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Abstract

Identification of early-stage pulmonary adenocarcinomas
before surgery, especially in cases of subcentimeter cancers,
would be clinically important and could provide guidance
to clinical decision making. In this study, we developed a
deep learning system based on 3D convolutional neural
networks and multitask learning, which automatically pre-
dicts tumor invasiveness, together with 3D nodule segmen-
tation masks. The system processes a 3D nodule-centered
patch of preprocessed CT and learns a deep representation
of a given nodule without the need for any additional
information. A dataset of 651 nodules with manually
segmented voxel-wise masks and pathological labels of
atypical adenomatous hyperplasia (AAH), adenocarcino-
mas in situ (AIS), minimally invasive adenocarcinoma
(MIA), and invasive pulmonary adenocarcinoma (IA) was
used in this study. We trained and validated our deep
learning system on 523 nodules and tested its performance
on 128 nodules. An observer study with 2 groups of radio-

logists, 2 senior and 2 junior, was also investigated. We
merged AAH and AIS into one single category AAH-AIS,
comprising a 3-category classification in our study. The
proposed deep learning system achieved better classifica-
tion performance than the radiologists; in terms of 3-class
weighted average F1 score, the model achieved 63.3% while
the radiologists achieved 55.6%, 56.6%, 54.3%, and 51.0%,
respectively. These results suggest that deep learning meth-
ods improve the yield of discriminative results and hold
promise in the CADx application domain, which could help
doctors work efficiently and facilitate the application of
precision medicine.

Significance: Machine learning tools are beginning to be
implemented for clinical applications. This study represents an
important milestone for this emerging technology, which
could improve therapy selection for patients with lung cancer.
Cancer Res; 78(24); 6881–9. �2018 AACR.

Introduction
Lung cancer is the leading cause of cancer-related deaths in

the world. The International Association for the Study of Lung
Cancer (IASLC) International Staging Project confirms that a
logical degradation of survival results, as tumor size increases
(1), indicating that early detection and diagnosis is an effective

and crucial way to decrease the mortality of patients with lung
cancer. Lung cancer screening with low-dose computed tomo-
graphy (LDCT) in high-risk patients (age >50 year, smoking
history, family history lung cancer in first-degree relatives, etc.)
has remarkably facilitated early stage pulmonary adenocarci-
noma detection and diagnosis, especially for the nodules less
than 1 cm in diameter (subcentimeter; refs. 2, 3). Previous
screening programs have shown, 60% to 70% of detected lung
cancers were in stage I, and 56%were subcentimeter lesions (1).
However, the management of subcentimeter tumors encoun-
tered on screening CT images remains controversial. 10 mm
diameter is used as a cutoff value to distinguish preinvasive
(atypical adenomatous hyperplasia, AAH; adenocarcinoma in
situ, AIS) and invasive lesions (minimally invasive adenocar-
cinoma, MIA; invasive pulmonary adenocarcinoma, IA) on CT
images (4). However, previous studies reported that some
subcentimeter ground-glass opacity nodules (GGN) may be
MIA or IA (5, 6), and many of these are also recorded in the
institution (see Fig. 1 for some examples). Prognosis varies
widely among the different pathologic subtypes (7). Therefore,
early identification of the invasive characteristics before surgery
would be clinically important and could provide guidance to
the clinical decision-making. However, subcentimeter GGNs
presented on CT images make the differential diagnosis clin-
ically difficult due to the absence of typical radiographic fea-
tures (bubble lucency, pleural retraction, spiculated margin,
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etc.) of early cancers and may confuse clinical decision-making.
In addition, evaluating a large number of detected GGNs by the
experts or radiologists can still be time-consuming. In this
context, computer-aided diagnosis (CADx), a much more effi-
cient and effective way to evaluate the detected nodules, is
expected to play an important role in the clinical evaluating
task and is the hot spot of the current research.

In recent years, deep learning has become apowerfulmethodof
representation learning (8), reducing the necessities of hand-craft
feature engineering. With the help of end-to-end deep supervised
learning, especially convolutional neural networks, great progress
have been made in natural image problems, such as image
recognition (9), object detection (10), semantic segmentation
(9). The effectiveness of deep learning has been proved inmedical
image analysis as well, such as recent progress in skin cancer
classification (11), diabetic retinopathy detection (12), and pul-
monary nodule detection in chest CT (13). With hierarchical
representation learning in 3D views, deep neural networks can
discover new patterns beyond the typical radiographic features,
which may be invisible or subtle to human eyes and traditional
CADx systems.

