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Spectral-Domain Optical Coherence Tomography (SD-OCT) is a widely used interferometric diagnostic technique in ophthalmol-
ogy that provides novel in vivo information of depth-resolved inner and outer retinal structures. 	is imaging modality can assist
clinicians inmonitoring the progression of Age-relatedMacularDegeneration (AMD) by providing high-resolution visualization of
drusen. Quantitative tools for assessing drusen volume that are indicative of AMD progression may lead to appropriate metrics for
selecting treatment protocols. To address this need, a fully automated algorithmwas developed to segment drusen area and volume
from SD-OCT images. 	e proposed algorithm consists of three parts: (1) preprocessing, which includes creating binary mask and
removing possible highly re
ective posterior hyaloid that is used in accurate detection of inner segment/outer segment (IS/OS)
junction layer and Bruch’s membrane (BM) retinal layers; (2) coarse segmentation, in which 3D curvelet transform and graph
theory are employed to get the possible candidate drusenoid regions; (3) �ne segmentation, in which morphological operators are
used to remove falsely extracted elongated structures and get the re�ned segmentation results.	e proposedmethod was evaluated
in 20 publically available volumetric scans acquired by using Bioptigen spectral-domain ophthalmic imaging system. 	e average
true positive and false positive volume fractions (TPVF and FPVF) for the segmentation of drusenoid regions were found to be
89.15%± 3.76 and 0.17%± .18%, respectively.

1. Introduction

Age-related Macular Degeneration (AMD) is the most com-
mon degenerative eye disease that a�ects the central portion
of the retina, known as the macula, and is the leading cause
of vision loss and blindness in patients who are aged 65
and over in the developing countries [1]. 	ere are two
types of AMD: dry (atrophic or nonneovascular) and wet
(neovascular or exudative) [2]. Dry form of AMD a�ects
approximately 80–90% of individuals with AMD [3] and in
this type ofmacular degeneration, extracellular small white or
yellowish deposits (made up of lipids, a type of fatty protein),
called drusen, accumulated between the Retinal Pigment
Epithelium (RPE) and the inner collagenous layer of Bruch’s
membrane (vitreous lamina). Drusen are produced when the
photoreceptors of the eye drop o� older parts of the cell
and could cause a protrusion of RPE over Bruch’s membrane

which leads to deterioration or degeneration of the macula
over time [4].

Drusen in the macula are a common early sign of AMD
that can be de�ned as hard and so�. Hard drusen are
small and distinct lesions with sharp borders (this type of
drusen may not cause vision problems for a long time and
is normal with aging, and most people over 40 have some
hard drusen). In contrast, so� drusen are those with large
lesions (clusters close together) with indistinct borders that
have been recognized as intermediate to advanced form of
AMD [5].

Most patients with macular degeneration have the dry
form of the disease. However, the dry form of macular
degeneration can lead to the more damaging wet form that
usually leads to more serious vision loss [2].	e Age-Related
EyeDisease Study (AREDS) reported that certain antioxidant
vitamins and zinc delay the progression of advanced dry

Hindawi
Journal of Electrical and Computer Engineering
Volume 2017, Article ID 4362603, 12 pages
https://doi.org/10.1155/2017/4362603

https://doi.org/10.1155/2017/4362603


2 Journal of Electrical and Computer Engineering

Table 1: Four de�ned categories by AREDS depending on the stages of AMD.

Category 1 Category 2 Category 3 Category 4

No AMD Early stage AMD Intermediate AMD Advanced AMD

No or a few small drusen
Several small sized drusen or a
few medium-sized drusen in

one or both eyes

Many medium-sized drusen or one
or more large drusen in one or both

eyes

Degeneration of the deepest cells of the
retina (in one eye only) or abnormal and
fragile blood vessels known as choroidal
neovascularization under the retina (wet

form)

AMDor vision loss by about 25 percent over a six-year period
[6]. 	e early diagnosis of the patients at higher risk for
advanced AMD allows earlier protective intervention and
preventive treatment to reduce severe vision loss. 	us, it
is more important to identify the main changes in drusen
and the RPE morphology to inspect the progression of
nonneovascular AMD [7]. As shown in Table 1, AREDS
de�nes four categories depending on the stages of AMD [8].

