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Abstract

3D content, such as motion capture data and 3D meshes, are widely used in a number
of sectors, such as entertainment and sports. Due to issues related to the acquisition
of 3D content, postprocessing is often required on captured 3D content before it can be
used in applications. For human motion capture (mocap) data acquired using optical
systems, entries of the data might be missing due to occluded body parts or markers. For
scanned 3D meshes, the complexity, or resolution, of the mesh could be much higher than
necessary for the intended application; this will consume a large amount of computational
resources. Hence, this thesis focuses on using mocap recovery algorithms to recover any
missing mocap data, and on using mesh simplification algorithms to reduce the resolution

of meshes.

For mocap recovery, we focus on using low rank matrix completion with Singular Value
Thresholding (SVT) optimization to recover mocap data. Previously, mocap data is ar-
ranged in the form of a matrix, where each frame forms a column to allow low rank matrix
completion to recover missing entries. We present three strategies to extend and improve
the performance of this mocap recovery framework, namely using a trajectory-based ma-
trix representation, applying skeleton constraints, and using subspace constraints. Our
mocap recovery methods target two types of missing data: random missing data, where

each joint in a sequence are missing at random, and block missing data, where each joint



is missing for long intervals of time.

For the case of random missing data, we propose to arrange the mocap data matrix
into columns of short trajectories, which we call the trajectory-based representation, for
matrix completion recovery. We show that this representation produces a matrix with a
lower rank than the previous frame-based matrix representation. Since matrix completion
performs better on matrices with lower rank, this fact allows the SVT matrix completion
method, by using the proposed representation, to recover missing mocap data at a much

lower error.

Both frame-based and trajectory-based matrix completion exploit different types of
correlations; frame-based matrix completion relies on the correlation between different
frames, whereas trajectory-based matrix completion relies on the correlation between
trajectories. We propose to exploit both types of correlation simultaneously by con-
straining the solution of trajectory-based matrix completion in the subspace formed by
the solution of frame-based matrix completion. The proposed method shows significant

improvement over both frame-based and trajectory-based matrix completion.

For block missing data, the effectiveness of matrix completion in recovering missing
data decreases significantly when mocap data entries are missing for extended periods
of time. To alleviate this problem, we exploit the fact that human bones are rigid and
constrain inter-joint distances of connected joints. To this end, we extend the SV'T matrix
completion method to include skeleton constraints. The proposed method improves on
the Singular Value Thresholding method significantly, especially when mocap data joints

are missing for many consecutive frames.

Image-Driven Simplification is a 3D mesh simplification method that simplifies meshes
based on their visual appearance. It renders images of a mesh from each of 20 surround-

ing viewpoints to estimate the visual appearance of the mesh. Hence, this method is

vi



very time consuming since it requires repeated renders and image readback cycles during
simplification. We propose to accelerate Image-Driven Simplification by using only one
adaptively placed viewpoint instead of 20 viewpoints with fixed locations. Two compu-
tationally efficient methods are proposed to dynamically compute the viewpoint location
so that simplification performance is not compromised. Both single viewpoint simplifi-
cation methods run at an estimated twenty-five times faster than the original method at

competitive simplification performance.
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Chapter 1

Introduction

1.1 Motivation

For the past few decades, the prevalent visual media used by industries and consumers,
such as images and videos, are spatially two dimensional. However, the research and
application of spatially three dimensional (3D) content, such as 3D meshes and motion
capture data, have been growing. Due to the advantages offered by 3D content, 3D content
is being increasingly adopted by researchers and professionals in various sectors, such
as entertainment and sports. Furthermore, the recent releases of 3D content acquisition
hardware, for example, the Microsoft Kinect and the Makerbot Digitizer, to the consumer
market allow non-professionals to easily acquire 3D content. These releases, coupled with
consumer-targeted 3D manipulation software and 3D printers, encourage the adoption of

3D content and its technology by non-professionals.

3D content is more useful than 2D content, although more computational power is
required to process 3D content. Since 3D content encodes complete spatial information,

it is a more accurate representation and model for physical phenomena. For example,
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Figure 1.1: A basic mesh representation (left) and a textured mesh (right)

a more accurate analysis can be done on an athlete’s performance if his motions are
captured and analyzed in 3D instead of 2D. In movies, computer generated worlds and
characters are modeled in 3D before they are projected into a two-dimensional video

representation for viewing.

A 3D mesh is a basic digital representation of a 3D model; other properties like color
and texture can be added to a mesh to improve its realism. Fig. shows a basic mesh
representation and the same mesh when augmented with textures. 3D meshes are used
in creating virtual scenes, which are in turn are used for applications such as Computer

Generated Imagery (CGI) and virtual worlds.

Motion capture (mocap) data, on the other hand, specifies the motion of a moving
skeletal structure, or skeleton, of a human or other animated objects. This is done by
encoding the position of the skeleton joints at each point in time. Fig.[T.2]shows skeletons
extracted from a human mocap sequence at different points in time. Mocap technology

can capture human motions for analysis or viewing, thus it is helpful in a number of
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Figure 1.2: A stick figure illustration of a mocap data sequence, where the joints are
green.

applications. For example, an athlete’s training sequence can be captured and analyzed
to find weaknesses in the athlete’s pose and movement. Another example application is
action recognition, where mocap technology is used to obtain and classify the pose of
a human. For example, the action of elderly people falling down can be identified, and

following that an alarm can be triggered [IJ.

A major application that draws upon both mocap and mesh data is the animation
of 3D meshes using mocap data. Motion is extracted from human actors, which is then
used to animate virtual characters in a realistic way. This technique is used to create
computer generated characters, such as Gollum in the movie The Lord of the Rings. In
video games, the method can be used to map a player’s motions to player-controlled

virtual characters.

Both mocap and mesh data can be manually created or acquired from physical sam-
ples. For mesh data, 3D modelling software can be used to draw a model; however, if a
physical model is already available, it is more convenient to use 3D mesh scanning to ob-
tain its mesh. For mocap data content creation, the trajectory of skeleton joints (specific
points on a skeleton) can be specified to manually create a motion. This is, however, a

laborious process and the results might not look realistic. Thus, mocap data is usually
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Figure 1.3: An optical-based mocap acquisition system

captured from live actors and then edited later if required.

In this thesis, we deal with issues related to the acquisition of 3D data. The acqui-
sition of human mocap data involves a performer acting out the required motions while
a mocap acquisition system captures the data. Most commonly used professional mocap
acquisition systems, such as the Vicon System [2], utilize optical motion capture. In such
systems, a performer has markers attached to his body and the trajectory of each marker
is tracked using a set of surrounding cameras, such as shown in Fig.[1.3] A passive system
uses reflective markers, whereas an active system uses LED markers. Less accurate and
reliable systems, such as The Microsoft Kinect, which uses a RGB camera and a depth
camera, can also be used directly for mocap acquisition [3]. Some works have demon-

strated the capture of mocap data using a single RGB camera with the aid of machine

learning [4] [5].
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Figure 1.4: (left) A 3D mesh scanner scanning a physical model; (right) The acquired 3D
mesh

After acquisition, mocap data has to be ‘repaired’ before it can be used, even if it is
captured using professional systems. This is because the acquired data could be too noisy,
missing, or it could contain outliers. The main reason for missing markers is occlusion by
body parts or other objects. For outdoor mocap systems, environmental effects such as
rain could affect the visibility of markers. Noisy or outlier entries could occur when two
markers are very close together; the acquisition system could mistakenly identify a marker
for another when two markers are very close together. Certain data entries could be too
noisy, or missing altogether due to occluded markers or body parts. As an example, for
the Kinect system, mocap data for an arm would be unavailable when the arm is swung
behind the body. Hence, in this thesis, several methods are proposed to recover mocap
data that is missing.

The acquisition of a 3D mesh is comparatively more straightforward; the object is
placed on the receptacle of the scanner and scanned, such as shown in Fig.[T.4] Commer-
cially available scanners include the Cyberware Model Shop 3D scanner and the Makerbot
Digitizer.

After a 3D mesh has been acquired and repaired, it is often desirable to lower the
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Figure 1.5: 3D mesh of a cow model at different resolutions

complexity, or resolution, of the mesh; reduction of mesh resolution is done using a process
called mesh simplification. A model is captured by a regular sampling of its surface,
resulting in a mesh with a roughly regular resolution across its surface. This resolution
could be much higher than required for the application the mesh is used in. Furthermore,
a mesh is more optimally represented, i.e., a mesh has a higher quality for a given overall
resolution, if its resolution is allowed to vary across it’s surface. Each part of a model
requires a different resolution for accurate representation, depending on the complexity
of the part. Compared with smoothly varying parts like the torso, detailed or complex
features, such as the ears and the eyes, would require higher resolution to represent
accurately. Through a process called mesh simplification, or mesh decimation, we can
reduce the resolution of a mesh while striving to retain the fidelity of the represented
model. The advantage of mesh simplification is that it lowers the computational time
and memory required to process the mesh in a later stage, for example, in mesh rendering
and editing. Fig. [L.5] shows a 3D mesh at different resolutions after mesh simplification.
Although the cow mesh with 12000 vertices (a measure for mesh resolution) is more
accurate, a 500 vertex model might be detailed enough. In this thesis, we proposed
improvements to a mesh simplification method.

An application which utilizes both mocap recovery and mesh simplification is the

animation of scanned 3D models. In the Pinocchio animation system [6], a skeleton is

6
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automatically rigged in a humanoid-shaped 3D meshed model. This allows the 3D mesh
to be animated by specifying the motion of the skeleton. The mesh representation of
the model can be obtained by scanning a physical model, repairing any errors, and then
simplifying the model to the required resolution. The user of the system can perform
a set of motions which are captured with a motion capture system and represented as
mocap data. Any missing data is restored using mocap recovery. The mocap data can
then be used to animate the skeleton, which in turn animates the 3D mesh. The end

result is an animated mesh that is able to imitate the motions of the user.

1.2 Contribution and Scope

This thesis aims to develop effective techniques for mocap data recovery and 3D mesh
simplification. For mocap data recovery, we simulate missing joint data by randomly
removing a number of entries from a mocap data. With the incomplete mocap data as
input, we recover the missing joint data using mocap data recovery algorithms. For 3D
mesh simplification, given high resolution meshes at up to 20000 vertices as input, we
simplify the meshes to various target resolutions. Fig. gives an illustration of a cow
mesh simplified to different resolutions.

In terms of scope, for mocap data recovery, we limit our scope to human mocap data.
We also focus on methods that do not require a database of prior motions. Although
machine learning-based methods are likely to perform better than non-machine learning
based methods, machine learning-based methods have a number of limitations. Besides
the obvious requirement of a mocap database, machine learning based methods usually
require the processed motion and prior motions to have the same marker set. The perfor-
mance of these methods are also reliant on the similarity of prior motions and processed

motions. If the processed motion is captured from an actor with a different size, or if

7
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there are no prior motions of the same type as the processed motion, recovery performance
might be degraded significantly.

For 3D mesh simplification, we focus on incremental decimation methods. This class
of methods can be used for a wider range of applications, such as rendering and mesh
transmission, since it can generate a progressive mesh. A progressive mesh is a structure
from which meshes of continuously varying resolutions can be extracted.

The contributions of the thesis can be are as follows.

e Previously, low rank matrix completion with Singular Value Thresholding (SVT)
optimization was applied on mocap data in a frame-based matrix representation to
recover missing data in the sequence. We restructure mocap data into a trajectory-
based representation for matrix completion instead, and show that the trajectory-
based matrix has a lower rank. This enables matrix completion to recover mocap
data more effectively. We show that the proposed trajectory-based SVT method
achieves significant improvement over the previous frame-based SVT method for

randomly missing data.

o The effectiveness of SVT matrix completion in recovering missing data decreases sig-
nificantly when data entries are missing for extended periods of time. We show that
longer periods of missing data are correlated with larger violations of the rigid skele-
tal structure. To alleviate this problem, we extend the frame-based SVT method to
include skeleton constraints. We show that the proposed method improves on the
frame-based SVT method significantly, especially when data entries are missing for

an extended time.

e Frame-based SVT and trajectory-based SVT utilize different correlations; frame-
based SVT relies on the correlation between different frames, whereas trajectory-

based SVT relies on the correlation between trajectories. We propose to exploit



1.3. ORGANIZATION OF THE THESIS

both types of correlation simultaneously by constraining the solution of trajectory-
based SVT in the subspace spanned by the frames recovered using frame-based
SVT. The proposed method is able to outperform both trajectory-based SVT and

frame-based SVT for randomly missing data.

e Image-Driven Simplification (IDS) is very time consuming because it requires re-
peated renders and image captures from each of its 20 viewpoints during simpli-
fication. We propose to accelerate IDS by using only a single adaptively placed
viewpoint instead of 20 statically placed ones. We propose two methods to place
the viewpoint dynamically so that simplification performance is not compromised.
The two proposed single viewpoint IDS methods run at an estimated twenty-five

times faster than IDS at comparable simplification performance.

1.3 Organization of the Thesis

In the thesis, Chapters [3] H] and [5] deal with mocap data recovery, whereas Chapter [0]
covers mesh simplification. In more detail, the rest of the thesis is organized as follows.

Chapter [2] explains the background for mocap recovery and 3D mesh simplification.
We review the representation for mocap data, and describe the current developments in
mocap recovery. We also describe the 3D mesh structure and simplification methods.

Chapter [3] describes our work on using trajectory-based low rank matrix completion.
We first explain the theory and intuition behind the matrix completion method, the
method that forms basis of all our mocap recovery algorithms. We also explain the SVT
method, which is the method used to solve the optimization problem posed by matrix
completion. Next, we describe the proposed method, trajectory-based matrix completion,
and compare it with the previous frame-based matrix completion.

In Chapter 4] we aim to improve the performance of matrix completion for data entries

9
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that are missing for extended periods of time. To that end, we describe how to impose
skeleton constraints in the matrix completion problem, and how to solve it using SVT.

In Chapter p] we aim to effectively combine together two mocap recovery methods
which exploits different characteristics of mocap data. We then describe our method
which first recovers mocap data using frame-based SVT, and then use the output to
guide mocap recovery of a subspace constrained trajectory-based SVT.

Chapter [6] describes the Image-Driven Simplification (IDS) algorithm and its defi-
ciency which is long processing times. We explain how that IDS can be accelerated sig-
nificantly if only one viewpoint is used instead of 20. Two efficient methods are proposed
to find the viewpoint placement.

Chapter [7] concludes the thesis and suggests some avenues for future work.

10



Chapter 2

Background and Literature Review

2.1 Introduction

This chapter provides the background for human motion capture data and 3D mesh
representation, and then reviews previous research done for motion capture (mocap) data
recovery and 3D mesh simplification. We first describe the representations of mocap data
in Section and the literature review on mocap recovery methods in Section In
Section we describe the sequences used and performance evaluation details for mocap
recovery experiments. After that, we describe 3D mesh representations in Section [2.5]
We then gave an overview of 3D mesh simplification and a brief coverage of literature
for less related classes of simplification algorithms in Section [2.6] and a more in-depth
coverage of previous works of the more relevant class of simplification in Section 2.6.1]

Last, we wrap up with a Conclusion in Section

11
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Figure 2.1: Mocap skeleton topology. Each label indicates a joint, and ‘L’ and ‘R’ prefixes
denote left-sided and right-sided, respectively.
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2.2 Motion Capture Data Representation

Human mocap data is used to describe the motion of a human over time. A mocap data
sequence encodes the motion of a moving skeletal structure by specifying the pose, or
frame, of the skeletal structure at each point in time. A skeletal structure, or skeleton,
is a simple representation of an animated object, where each skeleton pose specifies the
positions of a set of points (called joints), and the connectivity between the joints. In
Fig. (in Chapter 1), each joint is illustrated with a green sphere, and the bars con-
necting pairs of joints are referred to as bones. The structure and joints of the skeleton
used in this thesis is shown in Fig. Obviously all poses in a mocap sequence share

the same skeleton structure.

There are two ways to represent a pose. The first representation, which we call
joint-position representation, explicitly specifies the position of each joint. File formats
supporting this representation include C3D. The second representation, which we call
joint-angle representation, specifies the position and orientation of the root joint, and
the angle of each child joint relative to its parent joint. For this representation, we can
obtain the position of each joint using its angle and distance from its parent joint. Hence,
the distance (bone length) between each parent-child joint pair has to be specified in the
skeleton as well. File formats supporting joint-angle representation include ASF+AMC
and BVH.

For professional motion capture systems, a number of markers are attached to the
body of an actor. When the actor is performing the required motions, surrounding cam-
eras acquire the positions of each marker over time. The positions of the markers are
then used to generate the positions of skeleton joints. In some systems that do not use
markers, such as the Kinect, joint information is directly acquired by processing the RGB

and depth video. Thus mocap acquisition systems usually output mocap data with joint-
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position representation. Thus, we will use this representation for mocap data. We also
assume that the skeleton structure is known and does not need to be recovered; thus,
in this thesis, mocap data encodes a set of skeleton poses, where each pose specifies the
positions of all joints of the skeleton.

In motion editing, the joint-angle representation is used instead since it can be ma-
nipulated more naturally and easily. Instead of working on mocap data frame-by-frame,
splines can be fitted to the angle of a joint across time, yielding a continuous representa-

tion that can be specified using fewer parameters.

2.3 Motion Capture Data Recovery Literature Review

Due to the imperfections of mocap acquisition systems, mocap markers or body parts
might be occluded, and therefore certain mocap joint entries might be missing. Thus
there is a need for mocap recovery methods.

A number of works have been proposed to recover missing mocap data. Wiley and
Hahn [7] used interpolation to estimate missing data. To allow for real-time missing
marker recovery, Piazza et al. [8] predicted whether the immediate motion is linear,
circular or both, and then applied extrapolation for recovery. These methods recover each
joint individually, and do not consider the fact that certain joints might be correlated with
each other. Yiiet al. [9] used a form of regression by modeling all data in a time window as
a linear model and predicting missing elements using linear least squares. Papadimitriou
et al. [10] improved on this method by using frequency analysis to automatically set the
window size. Although the relationship between joints is also accounted for in this model,
these two methods only use information from frames that are temporally near the mocap
data to be recovered. Data that lie further away could still contain useful information to

reconstruct missing data.