In this article, a deep learning system is designed to address the
problem of automatically predicting the tumor invasiveness of
subcentimeter pulmonary adenocarcinomas from CT scans. The
main contributions are 3-fold: First, we proposed an automatic

framework to predict the tumor invasiveness, trained with pre-
processed chest CTs and the corresponding pathological labels.
The proposedmethod does not require the nodule segmentation,
estimate of nodule size, or other predefined features in the
inference stage. To the best of our knowledge, this is the first
automatic learning system for this problem. The neural networks
are trained and validated using a dataset of 523 nodules, and a
hold-out test set of 128 nodules is used to fairly evaluate our
system. Instead of classifying the 4 categories (AAH, AIS,MIA, and
IA), the problem is formalized as 3-category classification (AAH
andAIS into a single class) due to some technical limitations (will
be explained in "Materials and Methods"). Second, to make full
use of the datasets, we proposed a "bottom-up and top-down"
multitask learning architecture to predict the nodule invasiveness
together with segmentation mask. Through joint training of the
neural networks to solve these two related tasks, themodel is able
to attend to the areas that deserve more attention. In practice, this
multitask learning approach is effective in both accuracy and
training convergence, and makes the system less prone to be
overfitting. Finally, to fairly compare the performance with
human, an observer study with 2 groups of 4 radiologists, 2
experienced and 2 junior doctors is conducted, to classify the
128hold-out nodules. It is shown that the proposeddeep learning
system achieves better classification performance than radiolo-
gists in the observer study.

Figure 1.

Examples in the dataset of nodule patches in axial, coronal, and sagittal views. The type and volume in a cubic millimeter of nodules are shown in the subtitles.
The blue contours represent the manually labeled boundary of the nodules. Each patch is depicted in a size of 32 mm. H&E, hematoxylin and eosin
stain. Magnification, �200.
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Materials and Methods
Data collection

This retrospective study was approved by the institutional
review board of Huadong Hospital affiliated to Fudan Univer-
sity (NO.2017K062), which waived the requirement for
patients' written informed consent referring to the CIOMS
guideline.

FromOctober 2011 to October 2017, a search of the electronic
medical records and the radiology information systems of the
hospital for patients with subcentimeter pulmonary nodules
identified on chest CT scans was performed by one author (Yingli
Sun). A total of 651 subcentimeter nodules from 560 patients
[mean age, 54.1 years � 12.2 (SD); range, 16–82 years] were
enrolled in the study. There are 182 men [mean age, 54.6 years�
12.2 (SD); range, 26–82 years] and 378 women [mean age,
53.9 years � 12.2 (SD); range, 16–80 years]. The unbalanced
distribution of gender was determined by a unique characteristic
of female predominance in this case (7, 14). The inclusion criteria
are as follows:

1. The presence of thin-slice chest CT (1–1.25 mm) scan before
surgical treatment.

2. Nodules noted on CT examination with a diameter �10 mm.
3. No treatment before surgical treatment.

Among the 651 subcentimeter nodules (see Table 1), 205
nodules were pathologically identified as preinvasion lesions
(39 AAH and 166 AIS), where 446 nodules were invasive lesions
(316 MIA and 130 IA). On preoperative CT evaluation, 21, 284,
346 of the 651 nodules were classified into solid, part-solid and
pure GGNs, respectively.

Preoperative chest CT was performed by using the following
four scanners: GE Discovery CT750 HD (143 nodules), 64-slice
LightSpeed VCT (199 nodules; GE Medical Systems); Somatom
Definition flash (150 nodules), Somatom Sensation-16 (159
nodules; Siemens Medical Solutions) with the following para-
meters: 120 kVp; 100–200mAs; pitch, 0.75–1.5; and collimation,
1–1.25 mm, respectively. All imaging data were reconstructed by
using a medium sharp reconstruction algorithm with a thickness
of 1–1.25 mm. 259 of the 561 patients were then administered
contrast material after non-contrast enhanced CT scan. In the case
of contrast-enhanced CT, a bolus of 80–100 mL of IV contrast
medium (350mg I/mL; Optiray, Mallinckrodt) was administered
at a rate of 3–4mL/s with the use of a power injector via an 18- or
20-gauge cannula in an antecubital vein. The contrast-enhanced
CT scan was acquired 60 seconds after the administration of
contrast medium. In this study, only the unenhanced CT images
of the latest CT examination before surgery were collected. In all

patients, CT images were acquired in the supine position at full
inspiration. Themean interval between the latest CT examination
and surgery was 13 days (range, 1–132 days; median, 7 days).