	e previous studies on the color fundus (CF) images
have shown that there is strong correlation between the
maximum drusen size and total drusen area, with the risk
of progression of AMD to its advanced form [1, 8]. Many
di�erent approaches and algorithms for automatic so� and
hard drusen grading and quanti�cation from CF images
have been developed [9–12]. However, detecting and locating
the drusen in a color retinal image are di�cult to measure
because of their di�erences in size and shape and also
irregular and blurred boundaries.

Spectral-Domain Optical Coherence Tomography (SD-
OCT) is a widely used interferometric diagnostic technique
in ophthalmology that provides in vivo novel information
of depth-resolved inner and outer retinal structures. 	e
high resolution, sensitivity, and speed of SD-OCT provides a
valuable opportunity for detection and volumemeasurement
of drusen from SD-OCT images compared to color fundus
photographs [13] and can be used as amethod of following the
AMD development and monitoring retinal changes over the
time [8, 14, 15]. However, manual segmentation of macular
drusen area and volume is time consuming and labor inten-
sive, which limits its use in large-scale population. So, the
automatic segmentation of drusen becomes more appealing
to process SD-OCT data more e�ciently.

OCT can provide useful information about drusen and
results inmore accurate di�erentiation of drusenoid deposits,
including cuticular drusen, so� drusen, and subretinal
drusenoid deposits [16]. So� drusen are yellow-white dome
shaped elevations that their central portion appear lighter
than its edge and are typically 63 to ≥1000 �m in diameter.
Smaller so� drusen have a little e�ect on the RPE and
IS/OS junction layer morphology. Cuticular drusen appear
as a round and punctate, with saw tooth pattern in an SD-
OCT and are typically 50 to 75 �m in diameter [16]. But,
OCT subretinal drusenoid deposits are seen in the subretinal
space, in similar size to so� drusen, above the RPE. So� and
cuticular drusen, in contrast, are under the RPE. 	ey o�en
have a more punctate appearance and are interconnected so
that their sizes range from 25 to >1000�m [16].

Subretinal drusenoid
deposit

So� drusen

Cuticular
drusen

RPE

Figure 1: Di�erent appearance of drusen in OCT image: so�,
cuticular, and subretinal drusen.

As shown in Figure 1, small and medium-size drusen
may cause subtle elevation of discreet areas of RPE with
variable re
ectivity, indicating the variable accumulations of
the underlying material. Greater elevation of RPE may be
seen as the result of larger con
uent drusen or Drusenoid
Pigment EpitheliumDetachment (DPED), with a hypore
ec-
tive or medium-re
ective deposit separating the RPE from
the underlying Bruch membrane (BM) [17].

Although a number of fully/semiautomatic techniques
have been proposed to detect drusen from OCT images
(Table 2), only the accuracy of a few methods has been
validated and they mainly only identify the absence or
presence of drusen. 	e challenging issues associated with
drusen detection from OCT images include the variation of
texture and intensity distribution (hypore
ective ormedium-
re
ective) of drusen which prevents accurate segmentation
of the RPE and BM for quanti�cation of drusen complex
(the distance between the abnormal RPE and the normal
estimated RPE 
oor), and methods which are based on
accurate detection of RPE layer [18, 19] may fail due to
di�culty in RPE layer segmentation even in normal patients,
because the RPE layers are o�en contiguous with the inner
segment/outer segment (IS/OS) retinal layer.

In this paper, we tackle the above-mentioned challenges
and present a novel fully automated drusen segmentation
method in SD-OCT images. For this purpose, in order to
prevent inaccurate detection of retinal layers, we preprocess
OCT images and remove highly re
ective posterior hyaloid
or other re
ective layers beneath the BM layer, then we
use curvelet transform and modify curvelet coe�cients
to enhance and �ll the possible appeared vertically black
shadowing e�ects due to blood vessels. 	ese possible gaps
due to large vessels may degrade graph-based segmentation
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Table 2: Available image analysis techniques for AMD.