14
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Some works utilize local linear models extracted from training data to predict missing
data. Liu and McMillan [II] formed a global linear model and a set of locally linear
models from a database. Missing values are initially recovered using the global model,
then a classifier assigns a local model to each frame. By assuming that all frames lie in
their respective models, a frame can be recovered by least squares estimation of model
coefficients from available data, and then recovery of missing data using said coefficients.
Instead of precomputing locally linear models, Chai and Hodgins [12] retrieved poses
(frames) that are similar to the processed pose at runtime. These poses, which form a
linear model, were used as a prior in energy minimization optimization to recover the
processed pose. The pose retrieval efficiency of this framework was improved by Kriiger
et al. [I3] by using a kd-tree to speed up retrieval, and the recovery performance was
improved by Baumann et al. [14] by additionally considering the velocity and acceleration

of each pose.

Since mocap data is not strictly linear, some researchers applied more complex models
to model mocap data more accurately. Grochow et al. [15] learned a global nonlinear
model to form a low-dimensional space using Gaussian Process Latent Variable Models
(GPLVM) [16] and maximized a likelihood function over poses. Wang et al. [17] observed
that GPLVM treated each mocap pose as independent data points, and proposed using
Gaussian Process Dynamical Models, which considers the temporal structure of mocap
data, to model mocap data instead. Lou et al. [18] extended the concept of linear model of
poses to a linear model of consecutive sets of frames, i.e., a spatio-temporal model. With
the aid of robust statistical methods, spatio-temporal bases from a training set were used
to estimate missing values of mocap data. Taylor et al. [I9] proposed that mocap data
should be modeled using a non-linear model and used Conditional Restricted Boltzmann

Machine to achieve this aim. Xiao et al. [20] proposed that a sparse representation of
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a training set can be used to describe mocap frames. Given an incomplete frame, they
solved for the sparsest representation for the frame with the constraint that the recovered
frame is as similar as possible to the incomplete frame. This method was improved by

Hou [2I] by using a trajectory-based representation for the sparse representation.

The methods described above require a training database to learn a mocap data
model. Such methods have a number of limitations; they require the processed data and
training data to have the same marker set. The performance of these methods are also
reliant on the similarity of training data and processed data. If the processed data is
captured from an actor with a different size, or if there are no prior motions that are

similar to the processed motion, recovery performance might be degraded significantly.

There exists several methods that attempt to directly create a model from the pro-
cessed mocap data. Li et al. [22] modeled the entire processed sequence as a linear
dynamical system; a sequence of frames is modeled as a sequence of latent variables of
lower dimension. Consecutive latent variables are related by a linear map, and each frame
is related to a latent variable by a linear projection. The objective function to be max-
imized is the likelihood of the observed data with respect to the model. The solution
is computed using expectation maximization: iteratively estimate the latent variables
and model parameters, and estimate the missing values until convergence. The method
BOLERO [23] improved on this system by enforcing bone length constraints for the recov-
ered data. This is done by including bone constraints in the objective function. Since the
bone constraints are formulated as nonlinear constraints, the objective function becomes

nonlinear; thus the method is computationally slow.

Lai et al. [24] arranged mocap data to form of an input matrix with missing entries.
They obtain the recovered matrix by solving for the lowest ranked matrix that conforms

to the observed entries of the input matrix. This is the matrix completion approach [25],
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and they solve it using Singular Value Thresholding [26]. Since this approach models the
data recovery as a convex problem, convex optimization can be used to solve the problem;
hence it is faster than methods posing the recovery problem as a nonlinear one. A faster
but less accurate approach of obtaining a low rank approximation of an incomplete matrix
is proposed by Srebro and Jaakkola [27].

A related class of works deal with recovering occluded sensor markers during optical
motion capture, and are tailored for the motion capture system used. Thus, the methods
cannot be directly used for alternative motion capture systems. Herda et al. |28, 29] use a
pre-specified skeleton model to estimate the position of missing neighboring markers. In
the system proposed by Hornung et al. [30], sets of markers with fixed relative positions
are found automatically without a manually specified skeleton structure; this information
is used to aid missing marker estimation. In some works, extended Kalman filters |31, [32]
and unscented Kalman filters [33] are used to track markers and to recover any missing

markers.

2.4 Motion Capture Data Recovery Experimental Settings

We will be using a set of mocap sequences in our experiments in the next few chapters;
thus we first describe the sequences and performance evaluation details here.

In all of our experiments, we use mocap sequences from the CMU mocap database
[34]. Each sequence contains 31 joints (see Fig.[2.1)), and is sampled at 60 frames per
second (fps) or 120 frames per second. In order to maintain the same frame rate for all
sequences, we downsample 120 fps sequences down to 60 fps.

We select two sets of sequences; the first set is used for estimating parameters in
our proposed algorithms (Table , whereas the second set is used for performance

evaluation (Table 2.2). The number of frames shown are the number of frames under
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Sequence Description Number of frames
20 01 Chicken dance 642
04 01 Monkey actions 960
56 01 Walk around 753
135_10 Syutouuke martial arts walk 1000
143 41 Sneak 583
42 01 Stretch, rotate, head, arms, legs 1134
95 01 Dance, whirl 903
85 01 JumpTwist 499
85_06 Kickflip 475
143 24 Kicking 502

Table 2.1: Sequences used for parameter estimation.

Sequence Description Number of frames
14 01 Boxing 2797
143 04 Run figure 8 543
135 02 Empi martial arts 2601
61 05 Salsa dance 790
85 02 Jumptwist 405
49 02 Jumping and one foot hopping 1043
135 11 Yokogeri martial arts walk 1223
88 04 Acrobatics 1240

Table 2.2: Sequences used for performance evaluation.

18
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Figure 2.3: Block missing data mask for 3 missing joints. [ is the length of each block of
missing data

60fps sampling rate. We select sequences of different complexity, encompassing a variety
of actions, and of different lengths (from 6 seconds to 46 seconds). Here, we loosely define
an action as a simple, short motion, such as a punch or a kick; a complex motion can

contain a number of different actions.

In the performance evaluation mocap set, sequences of vastly different length are
chosen to better evaluate computational efficiency of the tested algorithms. With regards
to motion complexity, except for 85 02, 135 02, and 88 04, which consist of a variety of
different actions, the other sequences consist of repetitions of similar action. For example,
in sequence 14 01, the figure performs repeated punching actions of different types, such
as straight punch and uppercut. On the other hand, in 135 02, the figure performs a

variety of poses, kicks, and punches.

We simulate missing data by removing joint entries {x,y, 2z} from mocap sequences
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using two methods. In the first method, which we call random missing data, missing data
is simulated by randomly removing a number of joints so that the required missing data
rate is simulated. Sample masks for random missing data at 10% and 30% missing data
rates are shown in Fig. 2.2] Entries for mocap sequences are removed at corresponding
blacked out areas. Note that since each joint has 3 entries (z,y, z coordinate) in a mocap
sequence, each removed entry in a missing data mask corresponds to 3 entries in the
mocap sequence. For random missing data, missing entries at lower missing data rates

are a subset of the missing entries at higher missing data rates.

In the second method, which we call block missing data, we partition a sequence into
time intervals of equal length [, and for each interval we randomly choose a set of joints to
remove. FKach joint remains missing for the entire duration of an interval. Sample masks
for block missing data at [ = 30 and [ = 60 for 3 missing joints (equivalent to 3—31 ~ 10%
missing data rate) are shown in Fig. [2.3] Note that for this case, the missing entries for
shorter interval lengths are not a subset of missing entries for longer interval lengths. For
mocap sequences with frames that are not a multiple of [, we truncate them so that they

are a multiple of [ frames.

Block missing data allows us to judge the robustness of mocap recovery methods
towards joints missing for extended periods of time. The interval length [ can be increased
to allow us to judge the robustness of mocap recovery towards such ‘bursty’ errors under
the same error rate. The number of removed joints determines the error rate of the

corrupted mocap, e.g., removing three joints induces an error rate of % ~ 10%.

We use Root Mean Square Error (RMSE) to quantify the distortion of a recovered

matrix.

n2 ni

RMSE(X, M) = nlin? > (X] - Mij>2 (2.1)
j=1i=1
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Figure 2.4: An illustration of a vertex, edge, and face of a 3D mesh.

where X and M are the matrices of the recovered and original mocap respectively. All
mocap data values shown in the thesis are expressed in the provided default units in the
CMU mocap database. To obtain values in millimeters, multiply the values by 56.44.
To get a better idea of the significance of the values, we can consider the height of the

skeletons, which is around 26.6 units (1.5 meters).

2.5 3D Mesh Representation

There are a number of ways to mathematically describe the surface of a 3D model. In
CAD applications, for example, usually spline functions are used to model the surface.
However, the most common representation for 3D models is the triangular mesh, which
uses a set of triangles to model a surface in a piecewise manner. In this thesis, we use
the term 3D mesh, or just mesh, to refer specifically to the triangular mesh.

A 3D mesh is fully described by two components, a set of vertices, V = {vy,..., vy},
which are points in 3D space, and a set of triangular faces, F = {f1,...,fr}, fi €
VY xVxV, where each face specifies the connectivity of three vertices. Each vertex specifies

a position in 3D space, p,, = [Ty, Yu,, 2v;] . Sometimes, instead of faces, connectivity
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information is represented using a set of edges, £ = {e1,...,eg}, ¢, € V x V), where each
edge connects two vertices. An illustration of the vertices, edges and faces of a mesh is
shown in Fig.

The complexity or resolution of a 3D mesh is defined by the number of vertices, edges
or faces that it has. The number of vertices V', edges F, and faces F' of a closed and

connected mesh is related by Euler’s formula

F+V-E=2(1-g)

where g is the genus, or number of handles, of an object. Since the genus of most meshes
is small, it is sufficient to use either the number of vertices, edges, or faces to quantify
mesh resolution. In this thesis, we use the number of vertices as a measure of mesh

resolution.

2.6 3D Mesh Simplification Literature Review

A 3D mesh obtained through 3D scanning or tomography could have a complexity that
is much higher than required for its application; this unnecessarily high complexity slows
down processing operations on the mesh. Thus, after mesh acquisition and removal of
mesh errors, the complexity of a mesh is reduced through a process called mesh simplifi-
cation or mesh decimation.

Mesh simplification works by either generating a mesh with the lowest distortion
subject to the required number of vertices, or by generating a mesh with the smallest
number of vertices subject to a certain quality criteria. Mesh simplification algorithms
can be classified into three main categories [35] — vertex clustering algorithms, remeshing

algorithms, and incremental decimation algorithms. We will focus more on incremental
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decimation algorithms since it is the most relevant to our work, but we will also briefly

describe the other classes of methods.

Vertex clustering algorithms are usually very fast, with (O(n)) complexity, and robust.
However, these algorithms, compared with other methods, generate simplified meshes
with higher error. The initially proposed method [36] works by superimposing a grid on a
model and assigning an importance value to each vertex. It then clusters all the vertices
in each grid cell into the vertex with the highest importance value. Low and Tan [37]
sorted the vertices according to their importance value to determine the clustering order
and ensured that two important vertices are not clustered together. Lindstrom [38] used

a quadric error metric for all faces in a grid cell to determine the position of a cell.

Remeshing methods aim to generate meshes that are regular, where mesh faces are
nearly the same size, and each vertex has the same number of neighbors. The regularity
of the resulting mesh allows a natural 2D parameterization to be defined on 3D surfaces,
thus remeshing is used in mesh parameterization algorithms. This regularity also makes
the mesh easier to compress; hence remeshing is also helpful in applications like mesh

transmission [39].

Remeshing methods resample a mesh and reconnects the sampled points in a regular
way. Hence, remeshing can also generate a lower resolution mesh by under-sampling a
mesh. The connectivity structure can be constrained to obey certain patterns, depending
on the required application. For example, a mesh can be remeshed to have isotropic,
or nearly equilateral, triangles [40], quadrilaterals [41], or squares [42]. Instead of using
vertices to represent a resampled mesh, Cohen-Steiner [43] proposed to use a small set of
simple geometric shapes as proxies to represent the mesh. The interested reader could

refer to this literature [44] for a more complete survey of remeshing.
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Edge collapse

Figure 2.5: An illustration of an edge collapse operation.

2.6.1 Incremental Decimation

Hoppe [45] introduced the incremental decimation framework where a mesh is simplified
incrementally by removing a vertex at a time until the target vertex count is reached.
Incremental decimation has a very useful characteristic: it can generate a sequence of
simplified meshes, where each mesh has one less vertex than the previous mesh. This
characteristic has two useful implications. First, if the vertices of a lower resolution mesh
is a subset of the vertices of a higher resolution mesh, a straightforward multi-resolution
representation of a mesh can be encoded easily. Second, the appearance of a mesh changes
smoothly while the resolution of the mesh is scaled up or down. The first implication
facilitates compression and progressive transmission [46] of a mesh, whereas the second
implication enables accelerated rendering through a system called Level of Detail (LoD)
[45].

In incremental decimation, the vertex is removed through an operation called edge
collapse (see Fig. ; it is merged with an adjacent vertex (a vertex that it shares an
edge with) to form a new vertex. In half-edge collapse, the new vertex takes the position
of one of the parent vertices, whereas in full-edge collapse, the new vertex is subsequently
moved to a more optimal position. While full edge collapse can yield higher quality
meshes, the resulting vertex is not a subset of its parent vertices. Hence, systems relying

on this characteristic will need to compute and encode the position of the new vertex,
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and so will be less efficient. In this thesis, we employ the half-edge collapse. After the
two vertices are merged, the connectivity information are updated so that the new vertex

has the same neighboring vertices as the two parent vertices.

Edge collapse operations are applied to edges in a greedy manner — at each step,
the vertex pair that causes the least error after collapse is chosen to be collapsed. This
error is usually defined as E(M , M*), where M is the original mesh, and M¥ is the mesh
after the kth collapse. How this error is computed determines the sequence of edges to be
collapsed; hence the edge collapse error metric determines the performance of incremental

decimation.

Initially, euclidean distances between two mesh surfaces are used to measure edge
collapse error. Garland and Heckbert proposed the widely used quadric error metric [47],
which efficiently computes the distance between planes of the original and simplified mesh.
Later, Lindstrom and Turk [48] used a memoryless error metric computed on volume
distortion, which defines edge collapse error using E(M*~1, M*), i.e., the candidate mesh
is compared with the mesh in the previous step instead of the original mesh. Although

this definition is unintuitive, experiments showed that the method performs well.

Since the appearance of a mesh is also influenced by other mesh properties, such as
normals and texture coordinates, some works tried to account for these properties. The
quadric error metric was augmented with normals, colors, and texture coordinates in
[49, B0). The errors of the various measures are weighted and summed to obtain the
edge collapse error. More recently, Wei [51] incorporated normals into the metric using
feature-sensitive space. Combining spatial error and mesh appearance property error
together into a single error metric is difficult; these errors are different in nature and have

perceptual affects on each other.
There are also methods that focus exclusively on normals or curvature as an error
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metric. Hussain [52] selected vertices for collapse based on the variation of normals
in a local area. Kim et al. [53] used the distortion in local curvature as the error
metric. To preserve texture appearance, texture was adapted to each edge collapse during

simplification [54] [55].

Other researchers [56, 57, 58] mapped the mesh surface onto a parametric domain.
The algorithms try to minimize the attribute (either spatial position or normal vector)
differences between corresponding points in the parametric domain of the original and
simplified mesh. These methods, however, are susceptible to parameterization distortion;

mesh attributes are not perfectly mapped to the parametric domain.

Instead of computing spatial error and mesh appearance error separately, and then try-
ing to combine them, Lindstrom and Turk [59] proposed the image-driven simplification
method, which directly measures the visual appearance of a mesh. Visual appearance is
obtained using a set of images captured from an evenly distributed set of cameras around
the mesh. Thus, this method does not need to deal with how various measures of a mesh

contributes to the visual appearance of the mesh.

Since image-driven simplification was introduced, several other methods that utilize
images captured from surrounding viewpoints were proposed. Zhang [60] used these
images to obtain a visibility measure of all faces in the mesh. This measure is used to
weigh the quadric error metric to prioritize collapses for edges that are unlikely to be seen
(e.g., interior regions of a mesh). Castello [6I] applied an information-theoretic measure
on the viewpoint-projected face area. A mutual information measure is defined between
the set of faces and the set of viewpoints. Following that, edge collapse error is defined

as the total variation of mutual information for all viewpoints.

As mentioned earlier, incremental decimation is useful for the level-of-detail (LOD).

View-independent LOD [45] encodes a mesh using incremental decimation, and, at low
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computational cost, extracts the mesh at varying resolutions. In applications like video
games, view-independent LOD is used to improve rendering speed; when the mesh is a
large distance away from the viewpoint, and the details of the mesh are imperceptible,
the resolution of the mesh is decreased.

Later works introduced a new class of LOD known as view-dependent LOD [62] 63, [64],
along with a variation of incremental decimation required to support it. Unlike the
view-independent LOD framework, this system can simplify a mesh with non-uniform
resolution over the mesh. In this system, an error threshold that varies over the mesh
is computed at render time, and edges are collapsed until this threshold is reached. For
more efficient rendering, the extracted mesh is set to a high resolution at areas near the
viewpoint and to a low resolution at areas further away from the viewpoint. Hence, view-
dependent LOD generates a perceptibly higher quality mesh than view-independent LOD
for a given vertex count, but at a much higher processing cost during mesh extraction.

For more information regarding LOD and simplification, we recommend the following

literature [65] [66], 35].

