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Abstract

We present an automatic, open source data acquisition

and calibration approach using two opposing RGBD sen-

sors (Kinect V2) and demonstrate its efficacy for dynamic

object reconstruction in the context of monitoring for re-

mote lung function assessment. First, the relative pose of

the two RGBD sensors is estimated through a calibration

stage and rigid transformation parameters are computed.

These are then used to align and register point clouds ob-

tained from the sensors at frame level. We validated the pro-

posed system by performing experiments on known-size box

objects with the results demonstrating accurate measure-

ments. We also report on dynamic object reconstruction by

way of human subjects undergoing respiratory functional

assessment.

1. Introduction

Recent affordable RGBD sensors have provided oppor-

tunities and inroads in various areas of computer vision, in-

cluding 3D object and scene reconstruction. Methods for

capturing the full extent of an object, or a complete scene,

have been proposed using handheld sensors and temporal

fusion [22, 29, 49]. Alternatively, static multi-sensor setups

with varying overlapping requirements between the sen-

sors have been proposed to reconstruct dynamic scenes on

frame-level basis [7,16,24,28,35,41]. These avoid the need,

and challenge, for alignment and fusion between frames and

can readily reconstruct dynamic scenes and deformable ob-

jects in real-time. For example, Kowalski et al. [24] recently

presented a 3D data acquisition system, using up to four

Kinect V2 sensors, in which they manually calibrated their

system to register the point clouds from each sensor in a

two-step procedure involving rough estimation and refine-

ment. Their qualitative-only results showed good perfor-

mance for general static and dynamic object reconstruction.

However, their calibration stage is cumbersome requiring

self-designed markers, manual labelling of marker’s loca-

tions, and sufficient overlap between the sensors.

While this work belongs to the category of a static multi-

sensor setup, we rely on a simplified approach of using

two static opposing RGBD sensors with negligible overlap.

Each sensor can perceive nearly half of the object, resulting

in frame-level reconstruction of dynamic objects. This is

valuable in applications where a less intrusive and more eas-

ily configured setup is necessary, which inherently means

as few sensors as possible and as little inconvenience to the

subject as possible. One such application is within health-

care pertaining to respiratory measurements or pulmonary

function testing, for which depth-based approaches have re-

cently emerged [31, 32, 44, 47], albeit for a single sensor.

The proposed approach is able to reconstruct rigid and

dynamic objects to high accuracy, which we evaluate quan-

titatively on rigid objects and qualitatively on animated sub-

jects. Ease of setup and high accuracy (range of average

errors is 0.21 − 0.84 cm across 3 objects and 3 placements)

is achieved through, (a) a fast and automatic calibration

process using double-sided calibration chessboards placed

at varying depths, (b) synchronising intra-Kinect RGB and

depth channels as well as two data acquisition machines,

and (c) a highly accurate point cloud registration approach

using only the infrared stream to specify real world coordi-

nates, as opposed to using RGB and depth which is likely

to increase registration error.

The main contributions of our work are twofold. First,

the deployment of only two Kinect sensors for 3D data

capture minimises the overall operation space, reduces the

system setup and calibration effort, lowers system costs,

and minimises the temporal frame alignment error. Sec-

ond, unlike many other previous approaches, which re-

quire a considerable overlap between point clouds for reg-

istration [23, 24, 28, 35, 41], our proposed method is able

to perform temporal and spatial alignment of two non-

overlapping point clouds. Our proposed method is open

source1.

The rest of this paper is organised as follows. After con-

sidering some previous works in Section 2, the proposed 3D

data acquisition system is explained in Section 3. Exper-

1https://github.com/BristolVisualPFT/

https://github.com/BristolVisualPFT/


iments, results and discussion are presented in Section 4,

before concluding the paper in Section 5.

2. Related works

There are many existing works on the registration of

multiview range images obtained by photometric stereo and

structured light techniques, such as [4, 17, 37, 39, 46], with

some summative works e.g. in [18, 42, 43]. We limit this

review to methods using affordable commercial commodity

RGBD sensors, such as the Kinect, for multiview 3D recon-

struction and registration using single and multiple RGBD

sensors.