Diagnostic techniques for AMD

Image analysis
techniques for AMD

Color fundus image
analysis

Texture-based
segmentation

Gabor �lter and wavelet analysis [33]

Statistical structural information-based texture analysis [34]

	e Arti�cial Neural Network (ANN) based supervised
classi�ers [35]

Expectation Maximization (EM) based unsupervised classi�ers
[36]

	resholding-based
segmentation

Probability based thresholding [37]

Otsu method for background selection and intensity
thresholding [38]

Histogram based adaptive local thresholding [39]

Edge based thresholding [11]

Clustering-based
segmentation

Spatial histogram and similarity based classi�cation [40]

Distance based clustering [41]

Wavelet based feature extraction & SVM based classi�cation
[42]

Edge and template
matching

Gaussian template matching [43]

Gradient based segmentation [44]

OCT image analysis
techniques

Graph-based segmentation
Graph and dynamic programming [31]

A graph-based multilayer segmentation approach [45]

Active contour-based
segmentation

Anisotropic noise suppression and deformable splines [46]

Based on active contours and Markov random �elds [47]

Polynomial curve-�tting
based technique

Local convexity condition and �tting second- or fourth-order
polynomials [48, 49]

Based on the distance between the abnormal RPE and the
normal RPE 
oor [19, 50]

of IS/OS and BM layers.	e areas located between the shi�ed
extracted IS/OS junction layer and BM pixels by the use of
graph theory from modi�ed image are marked as drusen.

	e paper is organized as follows. Section 2 provides an
introduction to 3D digital curvelet transform (3DCUT). In
Section 3 our proposed method is described and the results
and performance evaluation are presented in Section 4.
Finally, the conclusions are given in Section 5.

2. 3D Digital Curvelet Transform

	e curvelet transform is a time-frequency analysis of images
that gives a sparse representation of objects. 	e basis
elements of this transform have good directional selectivity
and are highly anisotropic [20]. 	e directional selectivity of
curvelets and spatially localized property of each curvelet can
be utilized to preserve the image features along certain direc-
tions in each subband. Following this reasoning, curvelets
are appropriate basis elements (atoms) for representing d-
D objects which are smooth apart from singularities along
smooth manifolds of codimension 1 [21].

Although the direct analyzing of 3D data as a volume and
considering the 3D geometrical nature of the data are compu-
tationally expensive, it has been shown that 3D analysis of 3D
data outperforms 2D slice-by-slice analyzing of data [22].	e

parabolic scaling, good directional selectivity, tightness and
sparse representation properties of 3D curvelet singularities,
provide new opportunities to analyze and study large data-
sets in medical image processing. 3D curvelet elements are

plate-like shapes of 2−�/2 in two directions and width about2−� in the orthonormal direction which are smooth within
the plate and oscillate along the normal direction of the plate.

	e 3D discrete curvelet transform is an extension to the
2D curvelet transform proposed in [21]. In 2D, the curvelet
family is generated by translation (� ∈ R

2) and rotation (�)
of the basic element ��,0,0:

��,�,� (�) = ��,0,0 (
� (� − �)) , (1)

where 
� = ( cos � − sin �
sin � cos � ) is 2 × 2 rotation matrix with angle� and ��,0,0 ∈ �2(R2) is given by its Fourier transform�̂�,0,0(�) = ��(�). 	e �-scaled window�� is a polar wedge in

frequency domain that is used for building curvelet functions
[23]. Since

�̂�,�,� (�) = �−�⟨�,�⟩�̂�,0,0 (
��) = �−�⟨�,�⟩�� (
��) (2)
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Figure 2: 3D rendering of curvelet atom in (a) space, (b) frequency, and (c) discrete frequency tiling. 	e shaded area separates 3D wedge.

