control point� so that we get cubic B�ezier segments�
Now we must set p� � vi��� p� � q� � vi� and q� � vi��� to interpolate
the vertices� The control points p� and p� are determined by the following
heuristic method� which gives good results in many practical cases� Vertex p�
is orthogonally projected onto T linei��� giving p��� Control point p� is then
set to p� � �p�� � p���� Analogously� p� � p� � �p�� � p���� where p�� is the


�



Figure � Vertices and constructed linear interpolation �above�� and the con�
structed B�ezier control polygon and G� curve�


�



orthogonal projection of p� onto T linei� All other segments are de�ned in
the same way� so that a closed cubic curve is constructed� The curve is G��
continuous at vi if P

	�
�
� and Q	�
��� have the same direction� which is the
case when p�� and q�� lie at opposite sides of vi on T linei� This condition is
satis�ed for many sets of vertices whose successive tangent lines do not change
direction wildly� In other cases� the tangent line at a vertex should be changed
in order for the projection method above to work properly�
The above algorithm clearly has time complexity O�N�� Figure � shows an

example of this algorithm to construct a G��continuous curve� using method 

to estimate the tangent line�
Cubic curves are necessary and su�cient to achieve even G��continuity� see

�
�	 and ��	� In �D the construction of a G��continuous boundary in B�ezier form
is a straightforward procedure� The D case is much harder� A new solution
to the D problem has been presented in ���	�


� Concluding remarks
The main results of the research described in this paper are summarized below�


� The ��Neighborhood Graph is a new parameterized geometric graph� By
its two parameters� a whole family of geometric graphs is de�ned� ranging
from the empty to the complete graph� For particular choices of the
parameters� the ��Graph reduces to known graphs such as the Convex
Hull� the Gabriel Graph� the ��Skeleton� and the Delaunay Triangulation�
The ��Graph uni�es these graphs into a continuous spectrum�

�� The geometric information contained in the ��Graph is used to construct
a closed piecewise linear object boundary from scattered points� The
��Graph on the set of points is successively constricted until the hull
of the pruned ��Graph is a proper object boundary� passing through
all the vertices� While constriction of the Delaunay Triangulation may
stop unsuccessfully� the parameters of the ��Graph provide the �exibility
to �nd a boundary through all the vertices� The use of the geometric
information in the ��Graph by means of the ��indicator results in good
looking boundaries�

� The �intstone scheme is both an approximation and a localization scheme�
and is hierarchical� This scheme can be applied to the constructed polyg�
onal boundaries� Its de�nition is based on discs� which makes the rep�
resentation storage e�cient� and hierarchical operations� for example in�
tersections� computationally cheap�

�� Given a polygonal boundary with �estimated� tangent vectors at the ver�
tices� a G��continuous piecewise cubic B�ezier boundary is constructed in
a local way�

Care has been taken to introduce new concepts that naturally generalize from
�D to D ���	� This is exhibited by the de�nition of the ��graph� the deletion
rule in the constriction algorithm� and the de�nition of the �intstone scheme�
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