Single RGBD sensor 3D reconstruction – Approaches

which apply a single capturing device, either use a moving

sensor on a path around the object or the object rotates for a

fixed position sensor. These approaches apply point match-

ing algorithms, mainly Iterative Closest Point (ICP) [9, 48]

and other adapted variants [34], to register point clouds

by minimising the distance between continuously detected

corresponding keypoints in consecutive keyframes. These

corresponding keypoints can be determined using uniform

sampling of point clouds, general 2D features e.g. Scale

Invariant Feature Transform (SIFT [26]) and Speeded Up

Robust Features (SURF [6]), or depth features specifically

designed for 3D registration e.g. Fast Point Feature His-

tograms [38].

Some approaches [21, 22, 29, 30, 49] have recently been

proposed for reconstruction of non-rigid objects and scenes

using a single RGBD sensor. Izadi et al. [22] and New-

combe et al. [30] introduced KinectFusion as a real-time 3D

reconstruction approach using a moving Kinect. They pre-

sented a new GPU pipeline which allows for real-time cam-

era tracking, surface reconstruction, and rendering. How-

ever, These methods expect a static scene during recon-

struction. In [49], Zollhöfer et al. first acquired an initial

template using KinectFusion of [22], for which the object

needed to be static for ∼1 minute. Next, in the non-rigid re-

construction phase, for each frame they roughly aligned the

template to the input data and then fitted the non-rigid sur-

face using a new efficient GPU-based Gauss-Newton solver,

which minimised the fitting energy function. Newcombe et

al. [29] presented a real-time DynamicFusion technique for

tracking surfaces and dynamic reconstruction of non-rigid

objects. Each live depth frame was fused into a canoni-

cal space using an estimated volumetric warp field, which

removed the scene motion, and a truncated signed dis-

tance function volume reconstruction was obtained. How-

ever, since they omitted the RGB stream and also not uti-

lized global features, their method fails to track surfaces in

specific types of topological changes (e.g. closed to open

hands) and it is also prone to drift. In the most recent work

we are aware of, Innmann et al. [21] proposed a similar

method to [29], in which they tried to address these is-

sues. In addition to the dense depth correspondences, they

applied global sparse color-based SIFT feature correspon-

dences which allows them to better deal with drifts and im-

prove tracking.

Although these single RGBD sensor approaches yield

highly impressive results, they are not able to capture

changes that simultaneously happen in those parts of the

object that are not within the field of view. Further, they re-

quire that there should be a substantial overlap in the depth

data of consecutive frames, which enables the point match-

ing algorithm, e.g. ICP, to better estimate the point cloud

registration parameters. Finally, they can be restricted in

type and speed of deformations, e.g. fast and large defor-

mations.

Multiple RGBD sensor 3D reconstruction – In these ap-

proaches, multiple static RGBD sensors are co-located to

simultaneously capture the scene from different points of

view. To be able to find the sensors’ relative pose, they

need to be calibrated individually and together using op-

tical and/or geometric techniques. In the former, calibra-

tion patterns or markers, like a chessboard, are typically ob-

served by the cameras. In the latter, rigid transformations

that help align the 3D point clouds from each RGBD cam-

era are computed.

Both optical and geometric techniques were used in [23]

to register point clouds from multiple Kinects. First, the

relative pose of the Kinects was approximated using a cus-

tomised calibration box with 2D visual markers attached on

each side. After the point clouds were roughly aligned, they

applied an adapted version of KinectFusion [22] in an extra

refinement step to create the final point cloud. Similar to

Kowalski et al. [24], relative position of markers had to be

computed manually.

Miller et al. [28] suggested an unsupervised method to

estimate the rigid transform parameters of two overlapping

RGBD sensors, without any initial calibration. First, a mov-

ing foreground object was detected in the scene captured

by both sensors and the point clouds were roughly aligned

by using the centroid of moving foreground objects. In a

refinement stage, they tuned the estimation by optimising

an energy function which used a nearest-neighbour penalty

across all frames. However, this penalty had negative effects

where there was not sufficient overlap between the point

clouds. To deal with this problem, they added a free space

violation term to the nearest-neighbour analysis.

Deng et al. [16] localized rigid transformation param-

eters to improve registration accuracy of point clouds ob-

tained from two Kinects. A 3D grid of translation and rota-

tion parameters was first constructed using the established

correspondence points obtained from a moving chessboard,

and then interpolated. The authors reported improvements

in their point cloud registration accuracy in comparison

to global rigid transformation approaches. However, their



method demands that there should be a huge amount of

overlap in the data captured by the two sensors, and their

local registration results in geometrical distortion in the fi-

nal reconstructed point cloud.