Nodule labeling and segmentation
A medical image processing and navigation software 3D

Slicer (version 4.8.0, Brigham and Women's Hospital) was
used to manually delineate the volume of interest (VOI) of
the included 651 subcentimeter nodules at voxel level by one
radiologist (Yingli Sun, with 5 years of experience in chest CT
interpretation), then the VOI was confirmed by another radi-
ologist Ming Li (with 12 years of experience in chest CT
interpretation). Large vessels and bronchioles were excluded
as much as possible from the volume of the nodule. The lung
CT DICOM (Digital Imaging and Communications in Medi-
cine) format images were imported into the software for delin-
eating, and then the images with VOI information are extracted
with NII format for next step analysis. Each segmented nodule
was given a specific pathological label (AAH, AIS, MIA, IA),
according to the detailed pathological report.

Dataset pretreatment
The data collected for this research is split into 5 parts: Subset

0, 1, 2, 3, and 4, each subset is selected by randomly choosing
20% of each of the 4 categories. Subset 4 is the hold-out test set
and is never used before evaluation. Subset 0–3 is used for
training and validation. See Table 1 for a detailed number of
the nodules for training, validation, and testing. Hyperpara-
meters are validated via cross-validation on Subset 0–3, and
then the model with all of Subset 0–3 is trained with fixed
hyperparameters.

However, the AAH samples are clearly too few for fairly training
the deep neural networks. This is inherently destined because
these particular lesions are usually considered as benign, and they
rarely undergo surgical treatment unless obvious malignant signs
are presented in the CT images. Therefore, pathologically identi-
fied AAH nodules are rare in practice. The study merged the
samples labeled as AAH and AIS into a single class "AAH-AIS,"
to avoid the problemof shortage in training samples. Fortunately,
it's still reasonable in the clinical context, as these two subtypes of
lesions (�3 cm) are reported to have a 100% disease-specific
survival if they are completely resected (7). In this way, the
invasiveness prediction is treated as a 3-category classification
problem in this work.

In the development of the deep learning system, each data
sample is defined as:

1. A 3D patch of 32 mm � 32 mm � 32 mm, cropped from
the CT scan at the mass center of a nodule.

2. The pathologically identified label of invasiveness, in one of
AAH-AIS, MIA, and IA.

3. Manually labeled voxel-wise nodule mask.

For efficient training the networks, online data augmentation is
performed. The details of hyper-parameter setting, generation of
3D patches, neural network design and training will be explained
further.

Observer study
To compare the deep learning system with human perfor-

mance, four radiologists (two senior radiologists, Ming Li, Weilan

Table 1. Number of nodules for training, validation, and testing

Training and
validation Testing Total

AAH 33 6 39
AIS 134 32 166
MIA 252 64 316
IA 104 26 130
AAH-AIS 167 38 205
Total 523 128 651

NOTE: To make full use of the training data, data augmentation was
performed on the fly during the training process.
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Wu, with more than ten years of experience in chest CT interpre-
tation; and two junior radiologists,Wei Zhao, ZhimingYang,with
more than 3 years of experience in chest CT interpretation) were
enquired. They were blinded to the histopathologic results and
clinical data independently to classify and diagnose all the test set
nodules. Four chest radiologists classified the nodules on the basis
of the new classification standard of lung adenocarcinoma pub-
lished in 2011 (7).

Deep learning system
The input of the proposed model is a cubic patch of

32 mm � 32 mm � 32 mm, generated by a (preprocessed)
chest CT scan and the position c ¼ ½z; y; x�, that is, the mass
center (roughly) of the nodule, which can bemarkedmanually or
obtained by an automatic nodule detection system (13). The
output of the model is the categorical probability for the 3
categories (AAH-AIS,MIA, IA), togetherwith themodel-generated
mask of the nodule segmentation. The framework is based on the
proposed 3D convolution neural networks (CNN), referred as
DenseSharp Networks, which processes the input cubes via a
"bottom-up and top-down" architecture: The classification head
as bottom-up path can enforce the network to extract meaningful
features for diagnosis; meanwhile, the segmentation head works
as the top-down path, and is able to teach the network to attend
the regions of interest (ROI). With multitask learning, Dense-
Sharp Networks can learn the classification and segmentation
tasks end-to-end efficiently.