using a suitable sampling at the range of scales �� = 2−�, � ≥
0, orientations ��,
 = ��2−⌈�/2⌉/2, � = 0, 1, . . . , 4.2⌈�/2⌉ − 1
(⌈�⌉/⌊�⌋ denote the smallest integer being greater/smaller

than or equal to �), and locations ��,

 = ��,

1,
2 = 
−1��,�(�1/2�, �2/2�/2)�, �1, �2 ∈ �, the curvelet coe�cients are de�ned
as

��,
,
 (�) = ∫
�2

�̂ (�) �� (
��,��) exp (! ⟨��,

 , �⟩) %�. (3)

To have Cartesian arrays instead of the polar tiling

of the frequency plane, the Cartesian window �̃�(�) is
de�ned [23] that determines the frequencies in the trapezoid{(�1, �2): 2�−1 ≤ �1 ≤ 2�+1, −2−⌊�/2⌋ ≤ (3�2)/(2�1) ≤2−⌊�/2⌋}. So, the Cartesian counterpart of the coe�cients can
be de�ned by

�̃�,
,
 (�) = ∫
�2

�̂ (�) �̃� (+−1��,��) exp (! ⟨�̃�,

 , �⟩) %�, (4)

where �� = (�12−�, �22−⌊�/2⌋)�, (�1, �2)� ∈ �2, and �̃�,

 =
+−���,� (�12−�, �22−⌊�/2⌋) = +−���,��� and +� = ( 1 0− tan � 1 ).

By de�ning regular rectangular grid instead of tilted grid,
Cartesian curvelets are de�ned as

�̃�,
,
 (�) = ∫
�2

�̂ (�) �̃� (+−1��,��) ��⟨
� ,�⟩%�. (5)

�̃�,

 = +−���,��� of formula (4) has been replaced by �� =
(�12−�, �22−⌊�/2⌋)� that is being taken on values on a rectan-
gular grid.

In 3D, similar to 2D case, the Cartesian window �̃�(�) is
de�ned by �̃�(�) = �̃�(�1, �2, �3) that isolates the frequencies
in the truncated pyramid

{(�1, �2, �3)� : 2�−1 ≤ �1 ≤ 2�+1, −2−⌊�/2⌋ ≤ 3�22�1
≤ 2−⌊�/2⌋, −2−⌊�/2⌋ ≤ 3�32�1 ≤ 2−⌊�/2⌋} .

(6)

With the angles ��,
 and 6�,� the 3D shear matrix is de�ned as

+��,� ,��,� = ( 1 0 0
− tan ��,� 1 0
− tan ��,� 0 1

), where
tan ��,
 = �2−⌊�/2⌋ � = −2⌊�/2⌋ + 1, . . . , 2⌊�/2⌋ + 1,
tan 6�,� = :2−⌊�/2⌋ : = −2⌊�/2⌋ + 1, . . . , 2⌊�/2⌋ + 1,

�� = (�12−�, �22−⌊�/2⌋, �32−⌊�/2⌋)
�

,
(�1, �2, �3)� ∈ �3.

(7)

In 3D, every Cartesian corona has six components, one for
each face of the unit cube. Each component is regularly
partitioned into wedges with same volume as shown in
Figure 2.

	e curvelet functions in the cone {(�1, �2, �3): 0 <�1, −1 ≤ �2/�1 < 1, −1 ≤ �3/�1 < 1} are given by

�̃�,
,
,� = �̃�,0,0,0 (+���,� ,��,� (� − �̃�,
,�
 )) . (8)

So, its Fourier transform would be

̂̃��,
,
,� = exp (−! ⟨�̃�,
,�
 , �⟩) ̂̃��,0,0,0 (+−1��,� ,��,��)
= exp (−! ⟨�̃�,
,�
 , �⟩) �̃� (+−1��,� ,��,��) , (9)

where @̃�,0,0,0(�) = �̃�(�). Analogously as in (5), the curvelet
coe�cients are given by

Ã�,
,
,� (�) = ⟨�, �̃�,
,
,�⟩
= ∫
�3

�̂ (�) �̃� (+−1��,� ,��,��) exp (! ⟨�̃�,
,�
 , �⟩) %�
= ∫
�3

�̂ (+��,� ,��,��) �̃� (�) exp (! ⟨��, �⟩) %�.
(10)