Avetisyan et al. [5] employed an optical tracking system

to increase depth measurement accuracy of three inward and

circularly-located RGBD sensors. A tracked chessboard

was moved through the capture space in front of each sen-

sor and a separate lookup table was created for each sen-

sor. This lookup table consisted of the chessboard cross-

ing points locations in the tracker coordinate system and

their corresponding locations in the sensor coordinate sys-

tem. The lookup table was then used to correct the sensors’

depth measurement accuracy during scene reconstruction.

The depth sensors and the optical tracking system were still

calibrated using a single rigid transformation.

In [41], Seifi et al. presented a geometric registration ap-

proach, which exploits image-based features to align over-

lapping point clouds obtained from two RGBD sensors

capturing the scene. Matching keypoints were detected

from corresponding RGB images of both sensors using

SURF and ORB [36] feature descriptors. These keypoints

were then refined to reject incorrectly matched keypoints.

Finally, after finding the corresponding location of these

matched keypoints in depth space, rigid transformation pa-

rameters were estimated. However, like all geometric ap-

proaches, such as [23, 28, 35, 41], there is a dependency on

the availability of good features and a considerable amount

of overlap in the sensors’ capture space.

Most recently, Beck and Froehlich [7] proposed a volu-

metric method to calibrate multiple RGBD sensors by trans-

forming each depth sensor space into a normalized volume

space, performing a reference sampling and interpolation.

A chessboard was placed in various locations of the cap-

turing volume and captured by RGBD sensors while simul-

taneously being tracked by a motion capture system. Real

world location of chessboard crossing points in both RGBD

sensors and motion capture system were used to fill a 3D

lookup table with a typical size of 128×128×256. After

performing an interpolation to fill empty cells, the table was

used in the reconstruction stage. Approximately 2000 refer-

ence samples were required for a capturing volume of about

1.5m×1.8m×1.5m, which takes 20-30 minutes to be per-

formed.

In our proposed optical data acquisition and registration

approach, we perform a 1-step, fast and accurate calibra-

tion (with no refinement step needed) by using three double-

sided chessboards at different depths in the scene and only

a pair of infrared/depth images taken by each Kinect.

3. Proposed method

We propose a 3D data acquisition and registration sys-

tem that uses two opposing (i.e. facing) Kinects. We estab-

lish the Kinect’s optimal measuring distance to minimise

signal noise (as outlined in Section 4.1). In the calibration

stage, the crossing points of three double sided chessboards,

placed at different depths from the two facing Kinects, are

detected automatically. Then, in the registration stage, rigid

transformation parameters are computed, which are used to

transfer the two Kinects’ point clouds to a joint coordinate

system in the registration and reconstruction stage.

3.1. Calibration stage

System configuration and setup – We used two Kinects

facing each other with ∼3m distance between them (Fig. 1),

allowing objects to be captured at the optimal distance away

from each sensor. For registering and aligning two sets of

3D points, we need at least three corresponding and dis-

tinct 3D points in each point set [9]. Using more distant

points, which are not at the same depth from the sensor,

makes alignment more accurate and decreases registration

error. Thus, to help with the calibration, we used three

double-sided chessboards which were placed at different

depths from the Kinects (Fig. 1). To make a double sided

chessboard, a 5 × 6 pattern (with chessboard square size of

55 × 55mm2) was printed on two A3 papers, which were

then joined back to back and held by a frame such that the

chessboards’ crossing points were aligned as precisely as

possible. This solution provides us with three groups of

points (3 × 20 inner points in total) so that the points in any

group have different (x, y, z) coordinates from points in the

other groups.

Data acquisition and synchronization – Unlike Kowalski

et al. [24], our system was designed to capture all four of

RGB, depth, infrared and body joints data in simultaneous

processing threads at full frame rate (30fps). Online visual-

isation is possible, although at the expense of lower frame

rate. Our proposed system is able to generate RGB point

clouds from pre-recorded and synchronised RGB and depth

data.