2.7 Conclusion

In this chapter we provide the background to our work in following chapters. We describe
the different motion capture data representations when used for different applications. We
then cover the literature review of motion capture data recovery and briefly compare the
two categories of methods — methods that require a database of motions for training,
and methods that do not have such requirements. We also describe the mocap sequences
that are used in the following chapters and missing data masks that are used to simulate
missing entries in mocap data. After that, we describe the triangular 3D mesh represen-

tation used in our works. We then describe the different classes of 3D mesh simplification.
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We give a brief coverage of literature for the vertex clustering and remeshing class of sim-
plification algorithms and a more in-depth treatment of previous works for incremental

decimation, which is more related to our research.
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Chapter 3

Mocap Recovery using
Trajectory-based Singular Value
Thresholding

3.1 Introduction

Human mocap data is frequently used in movies, video games, virtual worlds, sports and
other domains that require synthesis and analysis of natural human animation. Mocap
data is usually obtained from humans who perform the required motions; usually via
markers attached to actors, which provide information on the trajectory of the actor’s
movements. However, even for professional systems, the mocap acquisition process is not

perfect — acquired data could be noisy or incomplete due to occluded markers.

Lai et al. [24] arranged mocap data as a sequence of frames in matrix form and then
recovers the missing data entries by solving a low rank matrix completion [25] problem

to recover the matrix; the Singular Value Thresholding algorithm [26] was used to solve
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the problem.

Since low rank matrix completion recovers missing matrix entries more reliably when
the rank of the matrix is low, we propose to reduce the rank of the mocap matrix by
representing it as a sequence of trajectory segments instead. We show that the rank of the
trajectory-based matrix is indeed lower than its frame-based counterpart. We also show
that the optimal trajectory segment length is dependent on the fraction of missing mocap
data and suggested a model for this dependency. Using segment lengths derived from
our model, our proposed trajectory-based Singular Value Thresholding method shows
substantial improvement over the previous frame-sequenced method in mocap recovery.
We are able to achieve up to 80% improvement for some sequences, and 68% improvement
on average.

We first describe the low rank matrix completion method and Singular Value Thresh-
olding, the implementation of low rank matrix completion that we use, in Section [3.2]
We then describe our trajectory-based matrix completion in Section [3.3] In Section [3.4]

we present experimental results and wrap up with a conclusion in Section

3.2 Matrix Completion

Given a matrix with a number of missing entries, how can we recover the complete matrix?
If it is known that the matrix is low ranked (or the matrix has a low rank), low rank
matrix completion theory [25] says that the solution is the lowest ranked matrix that
matches the observed entries. Put in another way, the missing values should be filled in
such a way that the resulting matrix has the lowest possible rank.

The rank of a matrix is defined as the number of linearly independent columns (or
rows) of the matrix. In other words, the rank of a matrix X is the size of the set of

maximally linearly independent vectors that can be used to reconstruct each column of
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k
X; = ZO[]'CJ‘, VXZ' (31)
J

where x; is the ith column of X, k is the rank of X, and c; € C, where C is the set of k
maximally linearly independent vectors, also known as a basis set. We can view C as the
set of factors that contribute to X; the degrees of freedom of the entries of X are limited
by k, that is, the size of C. Intuitively, a small £ limits the degrees of freedom of the
entries of X; this means that a partial observation of its entries is sufficient to recover a
low rank matrix X.

The low rank property of a matrix is dependent on the value of k relative to the
dimensions of the matrix, and not the absolute value of k. This is because the matrix
dimensions limit the maximum rank of the matrix. A matrix with dimensions n; X ng
has a maximum rank of min(nj,ns), that is, the smallest dimension of the matrix. If a
matrix has k = min(ny, n2), it has the maximum rank possible; it is a full ranked matrix.
Assuming matrices where no > ni, we can say that a matrix with £ = 10 and ny = 93 is
low ranked, but a matrix with £ = 10 and n; = 11 is not, since it is nearly full ranked.

We note here that there is no standard definition or threshold on how small the value
of k should be (relative to the maximum possible rank) for a matrix to be qualified as
low ranked. Furthermore, matrices of mocap data are only approximately low ranked;
strictly speaking, they are full ranked, but can be approximated very closely by a low
ranked matrix. Nevertheless, these matrices can still be accurately recovered by low rank
matrix completion.

From a vector space point of view, for Eq. we can also say that a k ranked
matrix has columns (or rows) that lie in a k-dimensional subspace, where this subspace

is maximally spanned by the vectors in C. The matrix is low ranked if the subspace
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dimension k is small relative to the dimension of x;, n1.

Mocap data has been viewed as a set of points in a low dimensional subspace in
previous works on mocap recovery. For example, in [I1], the basis set C is retrieved from
a mocap database to form a low dimensional linear model, the values of « are estimated
from the observed entries for each x;, and then the missing entries in x; are obtained
using «a, by using Eq. [3.I] We can also interpret matrix completion as estimating the
basis set C directly from the input matrix, which is the smallest basis set that can form

X, and then estimating o and the missing entries of X.

Although it is not wrong to interpret Eq. in terms of row vectors, i.e., x! =

i
Ef oejc]T, inT, where xz-T is the row ¢ of matrix X, it is not helpful to do so when
ng > nq, which is the case for all matrices used to represent mocap data in this thesis.
The dimension of a subspace k required to contain a set of vectors is always smaller or
equal to the number of vectors in the set. Since the number of row vectors in X is n,
then k£ < ny. If the matrix has dimensions such that no > nq, then no > k. Thus for any
matrix with such dimensions, row vectors will always lie in a low-dimensional (compared
to row space dimension, which is ns) subspace, but the matrix is not necessarily low
ranked since the maximum possible rank of the matrix is min(ni,ny) = n;. Thus it is
not useful to use row vectors in Eq. to find out whether a matrix has low rank, and
the applicability of low rank matrix completion on said matrix. Intuitively, if we have k

vectors spanning a k-dimensional subspace, all the vectors are linearly independent, and

we do not have any redundancy to recover missing data in any of these vectors.

Matrix completion can be used to estimate missing data in cases where the data can
be properly represented in the form of matrix, and that the nature of the data causes
the matrix to be low ranked. In practice, although a data matrix is almost never exactly

low ranked, an approximately low ranked matrix is sufficient for matrix completion. For
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example in a movie recommender system, matrix completion can estimate missing entries
of a matrix that represents user ratings of various movies, where users correspond to
rows and rated movies correspond to columns of the matrix. The matrix is low ranked
since only a few factors contribute to a user’s movie preference. Matrix completion has
also been used for video denoising [67], where pixels deemed noisy are discarded and
then recovered using matrix completion, and medical imaging [68], where data is sparsely

sampled and recovered using matrix completion.

However, not all low-ranked matrices can be recovered; the matrices have to fulfill
additional criteria. First, the sampled entries should be uniformly distributed, and it is
necessary that there is at least one observation for each row and one observation for each
column. Second, the singular vectors should be sufficiently spread to minimize the number
of sampled entries required for recovery, i.e., the singular vectors should be uncorrelated

with the standard basis.

As shown in [25], matrix completion recovers the matrix exactly with high probability
provided that the number of observed entries m is sufficiently large, or if the matrix rank
r is sufficiently small, i.e.,

m > Cnrlogn (3.2)

where C' is a constant, and n = max(ni,n2) where (ni,n2) are the dimensions of the

matrix. Eq. shows that a matrix with a lower rank can be recovered more reliably.
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3.2.1 Singular Value Thresholding

The solution for matrix completion is the lowest ranked matrix that matches the observed

entries, i.e.,

minimize rank(X) (3.3)

subject to  X;; =M;; (4,7) € Q

where X is the decision variable, rank(X) is the rank of X, and  is the set of locations

of the observed entries M;; of input matrix M.
Since this problem is NP-hard, an alternative and equivalent optimization problem is

proposed [25], i.e.,

minimize || X]|« (3.4)

subject to  X;; =M;;  (4,7) € Q

|| ® ||« denotes the nuclear norm, which is the sum of singular values of a matrix arranged

in decreasing order, i.e.,
X[l = ox(X) (3.5)
k=1

Problem is convex and can thus be solved efficiently using convex optimization.
Matrix completion is thus a class of methods that recovers a matrix by solving Prob-
lem There are a number of algorithms to solve Problem [.4] e.g., the Alternating
Direction Method of Multipliers (ADMM) [69] and Fixed Point Continuation with Ap-
proximate SVD (FPCA) [70].

We solve this problem by using the same algorithm as Lai et al. [24], which is the Sin-
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gular Value Thresholding (SVT) algorithm [26]. SVT minimizes f(X) = 7||X|.+3 | X||%,
where ||X|| is the Frobenius norm of X, instead of f(X) := ||X]|«; thus, this algorithm
computes an inexact solution, but it is efficient in both time and memory. Obviously, a
more accurate solution can be obtained by setting a larger value for parameter 7, but

doing this comes at cost of longer processing time.

Algorithm 1 Singular Value Thresholding
Input: M, location of observed entries €2
Parameter: §, 7, knax, tol

Output: Recovered mocap sequence X
Initialization:

Y? « §Po(M)

k+1

1: while k < kjuae and RMSE(Pq(XF), Po(M)) > tol do

2 Xk =D, (YFT) // update X
3 Y « YL 4 5Po(M — XF) // update Y
4: k+—k+1
5
6

: gnd while
: X Xk

function (Po(X))

if (4,7) €  then
Yij = XL]

10: else

11: Yij =0

12: end if

13: Return Y

14: end function

S

15: function (D, (X))

16: Yiouvi « X // singular value decomposition
17: Y « >, max(o; — 7,0)u;v}
18: Return Y

19: end function

The algorithm for SVT is presented in Algorithm Increasing the value for step

size § will lower the number of iterations to convergence, but if the value is too large,
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3.3. PROPOSED METHOD

the solution might diverge. The algorithm terminates when the intermediate recovered
matrix X* has a low error (which is thresholded by tol) compared with the observed

entries of M, or when the number of iterations has reached kj,q.

3.3 Proposed method

A mocap sequence is composed of a sequence of frames where each frame holds the 3D
coordinates {x;, yi, z;} of a set of joints; as such, a mocap sequence with ny frames and j

joints can be represented in the form of a matrix M € R™*"2 n, = 3j

M= [fi 5 ... £)] (3.6)

where f = [z1 y1 21 2 Y2 22 ... T Yy Zj]T

We denote this matrix as a frame-based representation. Intuitively, throughout a mocap
sequence, the poses that are adopted by a person has limited degree of freedom. For
example, a punching sequence might contain a ready pose, arm outstretch pose, and
arms pulled in pose. The limited degree of freedom of the set of poses means that the
rank of the matrix is low. From the perspective with regard to Eq. each frame
x; could be constructed relatively accurately from just c; consisting of the three poses
mentioned.

Other researchers have done studies regarding the low rank characteristic of frames of
mocap data. Barbic et al. [T1] showed that frames belonging to the same action lie in a
low-dimensional subspace. This means that these frames are highly correlated, and that
the frame-based mocap matrix has a low rank. This low rank property of the frame-based
representation makes it suitable for matrix completion, as used by Lai et al. [24].

Since matrix completion performs better on matrices with lower rank (Eq. , we aim

36



3.3. PROPOSED METHOD

to lower the rank of the mocap matrix. First, we suggest that frame-based representation
has high frame correlation only for motion sequences that, a) have a small variation of
frames, which means that all frames can be grouped, with low error, into a small set
of clusters, and b) are highly repetitive. In fact, Barbic et al. [71] segmented motion
into different action sequences by exploiting the fact that a combination of two different

actions has a significantly higher dimensionality than either of the individual sequences.

Next, we suggest that trajectories of different joints over a short time window are
highly correlated. The intuitive reason is that human joints are arranged in a hierarchical
manner; the motion of a joint is dependent on the motion of its parent joint. For example,
when we swing a punch, the shoulder, elbow and wrist will follow a similar trajectory of
an arc. Furthermore, some sequences perform similar repeated actions, thus there is high

correlation between trajectories of these actions.

Hence, in general, it is likely that a representation based on trajectory segments have
lower rank than the frame-based representation. We thus arrange the mocap data as a

sequence of trajectory segments t, i.e.,

M =[t1 2 ... tg]

T
where t Z[ﬂfi,s Yis Zi,s Lis+1 Yis+1 Zis+1 - -+ Lis+L—1 Yis+L—1 Zi,s+L71] )

k =ny x ny/3L

where L is the length of a trajectory segment. Each t is the trajectory segment of a
joint from frame s to frame s + L — 1. We denote this matrix as a trajectory-based
representation. Fig. shows a graphical comparison of frame-based and trajectory-
based mocap matrices. Each block represents the data of a joint for L frames. Thus

instead of operating on a set of frames, matrix completion operates on a set of joint
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Figure 3.1: A comparison of the structure of frame-based and trajectory-based represen-
tations of a mocap matrix
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trajectories.

Since matrix completion does not care whether a row or column corresponds to an
independent data unit, recovery of a frame-based matrix My and its transpose MfT is
equivalent and produces the same result. However, it is less accurate to interpret a column
of MfT as a proper trajectory, since each column corresponds to x, y or z dimension of a
joint and lacks physical meaning. Considering the {z,y, z} of a joint together as a unit
gives us the joint’s location in space, and grouping the {x,y, z} of a joint for a continuous
sequence gives us the trajectory of the joint. Moreover, note that the trajectory-based

representation M with L = ns is distinct from MfT .

3.4 Results and Discussion

We first investigate the optimal trajectory length for our proposed method in Section[3.4.1]
Then we evaluate our proposed method using this length in Section

We recover the mocap matrix using the Singular Value Thresholding algorithm (Algo-
rithm 1)) for both frame-based and trajectory-based representations, which we call frame-
based SVT (FSVT) and trajectory-based SVT (TSVT), respectively. We set the param-
eters close to the values by recommended by Cai et al. [26]. The 7 parameter is set to
8y/ning for FSVT, and 8,/mim; for TSVT where (my, mg) are the dimensions of the
trajectory-based matrix. For both methods, we set tol = 0.01 and § = 1.9. Implementa-
tions of both FSVT and TSSVT are written in matlab and the experiments are run on a
computer with an Intel i7-3770 CPU and 8GB memory.

We list again the sequences used for optimal trajectory length estimation (Table
and for performance evaluations (Table [3.2)).

As described in the previous chapter, we simulate random missing data by randomly

removing a number of joints so that the required missing data rate is simulated. We
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Sequence Description Sequence Description

20 01 Chicken dance 42 01 Stretch, rotate, head, arms, legs
54 01 Monkey actions 55 01 Dance, whirl

56_01 Walk around 85_01 JumpTwist

135_10 Syutouuke martial arts walk 85 06 Kickflip

143 41 Sneak 143 24 Kicking

Table 3.1: Sequences used in estimating trajectory length

Sequence Description Sequence Description

14 01 Boxing 85 02 Jumptwist

143 04 Run figure 8 49 02 Jumping and one foot hopping
135_02  Empi martial arts 135_11  Yokogeri martial arts walk

61 05 Salsa dance 88 04 Acrobatics

Table 3.2: Sequences used for testing algorithm performance

simulate block missing data by partitioning a sequence into time intervals of the same
length, and for each interval we randomly remove a fixed number of joints. The number
of removed joints determines the error rate of the corrupted mocap sequence, and the
interval length determines for how many frames is a joint missing. We use Root Mean

Square Error (RMSE) to quantify the distortion of a recovered matrix.

ng Ny
RMSE(X, M) = - i o » (x] _ Mij>2 (3.7)
j=1i=1

where X and M are the matrices of the recovered and original mocap, respectively.

3.4.1 Trajectory Length Evaluation

Since our aim is to improve the performance of matrix completion by using a matrix
representation with lower rank, we first verify that a trajectory-based representation has

lower rank. In practice, a mocap matrix is nearly always full rank, so we compute the
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Figure 3.2: Comparison of average E, of mocap matrices of rank r for frame-based
matrices and trajectory-based matrices at different trajectory lengths L.

energy F, of the closest approximating matrix of a lower rank r, for different values of

r. B, is obtained by computing the Singular Value Decomposition of a matrix, arranging

the singular values in decreasing order, and then evaluating Eq. [3.8]
_ i o}

= =
Jmax _2
i=1 94

(3.8)

E, represents the amount of information retained by the closest approximating matrix of
rank r; we can say that a matrix has rank r where its E, is very close to 1. In Fig.
we say that a matrix has a lower rank if its energy converges to 1 earlier (at lower values
of ) compared to other matrices.

We pick a set of mocap sequences and compare the average energy of both frame-
based and trajectory-based matrices at different ranks r and trajectory lengths L. From

the figure, the rank of the trajectory-based matrix is dependent on the trajectory length
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L used; a representation with lower L has a lower rank. However, since a lower L also
decreases the maximum rank of a representation, this conclusion is not meaningful; as
explained in Section [3.2] the rank of a matrix should be considered in the context of its

maximum rank.

Nevertheless, we can compare frame-based and trajectory-based matrices of the same
dimensions and maximum rank by setting L = 31. As shown in Fig. the trajectory-
based matrix with L = 31 converges earlier than the frame-based matrix; thus the

trajectory-based representation has a lower rank than the frame-based representation.

To estimate the optimal value of L, we use a set of mocap sequences (listed in Ta-
ble [3.2) with simulated missing entries. For each sequence, we simulate missing entries
at a certain missing rate using random missing data and then check the RMS error of
the sequence recovered using different values of L (Fig.[3.3|a)). For cach missing rate, we
obtain the average of RMS errors over all sequences (Fig. [3.3(b)). Finally, we take the
points with minimum L for each missing rate and fit a line to them using least squares
(Fig.[3.3[c)). From the figure, we see that the optimal L increases with increasing missing
rate. Evidently, shorter trajectory lengths are less robust towards increasing error rate;

RMS error rises more quickly when missing data rate increases (Fig. [3.3(b)).