In this paper we use a new implementation of the 3D Fast
Curvelet Transform (3DFCT) [24, 25] with strong directional
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Figure 3: Presence of detached posterior hyaloid in B-scans. ILM:
internal limiting membrane, IS/OS: inner segment/outer segment,
and BM: Bruch’s membrane.

selectivity property at the �nest scale that has a reduced
redundancy factor than the wrapping-based implementation
proposed in CurveLab Toolbox [20, 21]. According to this
implementation, 3D curvelet coe�cients are obtained as
follows:

(1) Cartesian coronization is performed that decomposes
the object into dyadic coronae based on concentric
cubes. Each corona is subdivided into trapezoidal
regions conforming the usual parabolic scaling as
shown in Figure 2.

(2) 	e 3D coe�cients are obtained by applying an
inverse 3D FFT to each wrapped wedge as shown in
Figure 2, which appropriately �ts into a 3D rectan-

gular parallelepipeds of dimensions ∼ (2�, 2�/2, 2�/2)
centered at the origin.

3. Proposed Method

3.1. Preprocessing. 	eposterior hyaloidmembrane separates
the vitreous from the retina. A Posterior Vitreous Detach-
ment (PVD) is a condition of the eye, which is common in
over 75% of patients who are age 65 and older, in which
the vitreous membrane is separated from the retina [26].
As shown in Figure 3, the presence of detached posterior
hyaloid (thin layer above retina) in some B-scans of 3D
OCT volumetric data, creates an abnormal layer that may
be seen as a thin hyperre
ective layer above the internal
limiting membrane (ILM). Some previous algorithms [27,
28] that assume ILM to be the �rst hyperre
ective layer
may determine this abnormal detached vitreous membrane
as the retinal boundary, which results in an inaccurate
segmentation of the remaining layers, also overestimation of
retinal thickness.

To overcome this problem, each OCT image is thresh-
olded with an optimal threshold selected e�ciently for each

image based on entropy-based thresholding algorithm [29],
which takes into account the spatial distribution of gray levels
in order to coarsely extract the Region of Interest (ROI) from
the nonretinal layer background.

Some possible connected pixels due to highly re
ective
posterior hyaloid in thresholded image can be removed
by applying length �ltering and removing elongated short
components. In the extracted ROI, possible holes near ILM
are also removed by dilating and eroding (morphological
operators) with the disk shaped structuring element of radius
5.

In some cases upper band of ROI is segmented with
some kind of bumps (Figure 4(b), right). In order to segment
this layer smoothly, we �t a third order polynomial to the
upper pixels of ROI region. We use this boundary to limit
the search region in segmentation process of IS/OS and BM
and di�erentiate them from ILM (3 distinct hyperre
ective
layers with similar characteristics). Once the binary mask
is generated, 10 pixels below the upper detected boundary
in created binary image is used to separate inner and outer
portion of retina and reduce the search range which results in
an accurate and �ne segmentation of BM and IS/OS junction
layer by the use of graph theory.

Figure 4(d) shows the created binary mask in two sample
B-scans contain posterior hyaloid and bumps in detected
upper boundary of ROI.

3.2. Drusenoid Region Segmentation. 	e appeared vertically
black shadowing e�ects due to blood vessels may degrade
the continuity of IS/OS junction layer, andmethods based on
thresholding and graph theorymay fail for accurate detection
of these layers in presence of large vessels. So, in order to
enhance IS/OS layer and �ll these gaps we modify curvelet
coe�cients in OCT images. Since the curvelet coe�cients
have a sparse distribution and the bright objects get large
coe�cients in the curvelet domain in order to enhance the
bright hyperre
ective regions in OCT images, similar to one
de�ned by Starck et al. [30], we take curvelet transform of
OCT image andmodifyDCUT coe�cients using function ��:

�� (�) =
{{{{{{{{{{{{{{{

0.7�3 if � < H
0.1� if H ≤ � < 6H
0.6� if 6H ≤ � < 9H
� if 9H ≤ �.