Here, we wish to achieve ‘synchronization’ between

corresponding frames of different data modalities in each

Kinect separately (intra-Kinect) and also, between corre-

sponding frames of the same type in different Kinects (inter-

Kinect). Intra-Kinect synchronization is necessary to iden-

tify temporally corresponding RGB, depth, and skeleton

data frames in each Kinect, which was simply performed

by using the timestamps provided for each data frame in a

Kinect. Inter-Kinect synchronization was achieved by syn-

chronising the system time of two locally networked PCs

(one for each Kinect) using Network Time Protocol (NTP)

and recording the Kinects’ system and threads timestamps

for aligning each data frame. Since there are no means

of triggering multiple Kinects simultaneously by software

control commands, this can cause a maximum lag of 30ms

between our two Kinects, which would cause a synchro-



(a) (b)

Figure 1: (a) Two Kinects and three chessboards setup, (b) Applying the proposed system to capture and reconstruct a subject

performing pulmonary function testing using a spirometer.

nization error of at most one frame. We reduced this error

by sending only one trigger command at the beginning of

the capture, from one machine to another through the net-

work, however the error is dependant on the network traffic

and speed. Note that, the more Kinect RGBD sensors within

a system, as in [1–3, 7, 8, 24, 27], the greater is this error.

Lens distortion correction – Kinect V2 depth images are

computed from the captured infrared images and therefore,

both images have the same optical specifications. Similar

to other lens-based imaging devices, the Kinect also suf-

fers from lens distortion. Thus, both the infrared and depth

image distortions were corrected by applying the Brown

model [12].

Establishing crossing points correspondences – We used

real-world coordinates of the crossing points of three dou-

ble sided chessboards (3 × 20 points) to align point clouds

and register them to a joint coordinate system. Previous ap-

proaches [1–3, 23, 24, 27] have used both RGB and depth

sensor data to obtain real world coordinate of points re-

quired for calibration. However, we detect the real world

coordinates of the crossing points [19] from intensity and

depth space obtained by illumination-normalised infrared

images and depth images, respectively. Using only infrared

sensor instead of using both RGB and depth, increases point

cloud registration accuracy by eliminating the error caused

by RGB to depth space mapping. Fig. 2 shows the de-

tected chessboards’ crossing points where the correspond-

ing crossing point sets in the two Kinects’ infrared images

are indicated in the same color.

Kinects pose estimation – As there is an insufficient num-

ber of overlapping points in our point clouds, an iterative

point matching algorithm, like ICP [9, 48], is unsuitable for

aligning them. Thus, we considered one Kinect’s coordi-

nate system as reference, and then the other Kinect’s rela-

tive pose was estimated using translation T and rotation R

transformations. T and R were computed by registering

20 corresponding crossing points of the reference and the

second Kinect, i.e. Q and Q′, as

Q′ =R ×Q +T. (1)

The rotation matrix R is computed by applying singular

value decomposition on a cross-covariance matrix M cre-

ated using Q and Q′ point sets [13],

M =
1

N

N

∑
j=1

[(Qj −Qµ)(Q′j −Q
′

µ)
T ], (2)

where Qj and Q′j denote the jth points in Q and Q′ point

sets, Qµ and Q′µ are the point sets’ centroids, and N = 60

is the number of points in each set. Since M is a real square

matrix with a positive determinant, it can be decomposed

into orthogonal square matrices U and V, and diagonal

non-negative matrix Σ, such that M =UΣVT [20], where

Σ, and U and VT , are considered as scaling matrix and

rotation matrices, respectively. Thus, M can be intuitively

interpreted as a geometrical transformation composed of a

rotation, a scaling, and another rotation. As the transforma-

tions need to be rigid, we omit Σ to preserve the objects’

shape and size. Thus, the rotation matrix is R = UVT and

the translation matrix is T = −R ×Qµ +Q
′

µ.

Fig. 3 shows the aligned scenes from each Kinect.

Figure 2: Establishing crossing points correspondences.



Figure 3: Facing Kinects: the scene as viewed by each Kinect, after alignment. The side view shows the points on the

calibration chessboards.

3.2. Registration and reconstruction

For a pair of temporal sequences of our dynamic ob-

ject captured by our Kinects, e.g. of a human being breath-

ing forcefully through a spirometer, we first found the cor-

responding frames using our intra-Kinect and inter-Kinect

synchronisation approach. Then, the reference point cloud

P
ref
1

and the second point cloud P2, were generated. Using

the computed translation and rotation matrices, we trans-

formed P2 into the coordinate system of P
ref
1

, such that

P′
2
=R×P2+T. Finally, we created a merged point cloud,

P, as our proposed reconstructed point cloud:

P = P
ref
1 ⋃P′

2
. (3)

4. Experimental results and discussion

Two laptops with Intel® Core™ i7 quad core processors

running at 2.8GHz and 16GB memory were used to ac-

quire the data streams from our two Kinects. The proposed

approach, comprising data acquisition, registration, recon-

struction, and visualization were implemented in Microsoft

Visual Studio 2012, using OpenCV [10] and Visualization

Toolkit [40] libraries and Matlab 2015b. For concurrent

processing, we used the Intel® Threading Building Blocks

library [33] to grab, buffer and record RGB and depth, and

body joint data in separate threads which enabled us to re-

construct a 3D dynamic object at a consistent 30fps.