We also see that the value of L has less impact at the lowest missing rate of 10%;
the RMS error for a wide range of L is within 5% of the minimum RMS error. Hence we
set the value of L to 50, which we think is sufficiently accurate, instead of changing it
linearly with the missing rate. A constant value is preferable to a linear function since it

is a simpler way to explain the data.
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Sequence N FSVT TSVT mean increase
0.1 03 05 0.1 03 05
85 02 405 7 7 6 9 11 11 32%
143 04 543 9 9 8 13 15 13 38%
49 02 1043 15 17 17 29 32 32 48%
135 11 1223 18 20 18 27 36 34 42%
88 04 1240 16 15 12 34 36 34 59%
61 05 1678 24 23 20 42 49 51 52%
13502 2601 34 30 27 71 72 66 56%
14 01 2797 48 46 42 6 82 77 42%

Table 3.3: Processing time (seconds) of FSVT and TSVT at missing data rates of 0.1,
0.3, and 0.5 of random missing data. N denotes the number of frames in a sequence

Sequence N FSVT TSVT mean increase
0.1 0.3 0.5 0.1 0.3 0.5
85_02 405 1153 1274 1032 1212 1512 1543 18%
143 04 543 1153 1260 1105 1290 1555 1319 15%
49 02 1043 1101 1300 1320 1892 2114 2141 40%
135 11 1223 1152 1297 1243 1524 1834 1939 30%
88 04 1240 990 1004 811 1898 2004 1911 52%
61 05 1678 1093 1091 985 1700 2050 2181 46%
135 02 2601 993 916 806 1876 1937 1838 52%
14 01 2797 1228 1248 1165 1919 2105 2037 40%

Table 3.4: Number of iterations to convergence of FSV'T and TSVT at missing data rates
of 0.1, 0.3, and 0.5 of random missing data. N denotes the number of frames in a sequence
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3.4.2 Processing Time Evaluation

From Table [3.3] we can see that the processing times of FSVT and TSVT are relatively
constant even when missing data rates are increased for random missing data. Compared
with FSVT, TSVT has a higher processing time by 46% on average. The number of
iterations to convergence for TSVT is increased over FSVT by 36% on average, as seen in
Table Hence, although the increase in processing time is mainly due to the increase
in the number of iterations to convergence, there is also an increase in the processing
time per iteration. This is due to the effect of the different dimensions of frame-based
and trajectory-based matrices on the Singular Value Decomposition operation (Line

of Algorithm , which is the most time consuming operation in SVT by far.

3.4.3 Performance Evaluation

Here, we compare matrix completion of frame-based mocap matrix with the proposed
trajectory-based representation method using mocap sequences listed in Table [3.2] The
RMS error of mocap data recovered from both methods are compared for varying frac-
tions of missing data. We first show the results for random missing data. From Table 3.5
the sequences with the highest error are 85 02, 135 02, and 88 04. This conforms with
expectations, since these sequences contain a variety of motions with little repetition,
whereas all other motions have a higher degree of repetition. The idea is that if there is
more than one exactly the same frames in a mocap sequence, with both having different
missing elements, it is easier to recover both frames. Generally there is a slight drop in
accuracy at missing rates above 40%. Comparing methods, the trajectory-based method
is much better than the frame-based method, with up to 80% improvement and 68% im-
provement on average. This shows that short joint trajectories are more highly correlated

than frames.
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Sequence Method Missing data
10% 20% 30% 40% 50% 60%
14 01 A 0.052 0.092 0.171 0.264 0.404 0.614
(Boxing) B 0.014 0.023 0.038 0.066 0.121 0.211
C 74.19%  75.44%  77.52%  75.08%  70.15%  65.64%
85_02 A 0.041 0.094 0.192 0.402 0.661 1.193
(Jumptwist) B 0.020 0.035 0.070 0.179 0.333 0.678
C 51.69%  62.80% 63.42% 55.50%  49.63%  43.13%
143 04 A 0.047 0.096 0.175 0.284 0.459 0.857
(Running) B 0.020 0.040 0.075 0.154 0.314 0.781
C 57.04%  58.41% 57.26% 45.8T% 31.70%  8.89%
49 02 A 0.044 0.074 0.118 0.178 0.265 0.438
(Jumping) B 0.014 0.022 0.034 0.053 0.099 0.201
C 66.90% 70.03% 71.05% 70.36% 62.85%  54.16%
135 02 A 0.087 0.151 0.262 0.415 0.645 1.025
(MartialArts) B 0.022 0.034 0.053 0.081 0.139 0.265
C 74.97%  T7154%  79.91% 80.41%  78.46%  74.13%
135 11 A 0.050 0.078 0.141 0.240 0.380 0.683
(Kicking) B 0.017 0.029 0.049 0.084 0.130 0.254
C 65.22%  63.03%  65.43% 65.08% 65.78%  62.87%
61_05 A 0.056 0.103 0.175 0.275 0.417 0.657
(Salsa) B 0.014 0.019 0.027 0.039 0.070 0.135
C 75.79%  81.82%  84.77% 85.67%  83.24%  79.38%
88_04 A 0.088 0.149 0.297 0.494 0.774 1.201
(Acrobatics) B 0.018 0.031 0.052 0.088 0.154 0.308
C 79.67%  79.19%  82.36%  82.28%  80.15%  74.38%

Table 3.5: Performance comparison of matrix completion of (A) frame-based represen-
tation, and (B) trajectory-based representation, and (C) the percentage of improvement
under random missing data.
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Sequence Method Missing data
=5 [=10 =20
14 01 A 0.044 0.044 0.056
B 0.151 0.389 0.716
C 0.061 0.152 0.331
49 02 A 0.048 0.049 0.053
B 0.162 0.425 0.929
C 0.067 0.089 0.165
88 04 A 0.079 0.103 0.175
B 0.258 0.631 1.253
C 0.069 0.166 0.438

Table 3.6: Performance comparison of matrix completion of (A) frame-based representa-
tion, (B) trajectory-based representation with L = 50, and (C) trajectory-based repre-
sentation with L = 200 under block missing data at a missing rate of 10%. [ is the length
of each missing data interval.

Next, we show the results for block missing data in Table First, for each sequence,
even though the missing data rate is fixed at 10%, both frame-based and trajectory-based
methods show increased error when the missing data interval length [ increases. Second,
we can see that the trajectory-based representation is not able to recover missing data as
effectively as the frame-based representation under this type of error. The performance
of TSVT improves when the value of L is increased to 200; nevertheless, its performance
is still worse than that of FSVT. Furthermore, increasing L defeats the strength of the

trajectory-based representation in utilizing the low rank property of short trajectories.

It could be quite surprising that TSV'T performs worse than FSVT, given that it has
been shown earlier that TSVT has lower rank than FSVT. We would like to point out
that for the case of block missing data, the missing data distribution is no longer uniform,
which is a requirement for Eq. to be valid. We compare the missing data mask for

a frame-based representation and its corresponding trajectory-based representation in
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Figure 3.5: Block missing data with 3 missing joints
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Fig. for random missing data. The missing entry distribution for the trajectory-based
representation is as uniform as that for the frame-based distribution. For block missing
data, as shown in Fig. the trajectory-based representation is much less uniform than
the frame-based representation. At interval length [ = 15, some trajectories (columns)
have zero missing entries while some have more than half of their entries missing. This
situation becomes worse at higher values of [, such as [ = 120. Many trajectories are have

all their entries missing; these trajectories are impossible to recover.

3.5 Conclusion

Low rank matrix completion can reliably recover matrices even though large fractions of its
entries are missing. However, in order to better utilize this method, the matrix should be
structured to have a lower rank. In this chapter, we propose to improve the performance
of low rank matrix completion with Singular Value Thresholding for mocap recovery by
representing mocap data as sets of short trajectory segments instead of the previously
used sets of frames. We show that at the same matrix dimensions, the trajectory-based
representation has a lower rank than the frame-based representation. Using the estimated
optimal trajectory length, the proposed trajectory-based representation is universally
better than the frame-based representation by a huge margin for randomly missing joints.
In our experiments, we achieve significantly better recovery results in all tested mocap
sequences, at 68% on average and up to 80% in some cases, under various fractions of
randomly missing data. However, for the case block missing data, the trajectory-based
representation performs worse, due to the uneven nature of the missing data when it is
presented in trajectory-based form.

For block missing data, both the frame-based representation and trajectory-based

representation decrease in performance significantly when the missing data interval length

49



3.5. CONCLUSION

is increased. Since using a trajectory-based representation is not a good way to deal with
this type of error, we need an alternative method to improve the SVT framework towards

block missing data. We shall present the method in the next chapter.
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Chapter 4

Mocap Recovery Using Skeleton

Constrained Singular Value

Thresholding

4.1 Introduction

In the previous chapter we showed that the trajectory-based matrix completion outper-
forms the frame-based matrix completion for mocap recovery by exploiting the correla-
tion between trajectories. However, for cases where joints are missing for long intervals,
both frame-based and trajectory-based matrix completion is not robust when the interval
length is increased. Thus, in this chapter, we aim to improve the performance of matrix
completion for mocap recovery by using an alternative method that is robust towards
such missing data.

As a recap, Candés and Recht [25] showed that a low rank matrix can be accurately

recovered from observations of a small fraction of its entries by solving for the matrix
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4.1. INTRODUCTION

Figure 4.1: A frame of a mocap sequence recovered using SVT. The position of the left
knee joint and the length of the bones connected to the joint are severely distorted.

with the lowest nuclear norm that conforms to the observations; an approach known as
matrix completion. Lai et al. [24] showed that mocap data, when arranged in the form
of a matrix, is a low rank matrix. They then exploit this property to recover mocap data

by using a matrix completion method known as Singular Value Thresholding (SVT) [26].

Since the human skeleton is rigid, the distance between any two adjacent joints is con-
stant throughout a motion sequence. However, this inter-joint distance is not preserved
for mocap data recovered using SV'T, especially when mocap entries are missing for long
intervals. We observe that the bone length of the skeleton of a recovered mocap data
might undergo extension and shrinkage throughout a sequence; this observation can be

observed in Fig. and is verified quantitatively in Fig. [£.2]

We remove consecutive entries of mocap data for certain interval lengths, recover the
entries using SVT, and plot the RMS error for the recovered data and the RMS error

of inter-joint distances of all pairs of adjacent joints from the recovered data. As shown
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RMSE

Missing Interval (frames)

Figure 4.2: RMS error and skeleton RMS error of three mocap sequences recovered using
Singular Value Thresholding over varying missing data intervals. The skeleton RMS error
is the RMS error of inter-joint distances of all pairs of adjacent joints in the recovered
mocap sequence.

in the figure, both errors increase when the interval length is increased; increases in
fluctuation of the inter-joint distance is correlated with increases in error of the recovered

mocap data.

In this chapter we propose a skeleton constrained SVT method, which attempts to
preserve bone inter-joint distances when recovering mocap data. We formulate the bone
inter-joint distances as additional constraints, taking care to ensure that the problem is
still convex, and show how to solve the problem within the frame-based SVT framework.
Experiments show that the proposed skeleton constrained frame-based SVT (SCFSVT)
outperforms the frame-based SVT (FSVT) method by a significant margin, especially for
cases where mocap data is missing for long periods. SCFSVT performs competitively
with BOLERO [23], a mocap recovery method modeled on linear dynamical systems that

also utilizes skeleton constraints, but at a much lower computational cost.
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4.2. MOCAP RECOVERY USING SVT

In Section we will discuss the problem formulation and solution of the basic SVT
mocap recovery method. After than, we extend the problem to accommodate skeleton
constraints and derive the solution in Section In Section [d.4] we will compare and
discuss the performance of the evaluated mocap recovery methods and wrap up with a

conclusion in Section

4.2 Mocap Recovery Using SVT

To recover a mocap sequence using matrix completion, we can first represent it using a

frame-based matrix representation M € R™*"2 n; = 3j

M=[ff5 ... f,] (4.1)

where f = [x1 y1 21 2 Y2 22 ... TjYj Zj]T

where each frame f holds the 3D coordinates {z,y,z} of j joints. The mocap matrix
has low rank; thus it can be effectively recovered using matrix completion. The mocap

recovery problem is posed as the following optimization problem[]

min f(X) (4.2)

st. S(X)=b (4.3)

where S : R™*"2 — R™ ig a linear map that extracts n; entries from a nq X ny matrix.
b contains the m observed entries of the matrix M to be recovered, i.e., b = S(M).
f(X) == |X]||«, where ||X]||« is the nuclear norm of the decision variable X € R™*"2,

The problem can be solved using the Singular Value Thresholding (SVT) algorithm [26],

!This is the same optimization problem as Eq. but is casted in a different way.
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4.2. MOCAP RECOVERY USING SVT

which computes an approximate solution by solving for f(X) := 7| X||. + 5||X||%, where
| X||F is the Frobenius norm of X. However, it is efficient in both time and memory. A

better approximation is obtained by setting a larger value for parameter 7.

The solution for Problem [4.2] using the SVT method is

Xk =D,8*(y* 1) (4.4)

yP=y" (b - S(XP)) (4.5)

The recovered mocap matrix X = XFnal js obtained by iteratively solving for X* in
Eq. and y* in Eq. until convergence. §* : R™ — R™*"2 ig the adjoint of S, while
0 is the step size parameter. D;, a characteristic operator of SVT, soft-thresholds the

singular values o; of input X with parameter 7. It is defined as
D,(X) = UD(Z)VT, D ()= diag((o; — 7)) (4.6)

where (0;—7)4+ = max(0, 0;—7), and orthogonal matrices U and V, and matrix of singular
values ¥ are obtained using Singular Vector Decomposition (SVD), i.e., X = ULV, In
other words, D, (X) factorizes X using SVD and sets all singular values in 3 that are less

than 7 to zero.

Note that the equations used to solve for SVT in Chapter 3] as presented in Algo-
rithm [T} is cast in a different, but equivalent, way. Instead of Eq. and Eq. the

equations are

X* =D (YD (4.7)

Y =Y 4 5Po(M — XF) (4.8)
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UpperNeck

| LClavicle | |LowerNcck| | RClavicle |

| LHumerus |\‘ Thorax r/| RHumerus |

[ TRedivs | [ Upporoock | [ Radis |
| LVJrist | | Lowerback | | RWrist |
i | [ i | [ oo | [ R | [ R |
| LHipjoint | | RHipjoint |
| LFeImur || RFelmur |
| LT!bia || RT!bia |
| LToes [ LFloot || RFloot | RToes |

Figure 4.3: Mocap skeleton and its joints. Each label indicates a joint, and ‘L’ and ‘R’
prefixes denote left-sided and right-sided, respectively.

where P sets the matrix elements corresponding to missing entries 2 to zero. The
recovered mocap matrix X = Xkanal is obtained by iteratively solving for X* and Y*

until convergence (see Algorithm [I]).

4.3 Skeleton Constrained SVT

4.3.1 Problem Formulation

As mentioned earlier, the previous method of mocap recovery using SVT does not enforce
preservation of skeleton constraints. We overcome this weakness by applying skeleton

constraints to Problem[4.2] First, we rewrite S(X) in Eq.[4.3]as a composition of sampling
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4.3. SKELETON CONSTRAINED SVT

matrix A and a linear map vec

S(X) = Avec(X) = Ax (4.9)
f

where vec:[f; ... f,]— | ° (4.10)
£,

vec maps X € R™*"2 to x € R™"2 and A € R™*™"2 extracts the n, observed entries

b € R™ from M, i.e., b = A vec(M).

The mocap skeleton used in this chapter is shown in Fig. where each label is a
joint, and each edge is a bone connecting adjacent joints. For each joint that is missing,
we insert each of its adjacent edges into a set £. For each edge e; € £, 1 = 1...p, we
have its length d; and connected joint pair (a, 3);. Then, for each e;, we define skeleton
constraint matrix C; € R3*™"2 which extracts the inter-joint distance of (a,3); from
x,le, Cx =z y 2l —[zy z]gZ Applying constraints C; to Problem , we get
Problem H.11] as follows

min  f(X) (4.11)
st x = vee(X) (4.12)
Ax=b (4.13)
|ICix|l2 <d; i=1..p (4.14)

where p is the number of pairs of adjacent joints. d; can be obtained in a preprocessing

step by simple averaging of inter-joint distances of non-missing joints
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4.3. SKELETON CONSTRAINED SVT

4.3.2 Solution of Problem

In a similar way to [26], we derive the solution to Problem by stating the solution
given by the gradient algorithm applied to the Lagrangian, and then recasting it into
the solution obtained using SVT. The gradient algorithm applied to the Lagrangian for

a problem with Lagrangian £(X,y) can be expressed as

X" = arg min £(X, y*™ ) (4.15)
X
yh =y + 00y L(XE y) (4.16)

where y is the Lagrange multiplier of £(X,y), and 0 is the step size parameter. The
solution proceeds by iteratively solving for X that minimizes £(X,y) and moving y in

the direction of the gradient. Upon convergence, the solution X = Xkanal is obtained.

To obtain the Lagrangian for Problem [4.11] we first express the quadratic skeleton
constraints in Eq. in a convex form, i.e., in the form of a second order cone K (see

126]).