(11)

In this equation H = 0.1K, where K is the maximum
curvelet coe�cient of the relative band.	en, we reconstruct
the enhanced image from the modi�ed curvelet coe�cients
by applying inverse DCUT. Figure 5(b) shows the recon-
structed image from modi�ed curvelet coe�cients.

To delineate the BM, we use modi�ed reconstructed
image with upper masked region using the extracted binary
mask in previous section (Figure 5(c)). By using this image
that the upper cropped region is set to zero, the BM layer
would be the �rst light-to-dark boundary (vertically). 	en,
we apply the graph theory based segmentationmethod in [31]
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Posterior hyaloid

(a)

(b)

(c)

(d)

Figure 4: Created binarymask to accurate segmentation of BM andRPE. First and second columns, respectively, show the results for a sample
B-scan with posterior hyaloid and a sample data with bumps in detected ROI region. (a) Original image. (b) 	resholded + length �ltered +
�lled ROI image. (c) Segmented upper band pixels of ROI. (d) Created binary mask by �tting 3rd-order polynomial to upper band pixels of
ROI.

(a) (b)

(c) (d)

Figure 5: Reconstructed image from modi�ed curvelet coe�cients. (a) Original image, (b) modi�ed image, (c) masked image used to
delineate the BM, and (d) masked image used to delineate the IS/OS junction layer.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 6: Drusenoid region segmentation results. (a) Original noisy image, (b) detected IS/OS junction boundary, (c) detected BM layer, (d)
extracted BM and IS/OS boundaries, (e) 2nd-order polynomial �tted lines to extracted boundaries in order to calculate themean di�erence of
two boundaries, (f) created image by shi�ing the upper detected IS/OS junction pixels, (g) �lled image, (h) reconstructed image by applying
morphological erosion and then dilation operators, and (i) segmented drusenoid region.

with an adjacency matrix that its weights are calculated using
the following equation:

L�� = norm (− (MLD
� + MLD

� ) , 3, 7)
+ norm (− (MDL

� + MDL
� ) , 0, 0.5)

+ norm (−%��, 2, 4) + Lmin.
(12)

In this equation, L�� is the weight assigned to the edge

connecting nodes � and b, MDL
� and MDL

� are the vertical dark-

to-light gradients of the image at nodes � and b, MLD
� and MLD

�
are the vertical light-to-dark gradients of the image at nodes� and � and %�� is the Euclidian distance from node � to node�, and Lmin = 1 × 10−5 is the minimum weight of the graph.

	e norm notation norm(O, �, �) indicates the normal-
ization of the value O to range from � to �.

For IS/OS junction boundary, we use modi�ed recon-
structed image a�er setting the upper cropped regions to
maximum intensity of image (Figure 5(d)). By using this
image, the IS/OS layer is the �rst vertical dark-to-light

boundary. For this image, the adjacencymatrix is constructed
by calculating the weights as follows:

L�� = norm (− (MLD
� + MLD

� ) , 0, 0.5)
+ norm (− (MDL

� + MDL
� ) , 2, 3)

+ norm (−%��, 0, 0.5) + Lmin

(13)

Figures 6(b) and 6(c) illustrate the results of applying the
mentioned graph-based method on the masked images for a
sample B-scan (Figure 6(a)).

In order to estimate RPEDC (RPE + drusen complex)
thickness, at �rst we apply two 2nd order polynomial �tting
functions to the detected IS/OS and BM (Figure 6(d)), then
themean di�erence of these two 2nd order polynomial curves
is calculated. 	e calculated mean value is used to estimate
RPEDC thickness (Figure 6(e)) and to shi� upper detected
IS/OS pixels toward detected BM (Figure 6(f)).