4.1. Noise analysis

Kinect depth estimation suffers from measurement noise

caused by the depth sensor technology. Since the Kinect V2

was released only recently, there is little public information

on the nature and characteristics of its noise. We performed

a planar noise analysis to find the optimal distance range

between the sensor and the subject.
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Figure 4: Planar surface noise analysis with distance range

of 60 − 500cm.

In this experiment, we estimated the sensor measurement

error by placing the Kinect at various distances - from 60cm

to 500cm at 20cm intervals - in front of a white wall un-

der normal room temperature and lighting conditions, with

the sensors optical axis approximately perpendicular to the

wall. At each position, a sequence of 200 frames were

recorded and 15K depth values were randomly sampled

from a constant-size patch at the center of the sensor’s view-

point and the standard deviation was computed for them.

Figure 4 illustrates this standard deviation in mm plotted

against the sensor distance to the wall. It shows a non-linear

behaviour similar to the general ToF depth sensors [25].

Furthermore, a similar noise curve has been reported for the

same sensor by Breuer et al. [11]. Noise increases between

60 and 80cm, then drops to its minimum at ∼150cm. Ac-

cordingly, we carried out our experiments with the Kinect

placed within a range of ∼150 − 200cm from the object de-

pending on the size of the object.

4.2. Assessing measurement accuracy

Figure 3 shows the point clouds, in purple and green,

obtained by our two Kinects after registration. An en-



larged side-view of the three calibration chessboards, held

by 5mm-thick frames, is also shown, after matching and

alignment. We assessed the accuracy of our calibration

method by computing the root mean square error (RMSE)

of distances between corresponding chessboards’ crossing

points in P
ref
1

and P′
2
. This error was computed as 4.6mm

for the lung function test setup (∼3m distance between

Kinects at a height of ∼0.6m).

We also evaluated calibration accuracy by estimating the

dimensions of three boxes of known sizes placed at different

depths and validating them against the groundtruth values.

Since we needed more capturing space to be able to posi-

tion the boxes in the scene, in this experiment the Kinects

were placed at ∼4m away from each other and at a height

of ∼1.2m. The RMSE of distances between corresponding

crossing points in this setup was computed as 6.8mm.

We evaluate spatial registration accuracy of the pro-

posed method by measuring dimensions and volume, and

performing surface analysis, of the three differently sized

boxes (Figure 5). Each box was captured three times, i.e.

once at each of three different depths or locations, and

all measurements made. Table 1 presents the three loca-

tions at which (the centroid of) each box was placed in

the world coordinate system and the real dimensions of the

three boxes. In each of the nine captured sequences, the box

was segmented from the registered point clouds by depth

value thresholding. For each reconstructed box, sides pla-

narity and orthogonality, height, width, depth, and volume

were automatically estimated by performing surface analy-

sis, and then compared against groundtruth measurements.

The boxes’ four sides were automatically apportioned

into separate point sets using the M-estimator SAmple Con-

sensus (MSAC) approach [45]. Then, a plane was fitted on

the point set of each side (see Fig. 6) using a first degree

polynomial, and R-squared and RMSE were computed for

the fitted plane. The angles between the sides were esti-

Figure 5: 3D reconstruction of the boxes used to evaluate

the proposed system accuracy.

X Y Z W H D

Location 1 -17.7 18.7 241 Box1 34.0 47.0 43.5

Location 2 -41.4 23.7 202 Box2 23.2 45.0 23.2

Location 3 10.0 41.1 166 Box3 23.2 22.5 23.2

Table 1: Centroid location of the 3 boxes in the Kinects’

joint coordinate system and their actual dimensions (in cm).