€ K; (4.17)
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4.3. SKELETON CONSTRAINED SVT

Following that, the Lagrangian is

L(X,ya,¥c,s) =f(X) + (ya, b — A vec(X))

+ 3 ({ye,, —Civee(X)) — sid;) (4.18)

%

=f(X) + (ya, b) = (ya, A vec(X))

> ((ye,, Ci vee(X)) + sid;) (4.19)

i

=f(X) + (ya, b) — (vec*(ATy,), X)

=2 ({vee'(Clye,), X) + sidi) (4.20)

where < X,Y > is the standard inner product between matrices X and Y. y, and y,
are the Lagrange multipliers associated with Eq. and the ith constraint of Eq.

respectively. Taking f(X) := 7||X[|« + 3[|X||%, we have

arg min E(X) Yas¥Ye S)
X

= {X 7Ox|| X[« + X (4.21)
P
— vec*(ATy,) - Zvec*(CiTyCi) = 0} (4.22)
) Ya
=<X ‘ 7 Ox || X[« + X — vec [AT CT] =0 (4.23)
Ye
C Yeu
where C=| ‘|, yc.= | : (4.24)
Cp Yep |
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4.3. SKELETON CONSTRAINED SVT

It has been shown in [26] that

. 1
D,(Y) = argmin THXH*—|—§HX—Y||2F (4.25)
X

— (X |r0x|X|s +X - Y =0} (4.26)

By comparing Eq. with Eq. {.26] we can solve Eq. using the singular value soft

thresholding operator D,

argmin £(X,ya, Ye,S) = Dy vec” {AT CT] Ya (4.27)
X

Ye
Thus, to update X*, we use the Lagrangian in Eq. in place of the Lagrangian in
Eq.

k—1
Ya

X* =D, vec* [AT CT} (4.28)

k—1
Ye

To update y,, we use the Lagrangian in Eq. in place of the Lagrangian in Eq. 4.16]

yE =yit + 60y, L(X", ya, ye,8) (4.29)

=y 1 +6(b — A vec(XF)) (4.30)
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4.4. RESULTS AND DISCUSSION

Each y., is updated by orthogonal projection P; onto their respective cones K; (see [26])

k k—1 k
Ye. Yo, —C,; vec(X
A=p | |77 | +6 s vee(X) i=1..p (4.31)
sf sf‘l —d;
(yC’8)7 HYCH <s
where Py : (ye 8)i = ) el (ye, ), —llyel <'s < llvel (4.32)
(070)7 S S _HyCH

\

The proposed method, an algorithm to solve Problem and recover the mocap
sequence, is summarized in Algorithm [2 The inputs are the n, observed entries of a
mocap matrix, b € R™ and the inter-joint distance of p joint pairs, d € RP. Matrix A
and map vec are described in Eq. and matrix C is described when discussing Eq.

A larger 7 improves the accuracy of the solution at the cost of increased number of
iterations to convergence. A higher § reduces the number of iterations to convergence,
but if the value is too large, the solution will diverge. We empirically set 7 to 8,/nins for
a reasonable compromise between performance and speed. The value of § is discussed in
Section [.4.1] The RMSE operator in the condition statement of the while loop is defined
in Eq. .33} and the tolerance tol value used is 0.01. The FSVT algorithm without

skeleton constraints can be obtained by removing C, y. and s; from Algorithm [2]

4.4 Results and Discussion

In this section we evaluate the performance of the proposed method in recovering missing
mocap data. Recall that each sequence contains 31 joints and 30 skeleton constraints (see
Fig. . We generate the 3D coordinates of each joint from joint angle representation

data, so the length of each bone d; is known exactly. We use a set of sequences of
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4.4. RESULTS AND DISCUSSION

Algorithm 2 Skeleton Constrained SVT

Input: A,C,b,d

Parameter: §, 7, knax, tol
Output: Recovered mocap sequence X
Initialization:

Ya
Ye
Sc

~—b
+~—0
~—0

k<« 1

1: while &k < kpar and RMSE(A vec(XF), b) > tol do

2:

7

9

10:
11:
12:
13:
14:
15:
16:
17:
18:

19

20:
21:
22:

23

d;

yh—1
Y + vec* <[AT CT] [y2_1}>
C
C: Yeu
where C=| ! | ,yc=|:
Cp Yep
X* <+ D, (Y)
Ya < ¥i 1+ 9(b — Avee(XF))
k k—1 } k
e )
s; s;
k< k+1
end while
: X+ XF
: function (P;(y, s))

if ||ly|] < s then

(2,1) < (¥, )
else if —|ly|| < s < |ly| then

_l’_
(Za t) — ”g””yHS (ya S)

else
(z,t) < (0,0)
end if
Return (z,t)
end function

: function (D-(X))

Zi aiuiviT +— X

Y < Y, max(o; — 7,0)w;v}
Return Y

: end function

// update X

// update ya,yc

// see Eqid.32)

// singular value decomposition

62



4.4. RESULTS AND DISCUSSION

different complexity and composed of a variety of actions for performance evaluations
(see Table in Chapter [2).

We compare the proposed skeleton constrained frame-based SVT mocap recovery
method (SCFSVT) against the previous frame-based SVT mocap recovery method (FSVT)
[24]. We also compare against BOLEROEI [23], a method which models the problem as a

linear dynamical system with skeleton constraints.

We use the BOLERO code provided publicly by the authors and the implementa-
tion which enforces hard constraints (BOLERO-HC). However, for our test data, since
the algorithm only terminates long after the result has practically converged, for bet-
ter fairness, we remove the stricter termination criterion that checks for a decrease in a
likelihood funtion (likelihood increases logarithmically during optimization), and retain
the criterion which checks whether the rate of change of likelihood has dropped below a
threshold value. Modifying the code in this way decreases computation time substantially
with very little change in performance. Implementations of all the compared algorithms
are written in matlab and the experiments are run on a computer with an Intel i7-3770

CPU and 8GB memory.

In the same way as described in the previous chapter, we simulate random missing
data by randomly removing a number of joints so that the required missing data rate is
simulated. We simulate block missing data by partitioning a sequence into time intervals
of the same length, and for each interval we randomly remove a fixed number of joints.
The number of removed joints determines the error rate of the corrupted mocap sequence,
and the interval length determines for how many frames is a joint missing. We vary the

interval length from 15-120 frames (0.25-2 seconds). We use Root Mean Square Error

2Mocap data values are scaled down for algorithm stability as recommended, but are not transformed
to local coordinates. All parameters are left at default values.
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(RMSE) to quantify the distortion of a recovered matrix.

ng Ny

RMSE(X, M) = mim >3 (X] - Mij>2 (4.33)
j=1i=1

where X and M are the matrices of the recovered and original mocap, respectively.

4.4.1 Processing Time Evaluation

The processing time for SCFSVT is strongly dependent on the number of frames of the
mocap sequence, weakly dependent on the error rate, and generally not dependent on the
missing interval length, as shown in Fig. . In the figure, the error rate is 37, where n
is the number of missing joints. This observation can be explained from the operations
listed in Algorithm . When the error rate 1 — % is increased, the dimension of y, € R3P
and C € R3*"2 increases while the dimension of y € R™ decreases. Thus the resulting
processing time increase is largely due to the projection operation (step [5|in Algorithm.
The most time consuming operation by far is the singular value decomposition. It scales
with the number of frames no, and is independent of the error rate. The fluctuations
across varying interval lengths; especially for a very short sequence like 85 02, can be
attributed to the experimental setup; for each experiment, each sequence is truncated to
multiples of missing interval length.

Compared with FSVT, the computation of SCFSVT requires the projection opera-
tion and operations associated with y. and C. Since the singular value decomposition
operation is the same for both FSVT and SCFSVT, the complexity for each iteration is
the same for both algorithms; the processing time is somewhat higher for SCFSVT, but
not greatly so. However, SCFSVT has a lower ¢ threshold for convergence than FSVT.

With a lower value of §, SCFSVT requires many more iterations to converge; hence, it
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Figure 4.4: Processing time of SCFSVT for varying interval lengths and number of missing

joints n for six sequences.
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Sequence N Al A2 B C
85 02 405 6 15 18 164
143 04 543 8 21 25 291
49 02 1043 15 38 44 156
135 11 1223 17 42 49 438
88 04 1240 16 40 46 266
61 05 1678 23 57 71 241
135 02 2601 31 78 97 367
14 01 2797 4 110 138 480

Table 4.1: Average processing time (seconds) of (Al) FSVT(6 = 1.9), (A2) FSVT(6 =
0.75), (B) the proposed SCFSVT, and (C) BOLERO for 3 missing joints. N denotes the
number of frames in a sequence.

requires a longer processing time.

We compare the processing times of SCFSVT(d = 0.75) against that of FSVT(§ =
0.75), FSVT(6 = 1.9), and BOLERO in Table of various sequences for three missing
joints. The average processing time over interval lengths of {15, 30, 60, 90, 120} are
shown. FSVT(§ = 1.9) is approximately % ~ 2.5 times as fast as FSVT(§ = 0.75),
which is in turn up to 25% faster than SCFSVT. Nevertheless, SCFSVT is 3 to 11 times
faster than BOLERO.

Fig. shows how the compared algorithms converge for three missing joints. Both
FSVT and SCFSVT converge smoothly, and the convergence rate is independent of inter-
val length [. FSVT converges faster than SCFSVT, hence it has a lower RMS error ini-
tially, but eventually the RMS error of SCFSVT decreases to a smaller value. BOLERO
converges more slowly than both FSVT and SCFSVT. Generally, convergence time of
BOLERO is also longer for longer (.
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Figure 4.5: RMS error for sequences 135 11 (a, ¢, e) and 143 04 (b, d, f) at different

interval lengths [ for 3 missing joints.
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4.4.2 Performance Evaluation

We first show the effectiveness of the proposed method in constraining the inter-joint

distance of joint pairs. We compute the skeleton RMS error

X
1 30
RMSEg = ;Z gyl =y —d; (4.34)
=1
z z
o Billg

where for each ith bone its joints are «; and §;, and its length is d;. There are 30 bones,

as shown in Fig.
As can be seen in Fig. [4.6] the skeleton RMSE for FSVT and SCFSVT generally

increases with increasing interval length. However, the error for SCFSVT is lower and

increases at a much lower rate.
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Figure 4.6: Skeleton RMS error for FSVT and SCFSVT for 3 missing joints.
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Sequence n=3, n=3, n=3, n=3, n=3, n=~06, n=06, n=>06, n=~06, n=06,
1=15 1=30 1=60 1=90 1=120 1=15 1=30 1=60 1=90 1=120

1401 A 0.052 0.051 0.053 0.056 0.061 0.098 0.118 0.138 0.128 0.140
(Boxing) B 0.046 0.043 0.045 0.045 0.048 0.085 0.104 0.118 0.102 0.105
C 0.068 0.066 0.068 0.063 0.072 0.100 0.112 0.143 0.112 0.130
85_02 A 0.281 0.613 1.563 2.038 2.499 0.716 1.119 2.204 3.060 3.745
(Jumptwist) B 0.120 0.191 0.230 0.204 0.249 0.248 0.315 0.354 0.485 0.321
C 0.145 0.154 0.214 0.266 0.326 0.290 0.340 0.366 0.538 0.397
143 _04 A 0.075 0.136 0.510 0.380 1.261 0.156 0.340 1.148 1.634 3.280
(Run fig 8) B 0.059 0.088 0.124 0.128 0.155 0.117 0.193 0.220 0.270 0.290
C 0.057 0.062 0.155 0.135 0.141 0.105 0.143 0.174 0.314 0.403
49 02 A 0.046 0.065 0.111 0.091 0.238 0.128 0.182 0.239 0.255 0.423
(Jumping) B 0.039 0.053 0.086 0.068 0.093 0.119 0.140 0.132 0.146 0.153
C 0.057 0.058 0.074 0.064 0.079 0.103 0.099 0.139 0.133 0.233
135 02 A 0.097 0.120 0.168 0.166 0.209 0.201 0.246 0.404 0.428 0.453
(MartialArts) B 0.083 0.096 0.139 0.131 0.151 0.181 0.211 0.333 0.247 0.280
C 0.138 0.144 0.144 0.161 0.195 0.216 0.228 0.287  0.266 0.282
135_11 A 0.057 0.071 0.144 0.261 0.288 0.132 0.180 0.326 0.500 0.608
(Kicking) B  0.052 0.065 0.095 0.095 0.104 0.125 0.150 0.184 0.160 0.157
C 0.054 0.058 0.081 0.099 0.074 0.092 0.102 0.383 0.154 0.114
61_05 A 0.070 0.086 0.102 0.167 0.174 0.159 0.206 0.233 0.390 0.344
(Salsa) B 0.060 0.063 0.080 0.100 0.102 0.137 0.168 0.144 0.185 0.179
C 0.073 0.085 0.086 0.100 0.112 0.123 0.145 0.156 0.151 0.209
88_04 A 0.131 0.202 0.274 0.342 0.347 0.363 0.617 0.576 1.036 0.949
(Acrobatics) B 0.101 0.123 0.146 0.147 0.141 0.265 0.432 0.317 0.314 0.261
C 0.155 0.143 0.201 0.178 0.177 0.270 0.286 0.341 0.302 0.297

Table 4.2: Performance comparison in terms of RMSE of recovered mocap data beween (A) FSVT,
(B) the proposed SCFSVT mocap recovery, and (C) BOLERO under block missing data. n and [
denote the number of missing joints and interval length, respectively.
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Table shows a comparison of mocap recovery performance under block missing
data. First, we observe that in most cases the performance of FSVT decreases substan-
tially when the time interval increases, whereas the performance of SCFSVT degrades
more slowly. This shows that skeleton constraints improves the resistance of FSVT to-
wards long bursts of joint data loss. Overall, SCFSVT outperforms FSVT by up to 90%
and at 41% on average, with larger gains at longer missing joint intervals. Comparing
SCFSVT with BOLERO, SCFSVT outperforms BOLERO in a slight majority of our

tests with a 4% improvement on average.

While in general the RMSE of all algorithms increase with increased interval lengths,
there are cases where RMSE fluctuates. For example, for sequence 85 02 at n = 3,
the RMSE for SCFSVT rises from 0.191 to 0.230 at [ = 60, and then falls to 0.204 at
I =90. This is not surprising since the simulated missing data entries are not the same
for different [, and certain data entries might be more important for recovering the mocap
sequence. For example, for [ = 60, important mocap entries might be missing, but these
entries are available for [ = 90, hence in this case I = 90 might result in lower RMSE.
The fact that this phenomenon occurs more frequently for SCFSVT and BOLERO shows
that skeleton constraints are effective in reducing the performance degradation caused by

longer interval lengths.

Table shows a comparison of mocap recovery performance under random missing
data. We only show experiments up to 40% missing data rate since BOLERO becomes
unstable at higher missing data rates. In this test, although SCFSVT outperforms FSVT
in all cases, the performance advantage of is smaller than in the block missing error test,
at an average of 7% improvement. SCFSVT outperforms BOLERO at 10% and 20%

missing rate, but loses out at higher missing rates.

71



4.4. RESULTS AND DISCUSSION

Sequence Method Missing data
10% 20% 30% 40%
14 01 A 0.052 0.092 0.171 0.264
B 0.048 0.084 0.159 0.248
C 0.057 0.086 0.115 0.143
85_02 A 0.041 0.094 0.192 0.402
B 0.035 0.086 0.182 0.379
C 0.081 0.120 0.159 0.199
143 04 A 0.047 0.096 0.175 0.284
B 0.043 0.089 0.166 0.269
C 0.046 0.074 0.103 0.130
49 02 A 0.044 0.074 0.118 0.178
B 0.041 0.070 0.114 0.172
C 0.044 0.064 0.085 0.131
135 02 A 0.087 0.151 0.262 0.415
B 0.079 0.137 0.242 0.388
C 0.112 0.165 0.225 0.335
135 11 A 0.050 0.078 0.141 0.240
B 0.046 0.074 0.135 0.231
C 0.047 0.071 0.099 0.118
61_05 A 0.056 0.103 0.175 0.275
B 0.050 0.093 0.162 0.258
C 0.064 0.098 0.127 0.159
88_04 A 0.088 0.149 0.297 0.494
B 0.080 0.137 0.280 0.470
C 0.118 0.179 0.342 0.464

Table 4.3: Performance comparison of recovered mocap data beween (A) FSVT, (B) the
proposed SCFSVT mocap recovery, and (C) BOLERO under random missing data.
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4.4.3 Discussion

BOLERO is an extension of a system [22] that models the entire processed sequence as a
linear dynamical system; a sequence of frames is modeled as a sequence of low-dimensional
latent variables. Consecutive latent variables are related by a linear map, and each frame
is related to a latent variable by a linear projection. The objective function to be maxi-
mized is the likelihood of the observed data with respect to the model. BOLERO improves
on this system by including bone constraints in the objective function. Since the bone
constraints are formulated as nonlinear constraints, the objective function becomes non-
linear, and is solved by using either Newton’s method or the coordinate descent method.
In comparison, our method formulates the skeleton constraint as an inequality constraint,
which is convex, and we model mocap recovery as a convex optimization problem. Hence

we can utilize convex optimization to find a global optimal solution efficiently.

With regard to the skeleton constraints in SCFSV'T, it is likely that the performance
of SCFSVT can be improved by tightening the bound of the constraint in Eq.
”CzXHQ S di, to

di —e< HCZXHQ <d;+e€ (4.35)

In other words, each bone is constrained to a certain length d; with tolerance e, instead
of being constrained to have length of less than d;. However, if we do so, we would be
changing the constraint from a convex constraint (Eq. into a non-convex constraint
(Eq. . As a result, the problem becomes non-convex, and thus we would not be able
to apply convex optimization; we lose the efficiency of convex optimization. Nevertheless,
even with skeleton constraints with looser bound, SCFSVT still improves on FSVT by a

large extent, and its overall performance is comparable to BOLERO.
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4.5 Conclusion

Low rank matrix completion methods, such as Singular Value Thresholding (SVT), work
well in recovering mocap data with missing values. However, the performance of SVT
decreases substantially when joints are missing for a long time interval, due to fluctuating
bone lengths of the recovered sequence. We alleviate this drawback by constraining the
inter-joint distances of specific joint pairs in the SVT method. For situations where joints
are missing for long intervals, experiments show that our proposed skeleton constrained
frame-based SVT method (SCFSVT) improves on the frame-based SVT method (FSVT)
by 40% on average, with higher gains at longer missing joint intervals. Compared to the
recent state of the art algorithm, BOLERO[23], our method offers competitive perfor-
mance and is 3 to 11 times faster.