For extraction of drusenoid regions, we produce an image
that in each columnof this image if row location (inMATLAB
coordinate system) of IS/OS pixel + mean di�erence is less
than or equal to the row location of detected BM we set
the row location of shi�ed IS/OS (row location of IS/OS
pixel + mean di�erence) and row location of BM in that
column to 1; otherwise this column is set to zero (Figure 6(f)).
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OCT image (I)

Apply length �ltering and remove 

elongated short components

Dilate and erode D with the disk 
shaped structuring element to �ll 

possible holes

Take curvelet transform of image, 
and collect curvelet coe�cients

Take inverse curvelet transform of 

modi�ed coe�cients

Use upper detected pixels of ROI 
and limit the search region for
graph-based segmentation of 
IS/OS junction layer and BM 
layer from reconstructed image

Apply 2nd-order order polynomial �tting functions to the detected 
IS/OS and BM

Calculate the mean di�erence (m) of these two 2nd-order polynomial curves

Shi� upper detected IS/OS by m pixels toward detected BM

Fill the holes in produced image by shi�ing IS/OS toward BM

Remove miss extracted line shape structures by morphological 
erosion and dilation of image with disk shape structure element

Apply threshold

T is selected threshold based on 
entropy-based thresholding

=
{
{
{

1 if I(i, j) > T

0 others

{
{
{

kc (x) =

{{{{{{{{
{{{{{{{{
{

0.7x3 if x < N

0.1x if N ≤ x < 6N

0.6x if 6N ≤ x < 9N

x if 9N ≤ x

Modify curvelet coe�cients with 

Fit 3rd-order polynomial to upper
pixels of ROI

BW (i, j)

kc:

Figure 7: 	e block diagram of the proposed method.

	e created holes between connected layers (shi�ed IS/OS
and BM) are �lled by performing a 
ood-�ll morphological
operation on the pixels of the binary image (Figure 6(g)).
	en we remove miss extracted liny shape structures by
morphological erosion and dilation of image with disk shape
structure element (Figure 6(h)). Figure 6(i) shows the �nal
results of our proposed method.

A sketch of the proposed algorithm a�er detecting IS/OS
and BM layers with the use of graph theory is as in
Algorithm 1.

Figure 7 illustrates the general block diagram of our
proposed approach.

4. Results

For this study we use 20 volumetric scans acquired by using
Bioptigen spectral-domain ophthalmic imaging system (the
dataset is publicly available at http://people.duke.edu/∼sf59/
Chiu IOVS 2011 dataset.htm) [31]. Two independent expert

graders performed manual segmentation of the drusenoid
regions using the 3D Slicer so�ware (the so�ware is freely
available at https://www.slicer.org/). We then performed au-
tomatic segmentation using the algorithm described earlier,
which was implemented in MATLAB.

To test the accuracy of proposed algorithm, automatic
segmentation results for 220 B-scans across 20 patients were
compared against the available results from two graders.

Segmentation results are quantitatively measured using
Dice Coe�cient (DC) and true positive and false positive
volume fractions (TPVF and FPVF) [32] are de�ned as
follows:

Dice coe�cient = 2
PPPPPQseg ∩ Qref

PPPPPPPPPPQseg

PPPPP + PPPPQref
PPPP , (14)

whereQseg andQref are the extracted volume in the automatic
segmented image and in the reference ground truth image.
	emaximum possible value for DC is 1 (indicating a perfect
match between the result of the algorithm and ground truth)

http://people.duke.edu/~sf59/Chiu_IOVS_2011_dataset.htm
http://people.duke.edu/~sf59/Chiu_IOVS_2011_dataset.htm
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Input: I% I is an image: × S, with extracted locations of IS/OS and BM (Figure 6(d))
Output: DR% Create the image DR, for extraction of drusenoid regions
DR = zeros(size(I));
For � = 1 : SO = U(:, �);[!, �] = Find(O == 1);
If :!S(!) + mean di�-max(i)<=0%mean di� is obtained from I (Figure 6(e))
DR(min(i) + mean di�,l) = 1;
DR(:��(!), �) = 1;
End
End

Algorithm 1: 	e proposed algorithm for drusenoid region segmentation.

Table 3: Comparison of automatic versus manual results of drusenoid region segmentation.