Figure 6: Plane fitting of Box3 sides.

mated using the normal vectors of the fitted planes. Ta-

bles 2, 3, and 4 present these estimations for Box1, Box2

and Box3 in the three locations (S1-4 refer to 4 sides of

each box). The R-squared and RMSE values illustrate that

the side-planarity is preserved very well in the reconstructed

models. Furthermore, the estimated angles between the fit-

ted planes show that our proposed system performs well in

measuring orthogonality.

To help achieve the best estimation of height, width, and

depth automatically, we used the planes fitted on the lat-

eral sides of the boxes. Since the bottom of the boxes

was not captured and the top was too sparse to rely on,

the corresponding planes were computed by inference from

the existing sides. First, the cross product of the normals

of the lateral sides’ fitted planes were computed to define

two planes perpendicular to the side planes. These planes,

which represent the bottom and top planes, were then placed

respectively at the bottommost and topmost of the box’s

point cloud, where there is a significant change in the num-

ber of points. Then, the eight corner points of the boxes

were computed using the intersection of the fitted planes.

Since the fitted planes are not exactly parallel, height, width,

and depth were estimated by computing the average dis-

tance between the relevant four corner points of each side-

plane and its facing side-plane.

Even though the box volume can be approximated using

the estimated height, width, and depth (V =W ×H ×D), we

estimated the volume by applying Gauss’s Divergence The-

orem as described in [44], since that would have to be used

for geometrically non-uniform or non-rigid objects in any



Location 1 Location 2 Location 3

R-Squared RMSE R-Squared RMSE R-Squared RMSE

S1 0.997 0.003 0.997 0.004 0.997 0.003

S2 0.998 0.004 0.998 0.004 0.998 0.003

S3 0.996 0.004 0.997 0.003 0.997 0.003

S4 0.998 0.004 0.998 0.003 0.997 0.004

Estimated Angle Estimated Angle Estimated Angle

S1–S2 88.89° 89.45° 89.17°

S1–S4 89.41° 88.52° 88.42°

S2–S3 89.19° 89.16° 89.94°

S3–S4 89.10° 88.18° 90.83°

S1–S3 0.59° 1.25° 1.08°

S2–S4 2.35° 2.56° 1.90°

Table 2: Surface analysis of Box1 using plane fitting

Location 1 Location 2 Location 3

R-Squared RMSE R-Squared RMSE R-Squared RMSE

S1 0.994 0.004 0.997 0.002 0.993 0.004

S2 0.997 0.002 0.992 0.004 0.995 0.003

S3 0.995 0.003 0.993 0.005 0.993 0.004

S4 0.992 0.005 0.996 0.003 0.996 0.003

Estimated Angle Estimated Angle Estimated Angle

S1–S2 88.85° 89.96° 88.78°

S1–S4 88.89° 89.02° 89.27°

S2–S3 89.88° 89.26° 88.82°

S3–S4 89.92° 89.81° 89.32°

S1–S3 1.09° 0.78° 0.46°

S2–S4 0.24° 1.37° 1.05°

Table 3: Surface analysis of Box2 using plane fitting

Location 1 Location 2 Location 3

R-Squared RMSE R-Squared RMSE R-Squared RMSE

S1 0.997 0.003 0.998 0.002 0.996 0.003

S2 0.990 0.004 0.990 0.004 0.995 0.004

S3 0.995 0.003 0.996 0.003 0.997 0.002

S4 0.992 0.004 0.991 0.004 0.994 0.004

Estimated Angle Estimated Angle Estimated Angle

S1–S2 88.65° 88.93° 89.19°

S1–S4 88.45° 88.40° 89.22°

S2–S3 88.99° 88.88° 88.64°

S3–S4 91.20° 91.64° 88.67°

S1–S3 0.51° 0.18° 0.71°

S2–S4 0.37° 0.63° 0.54°

Table 4: Surface analysis of Box3 using plane fitting

case. To be able to perform the surface integral over the

box boundary, the box surface was reconstructed by apply-

ing a 2D Delaunay triangulation [14] on the registered point

Location 1 Location 2 Location 3

Estimated Error Estimated Error Estimated Error

Box1

W 34.29 0.29 34.24 0.24 34.33 0.33

H 47.18 0.18 47.16 0.16 47.27 0.27

D 44.44 0.94 44.36 0.86 44.20 0.70

V 69.75L 0.24L 69.31L 0.20L 68.28L 0.23L

Box2

W 23.98 0.78 23.75 0.55 23.85 0.65

H 45.29 0.29 44.89 0.11 45.38 0.38

D 24.02 0.82 23.91 0.71 24.14 0.94

V 24.74L 0.52L 24.91L 0.69L 24.93L 0.71L

Box3

W 23.88 0.68 23.85 0.65 23.91 0.71

H 22.68 0.09 22.38 0.11 22.69 0.29

D 24.16 0.96 24.14 0.94 23.89 0.69

V 12.65L 0.54L 12.51L 0.40L 12.48L 0.37L

Table 5: Automatically estimated width, height, depth (in

cm) and volume (in Litre) of boxes using surface analysis.

cloud. Note that dimensions and volume are presented in

centimetres and litres, respectively.