The skeleton constraints are independent of the structure of the mocap matrix. Thus
it is possible to impose skeleton constraints on a trajectory-based mocap matrix. However,
since a trajectory that is missing entirely could not be reliably recovered under matrix
completion, even the application of skeleton constraints might not be enough to obtain a

good performance for long intervals of missing data.
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Chapter 5

Subspace Constrained Mocap

Recovery

5.1 Motivation

In Chapter [3] we introduced the trajectory-based representation for SV matrix com-
pletion, which exploits different properties for mocap recovery compared with the frame-
based representation; the trajectory-based representation exploits the correlation between
short trajectory segments, whereas the frame-based representation exploits the correla-
tion between frames of the sequence. Naturally, the next step would be to combine both
methods in a way that both correlations between trajectory segments and correlations
between frames could be exploited. A naive method to do so is by weighted addition of
mocap data X and Xg recovered by method A and method B to obtain the final recov-
ered data X¢, i.e., Xg = aXp + (1 — a)Xp. However, this is not a good solution since
properties of both methods are not considered together, and X¢ will never outperform

both X4 and Xp.
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In this chapter, we propose a method to ‘combine’ two different mocap recovery meth-
ods to exploit both correlation between frames and correlation between short trajectory
segments. The property of correlation between frames means that, regardless of the repre-
sentation of a mocap matrix, the frames, or entries corresponding to frames, of the matrix
lie approximately in a low dimensional subspace. This means that for a frame-based ma-
trix, the columns lie in a low dimensional subspace, whereas for a trajectory-based matrix,
the entries corresponding to frames are constrained so that they lie in a low dimensional
subspace. This subspace can be estimated from the columns of the matrix recovered by
FSVT. Thus, we recover an initial solution using Frame-based Singular Value Threshold-
ing (FSVT), and then recover the matrix again using Trajectory-based Singular Value
Thresholding (TSVT) while constraining the solution of TSVT to lie in the frame correla-
tion subspace estimated from the initial solution. We will refer to this combined method
as Combined-Frame-and-Trajectory Singular Value Thresholding (CFTSVT).

We first describe how the low dimensional subspace is obtained from FSVT and for-
mulated as a constraint in Section In Section [5.2.2] we show how to reformulate
TSVT to accept frame-based constraints. The value estimation of parameter ry.x is de-
scribed in Section and experimental results are shown in Section [5.3.2] Finally we

conclude the work in Section [5.4]

5.2 Proposed method

The proposed method recovers mocap data in two stages; first, the input mocap matrix is
arranged in a frame-based representation My € R™*™2 FSVT is then used to recover Mg
to provide an inital solution, X; € R™*"2 and the low-dimensional subspace spanned by
the frames of Xy is extracted (Section . At the second stage, we rearrange the input

mocap matrix into a trajectory-based representation My € R™ ™2 and then solve for
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5.2. PROPOSED METHOD

the final recovered mocap using the subspace constrained TSVT. In our implementation,
as we will show later in Section [5.2.2] this rearranging operation step can be skipped by

using a transformation matrix. .

5.2.1 Subspace Extraction

After computing Xy, we first take its Singular Value Decomposition (SVD),
UzVvT = SVD(Xy) (5.1)

The columns of U = [u;...u,,] € R™*™ span the subspace that the frames of X; lie
in. The optimal rank r approximation of this subspace is obtained by retaining the first
r columns of U. In practice, the rank of X can be as high as 60, so we obtain a low

dimensional subspace U by setting the maximum rank 7y,

U= {ul,...,ur} (5.2)

A~

where 7 = min(ryayx, rank(Xy)) (5.3)

Given a frame x¢ that does not lie in U the error vector of its orthogonal projection on

U, ey(x;), is

eu(Xf) = PuJ_Xf (54)

where Py, =1-TU, UL (5.5)
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with U, = [u; ... u,]. Hence the subspace constraint for the second stage recovery method

is
Py, [la = 0 (5.6)
where P,,. € R™>™ is the orthogonal projector onto U+ and X¢ = [xy, . . - Xt, | € RmXm2

is the decision variable in a frame-based representation. Each frame of the decision

variable is constrained to lie in U.

5.2.2 Subspace Constrained TSVT

We first formulate the problem for a subspace constrained FSV'T method, and then extend

it to subspace constrained TSVT.

Since we want to apply the subspace constraints to every frame of the decision variable,

we have
||PuJ_XfiH2 = 0, 1= 1...n2 (57)

Now we try to denote the constraint in terms of x¢. Consider P¢xs, where

PMJ_ 0 Xf1
Pe=| 0 Py ...|, xt=vec(Xg)=|: (5.8)

Xfn

Denoting (Py); as the ith block-row of Py, where each block row is a block of n; rows, we
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have (Pg);x¢ == Py x¢,. We can thus formulate the subspace constrained FSVT

min  f(Xy) (5.9)
st xt = vee(Xp) (5.10)
Axi=b (5.11)
[(Pr)ixell2 <0, i=1.n (5.12)

where Ay € R™*™"2 extracts the n, observed entries b € R™ from the input matrix
M € Rm*"2 je. b = Arvec(M). Instead of specifying the subspace constraint using
an equality constraint (in a similar way to Eq. , we use an inequality constraint
(Eq. ; this is because the equality constraint is non-convex. Moreover, notice that

(Pg)ixs has the same form as the skeleton constraint in Eq. [4.14]

Now we cast the formulation to a trajectory-based representation by changing the

decision variable in Problem to X

min  f(X}) (5.13)
st x = vee(X) (5.14)
Ax;=b (5.15)
[(Ppixcll2 <0, i=1l.ny (5.16)

where b = Afvec(M). Note that Constraint is equivalent to Ayx; = b¢, where

by = A vec(My) and My is the input matrix in trajectory-based representation.

The decision variable Xy is a matrix in a trajectory-based representation, whereas the
subspace constraint in Eq. is formulated in terms of xy¢;, which is expressed in a frame-

based representation. We need to express all equations using the same representation.
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Thus we define a permutation matrix Ty € R™72X™M"2 that transforms a trajectory-

based representation to a frame-based representation,

Tix; = X¢ (5.17)
where x¢ = vec(Xy), (5.18)
x; = vec(Xy) (5.19)

X1
vee : [X1... Xy | (5.20)

Xy,

Substituting Eq. into Pgx¢, we have

Pfo = Pthth (521)

(Pr)ixe = (PrTyr)ixy (5.22)

where (P¢T4f); is the ith block row.

Substituting Eq. and Eq. into Problem we have the problem for sub-

space constrained TSVT

min  f(Xy) (5.23)
st. xy = vec(Xy) (5.24)
AfTixy = b (5.25)
[(PfTie)ixtll2 <0, i=1..ny (5.26)

where b = Agvec(M), (P¢Ty); € R™*™"2 and ny is the number of frames in the

mocap sequence. Eq. constrains each frame of Xt to lie in a certain subspace, but is
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5.3. RESULTS AND DISCUSSION

expressed in terms of xy.

Notice that Problem has the same form as Problem in Chapter [d Thus
the derivation to the solution of this problem can be referred to in Chapter The
pseudocode for the subspace constrained TSVT is shown in Algorithm [3] Note that
Algorithm [3] does not include the subspace extraction procedure, and that the recovered

matrix is in trajectory-based representation.

5.3 Results and Discussion

Similar to the earlier chapters, use a set of sequences (Table to estimate the value of
Tmax , and another set of sequences (Table for performance evaluations. Implementa-
tions of all compared algorithms are written in matlab, and the experiments are run on a
computer with an Intel i7-3770 CPU and 8 GB memory. The 7 parameter for FSVT and
subspace constrained TSVT algorithms are set to 8,/ninz and 8,/mimz, respectively.
The trajectory length for TSVT is set to L = 50.

The simulated missing markers are the same as previous chapters. For random missing
data, missing data is simulated by randomly removing a number of marker entries. For
block missing data, a sequence is partitioned into time intervals of the same length, and
for each interval a fixed number of markers is removed. The number of removed markers
determines the error rate of the corrupted mocap data.

We use Root Mean Square ErrorE] (RMSE) to quantify the distortion of a recovered

matrix.

n2 ni

RMSE (X3, M) = nlim 3 (xj _ MU)Q (5.27)
j=1i=1

where Xy and M are the matrices of the recovered and original mocap, respectively.

1We use the provided default units for mocap values. To obtain values in millimeters, multiply them
by 56.44
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Algorithm 3 Subspace Constrained SVT
Input: Af, Pg, Ty, b

Parameter: §, 7, knax, tol

Output: Recovered mocap sequence X
Initialization:

s < b

yl <0

sV 0

k+1

A+ Athf

C + Pthf

1: while k < k0, and RMSE(A vec(X*),b) > tol do

k—1
2: Y « vec* <[AT CT] B%J) // update X
C
Cl YCl
where C = , Ve = // Cz‘ € Rmxninz
Cp Yep

3: XF DT(Y)
4 yfj — yffl +0(b— Avec(Xk)) // update ya,¥yc
k k—1 k
. yo C,; vec(X
o [ en (] - [0)

6: k< k+1
7. end while

8: X — Xk

9: function (P;(y,s)) // see Eql4.32
10: if ||ly|| < s then

11: (z,t) < (y,s)

12: else if —||y|| < s <|y| then

13 (2,1) « Bl (y, 5)

14: else

15: (z,t) « (0,0)

16: end if

17: Return (z, t)
18: end function

19: function (D, (X))

20: Siouvi X // singular value decomposition
21: Y <+ Y, max(o; — 7,0)w;v’
22: Return Y 82

23: end function
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Figure 5.1: Estimation of optimal value for ryax of constraining subspace for random
missing data.

We first investigate the optimal rank rmax for our proposed method in Section [5.3.1]

Then we evaluate our proposed method using this length in Section [5.3.2]

5.3.1 Subspace Rank Evaluation

In this section, we estimate the optimal value for rpax (Eq. separately for random
missing data and block missing data. For random missing data, for each missing rate,
we obtain the average of RMS errors over all sequences (Fig. [5.1(a)). Then, we take the
Tmaz that gives the minimum RMS error for each missing rate and fit a line to them using
least squares (Fig. [5.1[b)). We can see that the optimal value of rmayx is nearly constant
for different missing rates, so we set rmax = 48.

For block missing data, for each [ = 15 to [ = 120 at three missing markers, we repeat
the same procedure (Fig. . In this case, rmax 18 clearly decreasing with increasing

missing interval length [. Thus, we vary rmax according to the interval length. For the
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Figure 5.2: Estimation of optimal value for ryax of constraining subspace for block missing
data.

following experiments, we set rmax to (26,24,19,14,9) corresponding to missing interval

lengths of (15,30,60,90,120).

5.3.2 Performance Evaluation

In this section, we compare the proposed CETSVT with frame-based SVT (FSVT) and
trajectory-based SVT (TSVT). It can be seen from Table that for random missing
data, CFTSVT outperforms FSVT by a wide margin in all cases, and except for a few
cases at low missing data rates, outperforms TSVT. The performance advantage increases
at higher missing data rates. On average, CFTSVT outperforms FSVT by 76% and TSVT
by 23%.

For block missing data, as shown in Table [5.2) TSVT has the highest error. FSVT
performs the best overall and outperforms CFTSVT mostly at long values of [, and by
13% on average. Still, CFTSVT outperforms FSVT in 143 04 (Running) and performs

nearly the same for 85 02 (Jumptwist).
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Sequence Method Missing data
10% 20% 30% 40% 50% 60%

14 01 A 0.062 0.092 0.171 0264 0.404 0.614
(Boxing) B 0.014 0.023 0.038 0.066 0.121  0.211
C 0.013 0.017 0.025 0.037 0.055 0.105
85_02 A 0.041 0.094 0.192 0402 0.661 1.193
(Jumptwist) B 0.020  0.035 0.070 0.179 0.333  0.678
C 0.017 0.027 0.055 0.144 0.254 0.556
143 04 A 0.047 0.096 0.175 0.284 0459  0.857
(Run fig 8) B 0.020  0.040 0.075 0.154 0.314 0.781
C 0.016 0.026 0.049 0.093 0.170 0.373
49 02 A 0.044 0.074 0.118 0.178 0.265 0.438
(Jumping) B 0.014 0.022 0.034 0.053 0.099 0.201
C 0.014 0.018 0.023 0.033 0.045 0.079
135_02 A 0.087 0.151  0.262 0415 0.645  1.025
(Martial Arts) B 0.022 0.034 0.053 0.081 0.139  0.265
C 0.024 0.033 0.044 0.064 0.102 0.202
135 11 A 0.060  0.078 0.141  0.240 0.380  0.683
(Kicking) B 0.017 0.029 0.049 0.084 0.130 0.254
C 0.016 0.025 0.041 0.063 0.088 0.166
61_05 A 0.066 0103 0.175 0275 0417  0.657
(Salsa) B 0.014 0.019 0.027 0.039 0.070  0.135
C 0.015 0.019 0.025 0.035 0.054 0.107
88_04 A 0.088 0.149 0.297 0494 0.774 1.201
(Acrobatics) B 0.018 0.031 0.052 0.088 0.154  0.308
C 0.020 0.028 0.041 0.064 0.103 0.222

Table 5.1: Performance comparison of (A) FSVT, and (B) TSVT, and (C) CFTSVT

under random missing data.
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Sequence Method Missing data
1=15 1=30 1=60 1=90 1=120
14 01 A 0.052 0.051 0.053 0.056 0.061
B 0.465 1.163 2.325 2.855 3.081
C 0.068 0.074 0.095 0.136 0.285
85_02 A 0.281 0.613 1.563 2.038 2.498
B 0.776 2.053 3.673 3.842 4.139
C 0.272 0.623 1.576 2.038 2.515
14304 A 0.075 0.136 0.510 0.380 1.261
B 0.946 2.484 4.220 4.807 5.225
C 0.07 0.112 0.491 0.315 1.239
49 02 A 0.046 0.065 0.111 0.091 0.238
B 0.521 1.263 2.334 2.543 2.555
C 0.046 0.064 0.108 0.122 0.286
135 02 A 0.097 0.120 0.168 0.166 0.209
B 0.646 1.692 3.318 3.952 4.165
C 0.121 0.141 0.189 0.267 0.492
135 11 A 0.057 0.071 0.144 0.261 0.288
B 0.686 1.903 3.641 4.155 4.536
C 0.055 0.071 0.142 0.269 0.339
61 05 A 0.070 0.086 0.102 0.167 0.174
B 0.462 1.375 2.835 3.339 3.615
C 0.078 0.096 0.124 0.187 0.289
88_04 A 0.131 0.202 0.274 0.342 0.347
B 0.887 1.865 3.095 3.580 3.672
C 0.132 0.193 0.274 0.389 0.650

Table 5.2: Performance comparison of (A) FSVT, and (B) TSVT, and (C) CFTSVT
under block missing data.
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The dimension of the constraint subspace determines the relative contribution of the
outputs of the two stages of CFTSVT. A lower dimensional subspace constrains the
output of stage two TSVT to be very close to the results of stage one FSVT; hence, using

a lower dimension increases the relative contribution from FSVT.

5.4 Conclusion

Different mocap recovery methods exploit different characteristics of the mocap data to do
recovery; frame-based Singular Value Decomposition (FSVT) exploits the correlation be-
tween frames whereas trajectory-based Singular Value Thresholding (TSVT) exploits the
correlation between short trajectory segments. In this chapter, we proposed the method
Combined-Frame-and-Trajectory Singular Value Thresholding (CFTSVT), which exploits
both properties. A mocap matrix has a correlation between frames; this correlation in-
duces the frames of a mocap matrix lie in a low dimensional subspace, which we can
approximate using the matrix recovered using FSVT. This correlation is then exploited
in TSVT, which by itself only exploits correlation between trajectories, by constraining
the frames in the solution of TSVT to lie in the low dimensional subspace extracted
previously. In short, the output of FSVT is used to constrain the output of TSVT. The
proposed CFTSVT method significantly outperforms both FSVT and TSVT in random

missing data tests.
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Chapter 6

Single Viewpoint Image-Driven

Simplification

6.1 Introduction

Mesh simplification is the process of reducing the resolution of polygonal meshes. In
the incremental decimation framework, a mesh is simplified by repeated vertex removal
in a greedy fashion; at each vertex removal step, the vertex removed is the one that
causes the least distortion when removed. Incremental decimation algorithms and their
performances differ by how they define distortion at each step of vertex removal. The
majority of algorithms use geometry-based error metrics, which measure spatial distortion
such as volume distortion and distance distortion. To account for perceived distortions
due to distortion in other properties that affect appearance, like normals and texture, a
few works [49] 50, 51] proposed a separate ‘appearance distortion’ and combine it with

spatial distortion using weighted summation to obtain an aggregate distortion.

However, the relationship between perceived distortion and the measured distortions,
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i.e., ‘appearance distortion’ and spatial distortion, is not straightforward; ‘appearance
distortion’ can affect the perceptibility of spatial distortion. Besides, ‘appearance distor-
tion’ and spatial distortion refer to measures that are very different in nature. Hence,

summing both types of distortion is a compromised approach.

Lindstrom and Turk suggested an alternative approach — Image-Driven Simplification
(IDS) [59], where the appearance of a mesh is measured directly. Hence IDS measures

perceived distortion directly by measuring the change in appearance of a mesh.

The mesh appearance can be fully described by a set of radiance samples emanating
from the mesh. Since it is impractical to capture all the radiance samples, IDS only aims
to capture a subset of these samples. IDS approximates mesh appearance using mesh im-
ages that are captured from a set of evenly distributed viewpoints. The appearance error
between two meshes is obtained by aggregating the differences between their correspond-
ing images. Increasing the number of viewpoints (and captured images) will increase
the amount of captured radiance samples; this increment improves the accuracy of the
approximation of mesh appearance. Thus, using more viewpoints improves simplification
performance at a cost of longer processing time. Incidentally, the approach of using a set
of images as a proxy for a 3D mesh has also been used successfully in content-based mesh

retrieval [72, [73].