In comparison to Dice coe�cient (DC) TPVF FPVF

Grader 1 89.45%± 3.46% 89.21%± 4.61% 0.15%± 0.21%

Grader 2 89.85%± 4.34% 90.12%± 4.43% 0.12%± 0.26%

Graders 1 & 2 90.23%± 4.12% 89.15%± 3.76% 0.17%± 0.18%

and DC is zero for a slice when no drusenoid region is
detected or when there is no overlap between Qseg and Qref .

	e mean and standard deviation of DC for all the
volumes with ground truth taken as Graders 1 and 2 and
union of Graders 1 and 2 are mentioned in Table 3.

TPVF also indicates the fraction of the total amount of
tissue inside the reference delineation, and FPVF denotes the
amount of tissue falsely identi�ed.	ey are de�ned as follows:

TPVF =
PPPPPQseg ∩ Qref

PPPPPPPPPQref
PPPP

FPVF =
PPPPPQseg

PPPPP − PPPPPQseg ∩ Qref

PPPPPPPPPQ�.V − Qref
PPPP ,

(15)

where Q�.V denotes the volume in the whole image between
ILM and BM.

In order to show the e�ect of applying 3D curvelet
transform in the proposed method in this paper, we can
implement the di�erent stages of proposed segmentation
algorithm without applying 3D curvelet transform and com-
pare the results. As an example, Figure 8 shows the e�ect
of applying 3D curvelet transform in accurate detection of
BM. In comparison to the proposed method in [18], which is
based on assuming the RPE layer to be constant in thickness
(20�m) and using the threshold-based method to identify
RPE layer, our proposed method can robustly identify RPE
and IS/OS layer for drusen quanti�cation. Figure 9 illustrates
the �nal results of proposed drusenoid region segmentation
method in this paper for di�erent B-scans.

(a)

(b)

Figure 8: 	e results of detected BM by applying the graph-based
segmentation method on (a) modi�ed image by curvelet transform
and (b) original image without modi�cation.

5. Conclusion

SD-OCT provides high axial resolution and dense 3D imag-
ing of the pathological changes in the eye, which makes it
an appropriate device for detection of abnormal elevations
of the RPE and IS/OS layer in various pathologies such as
drusenoid pigment epithelial detachment. Previous methods
that are based on di�erence between detected normal and
abnormal RPE layer may fail due to di�culty in RPE layer
segmentation even in normal patients because the RPE layer
are o�en contiguous with the IS/OS retinal layer.

	is paper presents a new fully automatic method to
segment and quantify the drusen volume from OCT images,
in order to provide a metric that can assist clinicians in
monitoring the progression of AMD. 	e previous studies



10 Journal of Electrical and Computer Engineering

(a) (b)

(c) (d)

(e) (f)

Figure 9: Experimental results for three examples of drusen segmentation. 	e �rst column shows the original image and the 2nd column
shows the �nal �ne segmentation results.

show that there are good agreement of drusen diameter and
mean drusen area on SD-OCT with those identi�ed on color
fundus photographs. In this base, drusen detection using
3D SD-OCT may be a potentially useful alternative method
to drusen assessment by human graders using color fundus
photographs.

In order to prevent inaccurate detection of retinal layers
by graph-based intraretinal layer segmentation methods, we
preprocessed OCT images and removed highly re
ective
posterior hyaloid (or other re
ective layers above RPE),
and then we applied 3D curvelet transform and modi�ed
curvelet coe�cients to enhance and �ll the possible appeared
vertically black shadowing e�ects due to blood vessels. 	ese
possible gaps due to large vessels may degrade graph-based
segmentation of IS/OS and BM layers.

	e shi�ed upper detected IS/OS pixels that are above
BM are considered as a possible candidate region and dome
shaped regions are considered as a drusenoid regions. 	e
proposedmethod for drusen segmentation is not able to iden-
tify small size drusen (approximately less than 8 pixels). 	e
information about the drusenoid area can be better assessed
by creatingOCT fundus images as an enface projection image
from the SD-OCT dataset and registering these images to

corresponding color fundus photographs and mapping the
delineated drusen area on each color fundus photograph.
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