Table 5 reports the estimated dimensions, volume, and

their L2 error for Box1, Box2 and Box3 against the

groundtruth at each of the three locations. We note that the

extent of the error is a little different across each dimension

with an average L2 error for the three boxes in all locations

across height at 0.21, width at 0.54, and depth at 0.84. Con-

sidering there is a ∼4m distance between the two Kinects,

our results show very good accuracy for the estimated mea-

surements, independent of the location of the boxes.

4.3. Dynamic object reconstruction

We also demonstrate the ability of the proposed method

to achieve dynamic 3D object reconstruction via two differ-

ent examples. The first is based on dynamic human trunk

3D reconstruction for use in remote respiratory monitor-

ing system. A relatively new area in remote depth-based

lung function assessment using a single RGBD sensor is in

formation, exemplified by [15, 31, 32, 44, 47]. These meth-

ods attempt to simulate traditional breathing tests, such as

spirometry, however, none of these methods is able to de-

couple the subject’s trunk motion from the subject’s chest

surface motion, which greatly affects the test results. Ac-

quiring accurate and dynamic 3D body shape using our pro-

posed method during the breathing test, can better address

this problem. In this test, the distance between each Kinect

and the subject was ∼1.5m (optimal distance), at a height of

∼0.6m, to be able to observe chest motion as accurately as

possible. Then, a 3D surface of the subject’s trunk perform-

ing a real lung function assessment test, i.e. Forced Vital Ca-

pacity (FVC), was reconstructed per frame. The analysis of

such data demands precise point cloud alignment, accurate

temporal frame synchronization, body joints data acquisi-

tion to estimate body pose, and consistent full frame rate



Figure 7: Dynamic 3D reconstruction of a subject’s trunk performing lung function test using a spirometer.

Figure 8: Dynamic 3D reconstruction of a subject waving hands.

(30fps) recording, all of which are provided by our system.

Fig. 7 shows sample 3D reconstructed frames of a subject

performing the FVC test. The reconstructions enable mon-

itoring of the subject’s trunk during the test. Although the

gap between the two aligned point clouds is not important

in this application, it can be filled by interpolation.

The second example was performed to show accurate

temporal and spatial point cloud alignment by way of the

subject performing different actions, e.g. waving hands,

dancing, and jumping. The two facing Kinects were placed

∼4m away from each other at a height of ∼1.2m. Sam-

ple 3D reconstruction of a subject waving hands in different

frames are presented in Fig 8. As can be seen, the fingers

have been well aligned and reconstructed.

5. Conclusion

We proposed a 3D RGBD data acquisition system which

can provide accurate temporal and spatial 3D reconstruc-

tion that can be used in applications such as remote respi-

ratory monitoring and lung function assessment. The ex-

trinsic parameters of the two facing Kinects were computed

in a calibration stage, using three double-sided chessboards

placed at varying depths. Then, these parameters were ex-

ploited to register point clouds and reconstruct 3D, dynamic

objects, for example performing lung function testing us-

ing a spirometer, and other actions such as waving. We

evaluated the proposed system’s accuracy by automatically

measuring the dimensions, volume, and surface informa-

tion of three different boxes and showed that it is efficient

in reconstructing the boxes and estimating their dimensions.

Compared to the currently existing state-of-the-art dynamic

3D data acquisition approaches, our proposed system only

uses two sensors achieving frame-level reconstruction suit-

able for capturing fast and abrupt motions of dynamic ob-

jects. One shortcoming of our approach is that the current

arrangement of our Kinects can result in missing informa-

tion on parts of the object obscured from the Kinects’ view

(e.g. see the side of the person’s trunk in Fig. 7). However,

The system has been designed such that it can be easily ex-

tended by more Kinects as long as each Kinect can see the

three chessboards.
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