Incremental decimation is done by repeatedly applying an edge collapse operation
whereby two vertices are merged together. Since only a small region is distorted by an
edge collapse, obviously only a small set of radiance samples are affected by one such
operation. In IDS, 20 viewpoints are used to capture mesh appearance. We observe,
however, that in most cases, for each edge collapse, only a few viewpoints will register

any image distortion.
We thus propose that instead of placing the viewpoints at a fixed location and ori-
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entation around the mesh, we should place the viewpoints relative to each edge collapse
region. In this way, we only need a few viewpoints to capture the same amount of appear-
ance distortion as the previous method. We go one step further and propose that with
proper positioning of the viewpoint, a single viewpoint is sufficient for good simplification
quality. By reducing the number of viewpoints to one, we achieve significant savings in
processing time.

We first describe the Image-Driven Simplification method in Section [6.2l Then we
explain our faster single viewpoint method in Section [6.3] In Subsection [6.3.1] and Sec-
tion we proposed two methods to place the viewpoint, and in Section we
described a method to accelerate our single viewpoint methods. We then present pro-
cessing time improvements in Section [6.4.1] and simplification quality comparisons in

Section followed by a Conclusion in Section [6.6]

6.2 Image-Driven Simplification

In the incremental decimation framework, the final simplified mesh M™" is obtained from
the original mesh M through a series of edge collapse (ecol) operations, where a vertex
is collapsed into an adjacent vertex, removing a vertex from the mesh. Hence we have a

set of intermediate meshes, each with one less vertex than the previous mesh.

~- ecol ecol

NS el k=1 ecdl gk ccol ecol

M?’L

The simplification process from M to M™ is done in a greedy manner. At any stage k
of simplification M* =1 %' A% the collapse errors E(ecol(x,y)) of all candidate vertex
pairs (z,y) are computed, and then edge collapse is applied on the pair with the smallest

collapse error to obtain M*. This collapse error is defined as the difference between the
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6.2. IMAGE-DRIVEN SIMPLIFICATION

Figure 6.1: (left) Cow mesh; (right) Images rendered from a set of equally distributed
viewpoints around the mesh.

original mesh M and the mesh M*(x,y), where M*(z,y) is the mesh after the collapse

of (x,y) on M*~1. Formally, we have

(z,y)* = arg min E(ecol(z, )) (6.1)
Y

= argmin E(M, M*(z,y)) (6.2)
x7y

Note that (x,y) has to be collapsed first in order to evaluate the collapse error of (z,v),
so all candidate pairs have to be independently collapsed first for the error evaluation.

After error evaluation, the pair with the smallest collapse error is collapsed to obtain M*.

Image-Driven Simplification [59] models the difference between two meshes as the
difference in appearance between them. Mesh appearance is modeled using images ren-
dered from a set of viewpoints distributed equally around the mesh, as shown in Fig. [6.1]

Therefore, the difference between meshes Mx and My, Empg(Mx, My), is defined as the
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Figure 6.2: (left) Cow mesh; (right) Image of the mesh rendered from a single viewpoint

difference between their image sets, that is,

Eips(Mx, My) = |Er(Ix 1, Iv 1), - Er(Ix ks Iy k)2 (6.3)
K
= \ > EX(Ixn, Iv.n) (6.4)
h
m n
where  Ei(Ix, Iv) = [ Y ) (ixuw = iv,uw)? (6.5)
u v

Eq(Ix, Iy) is the difference between two images, Ix and Iy, and ix ,,, is the intensity of
the pixel (u,v) of image Ix. In the Image-Driven Simplification paper, k is set to 20.
For rendering each image, lightning is provided by a single light source that is positioned

near the viewpoint.

6.3 Proposed Method

We observe that in IDS, most viewpoints do not capture any distortion for an edge
collapse since it is occluded from their view. Since the region distorted by an edge-

collapse is small, we propose that a single image is sufficient to capture this difference.
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To do so effectively, we adaptively position the viewpoint relative to the distorted region
for each edge collapse; in contrast, for IDS, viewpoints are positioned at fixed locations
relative to the simplified mesh throughout the simplification process. Adaptively placing
the viewpoint also ensures that all distortions are adequately captured. In a fixed-location

viewpoint configuration, there could be regions that are not captured by any viewpoint.

In Image-Driven Simplification, the error of a candidate edge collapse is defined as
the difference between the original mesh and the mesh after the edge collapse (Eq. as
viewed from a fixed set of viewpoints. Thus for a region (or image) of each intermediate
mesh, there exists the same corresponding region (or image) for the original mesh. This
correspondence is determined by the location and orientation of the viewpoint. However,
this correspondence is not preserved for an adaptively-placed viewpoint. Without the
same correspondence for all intermediate meshes, it does not make sense to compute the
distortion relative to M. Moving the viewpoint changes F (M , M*~1), which voids any
information that we have obtained from E(M, M¥*(x,y)); we do not know whether the

error is due to the edge collapse or simply due to a change in viewpoint location.

Hence we adopt the memoryless approach [48], where edge collapse error is computed
relative to the mesh in the previous step rather than to the original mesh. The memoryless
approach has been shown to perform at least as well as the standard approach for spatial
error metrics [48], [50]. Using the memoryless approach, we now define the error of edge

collapse at step k relative to M5,

(z,y)" = argmin Egy(M* 1, M*(z,y)) (6.6)
x,y

This formulation avoids the issue of correspondence, since the error of M*~! is always
zero by definition. Experiments show that this approach also works well for our single

viewpoint methods. In our Single Viewpoint Image-Driven Simplification method, the
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difference between meshes Mx and My is defined as the difference between the image of

Mx, Ix, and the image of My, Iy, that is,

Esv(Mx, My) = Er(Ix, Iy) (6.7)

= Z Z(ix,u,v - iY,u,v)Q (68)

where both Mx and My are captured from the same viewpoint. Fig. illustrates the
captured image from a single viewpoint. In the next two subsections, we describe two
methods to derive the location and orientation of the viewpoint. Since the light source

affects the appearance of a mesh as well, we also derive the position of the light source.

6.3.1 Maximum Angle Viewpoint

In this section, we describe a heuristic to position the viewpoint. We suggest that any
heuristic should work reasonably well if it meets the following criteria. 1) The viewpoint
is fixed relative to the position and orientation of the distorted region. We assume that
the position (and orientation) of any vertex, edge and face of the region can serve as a
reference point. 2) Spatial distortions (as opposed to texture or color distortions, which
are view-independent) are always captured from the viewpoint. In the following analysis,
we assume that a single directional light source (light source is defined by a vector viignt ),
orthographic projection, and diffuse lighting are used for rendering.

Consider the local region R that is distorted when collapsing vertex v to a neighbor
(Fig.[6.3h). R is the one-ring neighborhood of v, and its normal n, is the average normal
of faces of R. Since the boundary of R does not change after the edge collapse, v serves
as the center of R. We thus constrain the viewpoint to point towards v.

In most cases, a viewpoint will capture the distortion of R if R is not occluded from
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Figure 6.3: (a) The region R that is distorted when collapsing v to a neighboring vertex.
Arrows indicate normals of faces in R. n, is the average normal of faces of R, and ny is an
instance of a face normal with angle oy from n,. (b) The orientation of a face before and
after an edge collapse and their normals, ny, and ny,, respectively, and the light source
direction viigny. The appearance of the face is unchanged if 61 = 0

view. However, there are two exceptions. Exception 1 occurs if the angle between the
face normals and light vector is larger than 90 degrees. This means that the faces of R
are not illuminated; thus any distortion would not be visible. We avoid this exception by
constraining the light vector vjjgny and the viewpoint vector vyjew to be equal.

Fig. shows exception 2 where a face has normals ny, and ny, before and after an
edge collapse, and is illuminated by viigns. Assuming diffuse lighting is used, if 61 = 6, the
face appearance will be unchanged by the edge collapse. It is likely that the face normals
in R will converge towards n, after an edge collapse. Thus to reduce the occurrence of
exception 2, we set Vght (and wvyiew) to be the negative of the face normal ny with the
largest angle oy to n, (see Fig. [6.3p). Although it might be more intuitive to set vyiew
and vigny to —n, so that all faces of R are always visible, our tests indicate that this
generates poor results due to exception 2.

By using orthographic projection for rendering, the viewpoint’s distance to R does

not affect the rendered image. We set this distance to be an arbitrarily small value.
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Similarly, by using a directional light source to light the mesh, the distance between the
light source and R does not matter. Thus we set the light source and viewpoint position
at a small distance from v in the direction of face normal that has the largest angle to
Ny.

To account for silhouette distortions consistently, we render the background and mesh
using different alpha values. A difference in alpha value for a pixel between two images
indicates a silhouette being covered or uncovered. For such pixels, we set the error to

s x (max luminance value)®. We empirically set the value of s to 0.25.

6.3.2 Maximum Error Viewpoint

In this section, we describe a more structured approach to obtain the placement of the
viewpoint. IDS casts mesh difference as the Lo norm of the difference between their image
sets (Eq. [6.4). We recast this difference by applying the Lo, norm on the set of image

differences.

Emsane(Mx, My) = |Ex(Ix 1, Iv.1), -, Et(Ix g, Iy k)|l oo (6.9)
= m}?x EI(IX,h,IY,h) (610)
m n
where  Ey(Ix,Iy) = | > (ixuw — iv,uw)? (6.11)
u v

If we let k — oo, there would be an infinite number of viewpoints to choose from. Instead
of choosing the viewpoint with the largest E; (Eq. , we can, equivalently, compute
the viewpoint that yields the largest Fj.

To validate our proposition that using Eips inr (Eq. with memoryless decimation
(Eq. is viable, we place k viewpoints around an Armadillo mesh and simplify the

mesh to 1000 vertices using the Lo, metric, i.e., by choosing the largest image error to
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k 12 20 62 242
error 0.013 0.013 0.010 0.008

Table 6.1: Hausdorff error of Eipsng with k& number of viewpoints for the Armadillo
mesh simplified to 1000 vertices.

Vo

-k vt

N

Figure 6.4: The figure shows the overlap of projections of Rx and Ry (distorted region
before and after vy is collapsed to v1). The overlay of edges partitions the overlapped
projections into a set of cells, where each cell is marked with a dot.

be the collapse error. As shown in Table [6.I] increasing the number of viewpoints, k,
improves performance. Computing the viewpoint with the largest error is equivalent to
using the Lo, metric at &k — oo.

Now we describe a method to estimate the viewpoint position and lightning posi-
tion that maximizes Fr(Ix,ly). In the context of our simplification framework, Mx
corresponds to M*~1 and My corresponds to M*(z,y). Similarly to the Largest Angle
Viewpoint method (Section , we orient the viewpoint towards v, (Fig. and use
orthographic projection for rendering so the viewpoint’s distance to the distorted region
is irrelevant; only the view vector is required. We also use a single infinite light source
and set its vector to be the same as the view vector, so we are left with finding a single
unit vector, vyiew. Moreover, we use diffuse lighting and flat shading so the color of all

pixels within each rendered face is the same.
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Let Rx and Ry denote the distorted region before and after collapsing, respectively.
vo to vy in Fig. Rx consists of the set of faces connected to vy, whereas Ry consists of
the faces connected to v1. Notice that Rx and Ry share a common boundary around the
polyhedron-shaped base. When viewed from an arbitrary viewpoint, the overlay of edges
of the projected Rx and Ry partitions the projections into a set of cells. The difference
between Rx and Ry, Ei(Igry, IR, ), is the aggregated differences of the rendered faces of
Rx and Ry for all the cells.

Ei(Ipy, IRry) (6.12)
= /> ((ixe —iv.e)? x PA) (6.13)

= Z Z[(max(vp Ny, 0) —max(vy - nyy, 0))2 x (PAg (vp) N PAg, (vp))] + B(up)
Ix fy

(6.14)

where ix . denotes the color intensity of Rx corresponding to cell ¢ in Fig. and PA.
denotes the projected area of ¢. Factoring out and ignoring material reflectivity constants,
we can expand Eq. to get Eq. [6.14] where fx and fy are the faces of Rx, and Ry
and B is the error attributed to any background uncovered by the edge collapse, or more

specifically, the area corresponding to (PAy U PAg,) — (PAp, N PARg,).

Instead of maximizing Eq. we simplify the task by making a few approximations.
Instead of optimizing E7 for all the cells, we only consider the largest face of Rx, which
we denote as fyr. By assuming that Ry is flat, and that the shape and area of fy; are
similar to the shape and area of the underlying Ry, we can constrain v, to lie on the

plane spanned by ny,, and ng,; hence the problem is reduced to a one-dimensional one
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Up far

Figure 6.5: The simplified problem for computing v, where v, is constrained to lie on the
plane spanned by ny,, and ng,

(Fig. [6.5)). The square root in Eq. is irrelevant, so we drop it. Hence we have

argmax Ey(Ipy, IRr,)
Up

~ arg max(max (v, - n s, 0) — max(vp - ngy),0)% x (PAy, (vp) N PAgy (vy)) (6.15)

Up

~ arg max(max(vp - ng,,0) — max(vp - ngy,0)) x min(max(vy, - ng,,0), max(v, - ngy,0))
Up

(6.16)

Note that the projected area of a face f is equals to (v, - ny) x Areay. By dropping the
square terms in Eq.[6.15] we get Eq.|6.16] which has an analytical solution. The solutions

are

vp = (N + NRy) + 1Ry (6.17)
Up = (nfM + nRY) + N1 fy (6'18)

where ~ is a normalization operator, and n, is normal to n. We verify the solutions by
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simulating Er(Iry, Iry) (Eq. for different values of v, and «, and then confirming
that two equal maximum values for Er(Ig,, Ir,) are given by Eq. and Eq. . We
use Eq. to set the viewpoint since it generally provides better simplification results.

If Rx is concave, it is possible for fyr to be occluded by other faces of Rx when
rendered from view vector v,. Thus for strictly concave regions, we reverse the sign of v,
and render the backside of R. To check for concavity, we find the vector of each incoming
neighboring edge of vg. If all incoming edges are in the opposite direction with ng,, the

region is concave. In our implementation, ng, is estimated by taking the average normals

of fx.

6.3.3 Speed Optimizations

In IDS, the mesh is selectively rendered to accelerate the algorithm; for each viewpoint,
only faces that intersect the 2D bounding box of the distorted region in the captured
image are rendered. These faces are identified efficiently by indexing mesh faces for each
image pixel and using vertex projection onto the image plane to estimate the bounding
box of the distorted area. This index structure has to be updated after each edge collapse
operation throughout simplification. Instead of using this acceleration structure, we take
a faster but less accurate approach of rendering only the faces in the distorted patch R for
our Single Viewpoint methods. We also accelerate the image read-back operation (from
GPU to CPU) by using pixel buffer objects and copying only the pixels of the bounding

box of the distorted patch from the frame buffer.

6.4 Results and Discussion

Here we compare the simplification performance of Image-Driven Simplification (IDS),

Maximum Angle Viewpoint Image-Driven Simplification (MA-IDS) (Section [6.3.1]), Max-
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imum Error Viewpoint Image-Driven Simplification (ME-IDS) (Section [6.3.2), and the
Quadric Error Metric simplification method [47]. The IDS algorithm and both proposed
single viewpoint algorithms are implemented based on the OpenMesh [74] decimation
framework. We use the publicly available Qslim [47] for the implementation of the Quadric
Error Metric method. For all image-driven methods, for non-textured meshes, we render
using flat shading and diffuse lighting. For textured meshes, we render using smooth
shading and diffuse lighting. All images are rendered at a resolution of 256x256. Our test
platform is a Core 2 Quad 2.66 GHz CPU with a Geforce 8600GT GPU.

The meshes in this test are obtained courtesy of Stanford Graphics Group, AIM@QSHAPE
Shape Repository [75], Hugues Hoppe and Cyberware. These meshes are not textured,;
thus in order to evaluate performance on textured meshes, we apply texture on the meshes
by using CGAL’s [76] public implementation of the least squares conformal mapping [77]

texture mapping method. We use a gray and white checkerboard pattern as texture.

We evaluate the simplification algorithms using two metrics. The first is the Hausdorft
distance, which is the largest of all distances from a point in a mesh to the closest point
in another mesh. It can be interpreted as the maximum distance between corresponding
points of two meshes. This metric is computed using the program Metro [78], and results
are in units of percentage of the bounding box size of the mesh. The second metric,
which is also used in the IDS paper [59], evaluates the image RMS error. This error
measures perceived error from multiple viewpoints and intrinsically accounts all kinds of
perceivable error, such as texture distortion. The evaluated mesh and reference mesh are
rendered from 60 evenly distributed viewpoints of 512x512 resolution. The error is the
Root Mean Square difference (RMS error) between the images of the evaluated mesh and

reference mesh.
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Model Vertices Time

Original  Final (A) (B) (C) (D) (E)
Armadillo 20000 1000 20987 824 829 88 87
Bunny 20000 500 18176 707 664 86 90
Cow 11610 254 8511 269 271 52 51
Dinosaur 20000 800 18249 712 758 82 87
Horse 19851 311 15811 565 570 84 88
Rocker-arm 10044 300 5793 168 167 46 45

Table 6.2: Processing times (seconds) of image-driven methods (A) IDS, (B) MA-IDS-S,
(C) ME-IDS-S, (D) MA-IDS, and (E) ME-IDS

6.4.1 Processing time comparison

Here we show the main benefit of the single viewpoint methods, which is faster processing
time. Our implementation of IDS is not accelerated by selective face rendering (see
Section Hence for a fairer comparison, we also implemented non-accelerated versions
of the single viewpoint methods, which we denote as MA-IDS-S and ME-IDS-S. The non-
accelerated single viewpoint methods render all faces of the mesh instead of just the faces
of the distorted region.

Table shows a comparison of the processing times of the image-driven methods.
Both single viewpoint methods have comparable speed, regardless of whether they are
accelerated or not. The non-accelerated single viewpoint methods are around 25 times
faster than IDS, which falls in line with expectations; we expect simplification speed to
improve 20 times from using 1 viewpoint instead of 20 viewpoints. We can also deduce
that the viewpoint computation methods are computationally fast enough so that the
total computation speed is not significantly affected. Both MA-IDS and ME-IDS should
show an even larger speedup compared with an accelerated IDS, since the acceleration

structure of IDS has to be updated for each edge collapse, and so imposes a speed cost.
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Model Hausdorff distance Image RMS error

A B © O A B (© O
Armadillo 216 1.02 0.94 1.62 179 180 17.6 178
Bunny 120 1.22 0.82 1.59 146 144 13.8 144
Cow 211 1.61 1.62 2.02 142 14.0 141 144
Dinosaur 1.12 0.81 1.11 1.10 124 126 126 12.3
Horse 2.62 1.23 0.98 1.47 120 121 12.0 123
Rocker-arm 154 1.15 1.73 233 127 12.0 126 129

Table 6.3: Error comparisons between simplification results of (A) IDS, (B) MA-IDS, (C)
ME-IDS, and (D) Qslim.

6.4.2 Quality comparison

In the following results, we will refer to untextured meshes as plain meshes. For the first
quality comparison, we simplify a number of meshes down to a perceptually minimally ac-
ceptable resolution. The meshes and their final number of vertices are shown in Table 6.2.
The qualitative results of the simplified plain meshes are shown in Table In terms
of Hausdorff distance, MA-IDS has the lowest error for Cow, Dinosaur, and Rocker-arm,
whereas ME-IDS has the lowest error for Armadillo, Bunny, and Horse. Both MA-IDS
and ME-IDS perform better than IDS and Qslim in almost all cases. In terms of RMS
error, the results are much closer. Still, ME-IDS performs best overall with the lowest

error for Armadillo, Bunny, and Horse.

We also compute comparisons at five stages of simplification: the lowest resolution,
twice the lowest resolution, and so on up to five times the lowest resolution. Results for
Hausdorff distance and RMS image error are shown in Fig. and Fig. for plain
meshes. Over various resolutions, for Hausdorff distance, both MA-IDS and ME-IDS

perform similarly to Qslim and outperform IDS. For image RMS error, overall, ME-
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Figure 6.6: Hausdorff distance of various plain meshes at five stages of simplification
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Figure 6.7: Image RMS error of various plain meshes at five stages of simplification
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107



6.4. RESULTS AND DISCUSSION

RMSE

RMSE

6 ‘ ‘ ‘ ‘ ‘ ‘ ‘ 6 ‘ ‘ ‘ ‘ ‘ ‘ ‘
1 15 2 25 3 35 4 45 5 15 2 25 3 35 4 45 5
Number of vertices (x1000) Number of vertices (x1000)
(a) Armadillo (b) Bunny
24 ; ; ; ; :
22t b
20+ 1
18f 1
W gl 1w
o 1 %)
= =
o 141 1
12t 1
10F 1
8r il
6 . . . . . 6 . . . . . . . =~
200 400 600 800 1000 1200 1400 15 2 25 3 35 4 45 5
Number of vertices Number of vertices (x1000)
(c) Cow (d) Dinosaur
20 T T T T T T 22 T T T T T T
—o-IDS —o-IDS
8l % MA=IDS 20 - MA=IDS|]
—+— ME-IDS —+— ME-IDS
18 1
16F ] .
16 |
W 14f 4w
%) (%)
= =" ]
o 12t 1
12 N s 1
10t . —~— s
10 el 1
8r b 8 T - ® J
T+
6 L L L L L L —t 6 L L L L L L
200 400 600 800 1000 1200 1400 1600 200 400 600 800 1000 1200 1400 1600
Number of vertices Number of vertices
(e) Horse (f) Rocker-arm

Figure 6.9: Image RMS error of various textured meshes at five stages of simplification
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Figure 6.10: Comparison of original and simplified plain cow models (254 vertices). (a)
original model (b) IDS (c) MA-IDS (d) ME-IDS (e) Qslim

IDS has the lowest error for Armadillo, Bunny and Horse, whereas Qslim has the best

performance for Dinosaur.

Next, we show simplification results on textured meshes in Fig. [6.9]at five resolutions.
Since Qslim does not for textures during simplification, we do not evaluate Qslim for
this case. We can see that ME-IDS outperforms MA-IDS in most of the cases, and is

competitive with IDS.

From a visual comparison of the simplified plain meshes we find that both MA-IDS
and ME-IDS are generally the best at preserving mesh fidelity and do well in preserving
mesh features such as eyes and ears. IDS on the other hand generally preserves smoothly
varying regions well although sharp details could be lost. Fig. [6.10] shows a comparison

of the simplified Cow models. Observe that the nipples and ears of the cow are better

109



6.4. RESULTS AND DISCUSSION

4 A4
EY ]

Figure 6.11: Comparison of original and simplified plain horse models (311 vertices). (a)
original model (b) IDS (c) MA-IDS (d) ME-IDS (e) Qslim
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Figure 6.12: Comparison of original and simplified plain armadillo models (1000 vertices).
(a) original model (b) IDS (¢) MA-IDS (d) ME-IDS (e) Qslim
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Figure 6.13: Comparison of original and simplified textured cow models (508 vertices).
(a) original model (b) IDS (c¢) MA-IDS (d) ME-IDS

preserved for both MA-IDS and ME-IDS. Similarly for the Horse model in Fig. [6.11]
the important features, i.e, the ears, are better preserved by MA-IDS and ME-IDS. In
Fig.[6.12] the eyes are only reasonably well-preserved by MA-IDS and ME-IDS; IDS and
Qslim blur out the eyes. Both ME-IDS and Qslim preserve the impression on the left
arm better than the other methods. The torso is smoother for IDS compared with other

algorithms.

A visual comparison of textured meshes show that subjective evaluation agrees with
objective results. For the armadillo model (Fig. , IDS preserves the left armadillo
hand slightly better than the single viewpoint methods. On the other hand, for the
cow model (Fig. , IDS skews the ears of the cow and the tail is partly merged
with the body, while the single viewpoint methods perserve the ears and tail well. It is
notable that the texture patterns are relatively well preserved at the expense of geometric
features. This is could be due to stronger appearance distortion when textured patterns

are distorted, hence these areas are less likely to be simplified.
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Figure 6.14: Comparison of original and simplified textured armadillo models (1000 ver-
tices). (a) original model (b) IDS (c) MA-IDS (d) ME-IDS
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Comparing models simplified with and without texture, quantitative results show
that, for all algorithms, Hausdorff errors are higher on textured meshes compared to
plain meshes. This is because textures add extra details to flat and featureless areas of
the mesh. In order to preserve these details, extra vertices have to be allocated to those
areas, whereas for untextured meshes, these vertices can be allocated to better preserve

geometric features.

6.5 Discussion

Although our formulation for the viewpoint selection equation for ME-IDS does not factor
in texture explicitly, theoretically the presence of texture has no effect on the precision
of our viewpoint estimation equation. The reason is that the color contribution from
texture is view-independent; the color due to the texture is not affected by the viewpoint
and light position. Thus, the degration of performance of the single image methods
relative to twenty viewpoint IDS is likely due to the reliance of single viewpoint IDS on
a background error value for silhouette distortion detection. For MA-IDS and ME-IDS,
if a silhouette pixel becomes a background pixel, it is assigned a constant background
error value (instead of the difference in pixel values). This value weighs the tradeoff
between preserving likely silhouttes, which are most likely to protruding features, and
flatter regions of the mesh. Since texture modulates the color, and thus the amount of
appearance distortion, of the flatter regions, the background error value used might be
less optimal for textured meshes.

Although our viewpoint determination methods could appear to be too grossly ap-
proximated, it is very fast to compute; it does not involve any expensive trigonometric
functions which a more accurate solution might require. As shown in the results, our

algorithms using one approximated viewpoint are good enough to at least match the 20
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viewpoint IDS method, while being much faster.

6.6 Conclusion

As opposed to geometry-based algorithms like Qslim, Image-Driven Simplification (IDS)
intrinsically factors in the appearance properties of a mesh like normals and texture during
simplification. In this chapter, we propose to accelerate Image-Driven Simplification by
using only a single viewpoint instead of 20.

We propose two methods to determine the position and orientation of the viewpoint.
For the first method, used in Maximum Angle Viewpoint Image-Driven Simplification
(MA-IDS), we suggest a few guidelines for viewpoint placement and propose a heuristic
that conforms to these guidelines.

For the second method, we reformulate the Image-Driven Simplification error metric
by casting it from a Lo norm to a L, norm. We then propose that the single viewpoint
should be placed to maximize this Lo, error. By making a few approximations, we then
obtained the Maximum Error Viewpoint placement method to approximate this viewpoint
for Maximum Error Viewpoint Image-Driven Simplification (ME-IDS)

Our Single Viewpoint Image-Driven methods are around two hundred times faster
than a non-accelerated version of IDS and an estimated twenty-five times faster than the
accelerated version. For non-textured meshes, objective measures and visual inspection
show that both Single Viewpoint Image-Driven methods generally have lower distortion
than IDS, which uses 20 viewpoints. For textured meshes, both ME-IDS is performs
competitively with IDS, whereas MA-IDS performs worse. Visual inspection shows that

textures of simplified meshes of the single viewpoint methods are well preserved.
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Chapter 7

Conclusions and Future Work

In this chapter, we summarize the main developments and results in Section [7.I and

present some directions for future research in Section [7.2]

7.1 Conclusions

3D content, such as motion capture data and 3D meshes, are widely used in a number
of sectors, such as entertainment and sports. With the recent availability of 3D content
acquisition hardware for consumers, such as the Microsoft Kinect and Makerbot Digitizer
mesh scanner, the acquisition and use of 3D content will become even more widespread.
However, due to issues related to the acquisition of 3D content, postprocessing is often
required on captured 3D content before it can be used in applications. For human motion
capture (mocap) data acquired using optical systems, entries of the data might be missing
due to occluded body parts or markers. Thus, mocap data recovery algorithms are needed
to restore any missing data. For scanned 3D meshes, the complexity, or resolution, of the
mesh could be much higher than necessary for the intended application; this will consume

a large amount of computational resources. Therefore, mesh simplification algorithms are
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required to reduce mesh resolution.

For mocap recovery, we focus on using low rank matrix completion, along with the Sin-
gular Value Thresholding (SVT) method, to recover mocap data. Matrix completion poses
the problem for recovering mocap data in a matrix form, while SVT is an optimization
method that solves the problem. We present three strategies to extend and improve the
performance of this mocap recovery framework, namely using a trajectory-based matrix
representation, applying skeleton constraints, and using subspace constraints. Although
we use SVT to solve the matrix completion problem, it is equally valid to use other op-
timization methods instead. However, if an alternative optimization method is used, the
extensions applied to SVT in our improved methods have to be similarly applied to this

alternative method.

Our mocap recovery methods target two types of missing data: random missing data,
where each joint in a sequence are missing at random, and block missing data, where each
joint is missing for long intervals of time. For random missing data, we simulate missing
rates of up to 60%, whereas for block missing data, we simulate missing joint intervals of

up to 2 seconds at low missing rates.

For the case of random missing data, we propose in Chapter [3] to arrange the mocap
matrix into columns of short trajectories for matrix completion recovery, which we call
the trajectory-based representation. We show that the proposed trajectory-based repre-
sentation has a lower rank than the previous frame-based representation. Since matrix
completion recovers data better on matrices with lower rank, this fact allows the SVT ma-
trix completion method, by using the proposed representation, to recover missing mocap
data at a much lower error. The proposed method, trajectory-based SVT (TSVT) shows
up to 80% improvement and 68% improvement on average compared to the previous

frame-based SVT (FSVT) method.
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FSVT and TSVT methods exploit different properties of mocap data; TSVT exploits
the correlation between short trajectory segments, whereas the FSVT exploits the cor-
relation between frames of the sequence. In order to exploit both properties for better
mocap recovery performance, in Chapter [o] we propose to extract the correlation be-
tween frames property from FSVT, and then apply it in the form of subspace constraints
during TSVT optimization. In this proposed Combined Frame and Trajectory based
SVT (CFTSVT) method, FSVT recovery is first applied, followed by TSVT. The TSVT
method is modified so that mocap recovery is constrained by a subspace modeled by the
output of FSVT. Experiments showed that CFTSVT outperforms FSVT by an average
of 76% and TSVT by an average of 23%.

For the case of block missing data, performances of both FSVT and TSVT decrease
drastically when joints are missing for many consecutive frames, even when the rate of
missing data is unchanged. Hence, in Chapter [ we explain that the distances between
mocap joints are constant due to skeleton rigidity. However, this distance is not preserved
in the recovered mocap data when the missing data interval increases. Thus, we extend
the FSVT method to include skeleton constraints that constrain the distances between
connected joints. As explained in Chapter [3] TSVT fares poorly against such patterns of
missing data, and thus methods derived from TSVT are not suitable for this case. Exper-
iments show that the proposed skeleton-constrained SVT (SCSVT) method outperforms
FSVT by 40% on average. Compared to the recent state of the art algorithm, BOLERO,

our method is 3 to 11 times faster, and offers competitive performance.

Chapter [6] focuses on a method of 3D mesh simplification, the Image-Driven Simpli-
fication (IDS) algorithm. We find that the IDS algorithm has a long processing time
because of repeated render and image readback cycles from each of its 20 viewpoints.

To reduce the processing time of IDS, we propose that with proper placement of the
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viewpoint, the single viewpoint version can reduce processing time significantly while not
compromising on simplification quality. Two single viewpoint algorithms with different
viewpoint placement methods, MA-IDS and ME-IDS, are proposed. Timing tests shows
that both single viewpoint algorithms are an estimated 25 times faster than IDS. Objec-
tive and subjective evaluations show that both single viewpoint algorithms generally have
lower distortion simplification results than IDS for non-textured meshes. For textured
meshes, ME-IDS is competitive with 1DS, whereas MA-IDS performs worse. Regardless,

the textures are still well preserved for the single viewpoint algorithms.

7.2 Future Work

Based on the studies of the thesis, the following areas can be investigated in the future.

7.2.1 Extensions for Mocap Recovery

In Section [3.3] it was explained that the trajectory-based method works well because the
trajectory of joints are correlated. However, the start and end of trajectories for various
joints over the sequence might not be synchronized. For example, in a walking motion,
the trajectories of the right and left feet follow a similar cyclical pattern, but they are
not synchronized; the start of a cycle for the left foot might coincide with the middle
of a cycle for the right foot. If the trajectories of the joints are better synchronized,
overall correlation of the set of trajectories will be much higher, thus yielding improved
performance for trajectory-based matrix completion. A possible approach would be to
create an over-represented matrix which has overlapping trajectories. During recovery,
an optimization process will then pick out the optimal set of trajectories which generates
the best results for mocap recovery.

In this thesis, we work with mocap sequences that are relatively homogeneous; each
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mocap sequence contains a limited set of actions. For example, a sequence only encodes
a punching action, and not punching, followed by running and flipping. It is possible
to extend the framework for more effective recovery of mocap sequences that contain
more diverse sets of actions. The sequence of frames in a mocap sequence forms a high-
dimensional continuous curve in frame space, where each point on the curve represents
a single frame, or pose [79]. If the mocap sequence contains a small range of actions,
this curve lies in a low dimensional subspace, which allows low rank matrix completion
to recover mocap data effectively. However, if the motion sequence contains a variety
of actions, the set of frames in the sequence lies in a higher dimensional subspace; this
subspace is a union of low dimensional subspaces, where each low dimensional subspace

is spanned by a set of frames corresponding to an action.

Therefore, it might be more effective to segment a mocap sequence into sets of frames,
where each set spans a low dimensional subspace, and recover missing data for each set
individually, rather than try to recover all frames at once. A straightforward way to
segment a sequence is to partition it sequentially at equal time intervals; this could work
since a small continuous set of frames lie in a low dimensional subspace. A better way is to
use more advanced mocap segmentation methods |71l 80]. However, these methods also
partition a mocap sequence sequentially; they ignore the overlaps or relationships between
subspaces of each individual segment. It is possible to obtain even better segmenting for
low rank matrix completion by using subspace clustering. Subspace clustering [81, [82]
clusters a set of high dimensional data points into sets of points, where the sets are disjoint,
and each set span a low-dimensional subspace. A mocap sequence can be segmented as

such into sets of frames, and each set recovered individually.

Another avenue for further investigation is in the targeted missing data patterns. In

this thesis, we only focus on two types of missing data patterns. It would be beneficial to
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investigate whether the proposed methods are beneficial for recovering from other types
of missing data patterns, and also investigate methods tailored for those types of missing
data patterns. This would allow a wider range of application for mocap data recovery.
For example, the methods could be used to improve the resilience of network delivery of

mocap data.

7.2.2 Extensions for Mesh Simplication

For Image-Driven Simplification, although reducing the number of viewpoints to one
shortens processing time significantly, the algorithm is still quite slow. The bottleneck
of Image Driven Simplification is the transfer of rendered images from GPU to CPU
for error computation. By moving the computation of candidate edge collapse errors
entirely to the GPU, the processing time can be reduced even further. Even faster pro-
cessing times can be achieved if part of or the entire simplification algorithm is moved
to the GPU itself. There has been research in implementing simplification on the GPU.
Shontz et al. [83] moved part of the simplification workload to the GPU. DeCoro and
Tatarchuk [84] implemented a vertex clustering type simplification algorithm entirely on
the GPU. However, it is less straightforward to implement an efficient progressive mesh
type simplification method, such as IDS, on a GPU due to its non-parallel nature.

The MA-IDS viewpoint placement is purely heuristical, whereas the ME-IDS view-
point placement is solved by making a number of approximations since we prioritized
speed of computation over accuracy of viewpoint placement. Since the processing time
of Single Viewpoint Image-Driven Simplification is still quite long, it might be better to
derive a more accurate solution at a higher computation cost for better simplification

performance.
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