Generation of 3D patches
The 3D patches are generated by cropping the preprocessed

volumetric data into a size of 32 � 32 � 32 (voxels, 1 voxel
denotes 1 mm). The preprocessing follows "standard" procedure
for chest CT: the input CT scans are converted into Hounsfield
units, followed by resizing of volumetric data into spacing of
1 mm � 1 mm � 1 mm by trilinear interpolation, clipping
the voxel intensity into IHU 2 ½�1024; 400�, quantifying the den-
sity into grayscale, and transforming the values to I 2 ½�1;1Þ by a
mapping I ¼ IHU þ 1024

400þ 1024
� 255

� �
=128� 1.

The study usesmany data augmentation techniques to increase
the training data size, including:

1. Rotation by 90� increments
2. Left-right flipping
3. Transposition by small amounts in ½�3;3� voxels in each axis
4. Reordering of axes
5. Zooming with a ratio in ½0:8;1:15�.

For the efficient use of the training data, data augmentation is
performed on the fly during the training process, which acts as
strong regularization for our models. Other sophisticated aug-
mentation techniques like elastic transformation and salt-and-
pepper noise are also tried, however, there seems no significant
improvement.

The DenseSharp architecture
Because of the limited availability of data, the learning network

should be very compact to make the training procedure relatively
easy. DenseNets (15) have indicated compelling accuracy with
more efficient use of parameters on natural image recognizing
tasks; To leverage the power of dense connectivity, the study
extended the 2D DenseNets into a 3D variant following the
"bottleneck" and "compression" design (15), which naturally
becomes the bottom-up classification head for predicting the
invasiveness labels. Inspired by DeepMask (16) and SharpMask
(17), a top-down segmentation head is used for predicting the
nodule mask located near the center of patches, using shared
features extracted by the same network. The study emphasizes,
however, that the segmentation head is mainly used to teach the
neural network to attend where it needs to pay more attention
to, thus the segmentation head is designed to be lightweight,
which consists of only transposed convolutionwithout nonlinear
activation.

The architecture of the proposed DenseSharp Networks is
illustrated in Fig. 2. Specifically, it consists of stacked densely
connected blocks (i.e., Dense Block), and each of the blocks
consists of several convolutional modules (4 Dense Block Mod-
ules for this task). In each convolutional module, 1 � 1 � 1

Figure 2.

The architecture of the proposed DenseSharp Network. A, The "classify head" gives the invasiveness labels, whereas the "segment head" gives the nodule mask. B,
The illustration of the convolutional module in the Dense Block.
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convolution kernels with 64 filters followed by 3 � 3 � 3
convolution kernels with 16 filters (growth rate k ¼ 16), the
so-called "bottleneck" techniques (bottleneck B ¼ 4), are used
for efficient 3D representation learning. Batch normalization
(18) layers are used for reducing internal covariance shift, and
the rectified linear units, that is, ReLUðxÞ ¼ maxð0; xÞ, act as
the nonlinear transform. The input features and the trans-
formed features by the convolutional module are concatenated
before sending to the next module, consequently, the subse-
quent layers receive feature maps from all their preceding
layers. After an entire Dense Block, the feature maps will be
"compressed" using 1 � 1 � 1 convolution kernels with
halved filters (compression C ¼ 2), and then down-sampled
by pooling. Finally, the last Dense Block and global pooling
layer (19) get a representation of 120 channels, and fully
connected layers with softmax activation as the classification
head outputs the invasiveness labels.

The lightweight segmentation head outputs the nodule mask
using the features extracted by the three Dense Blocks. Inspired by
(19), rather than restoring the original resolution by a large up-
sampling transposed convolutional layer directly, the feature
maps are up-sampled gradually, and the high-resolution low-
level features and theup-sampledhigh-level features are summed-
up (shown in the top-down path). In this way, the low-level and
high-level features are well combined to predict the segmentation
masks, and the segmentation head becomes a top-down path for
the entire network. The detailed architecture of the 3D Dense-
Sharp Networks is shown in Supplementary Table S1.

The network was implemented using Python 3.6 based on
TensorFlow 1.4.0 (20) and Keras 2.1.5 (21) deep learning library
and trained the neural networks on a workstation with 2 NVIDIA
TITAN X GPUs.

Code is open source at https://github.com/duducheng/
DenseSharp/.

Training
The proposed DenseSharp Networks have two output heads,

trained based on different loss. Stochastic gradient descent was
used to minimize cross-entropy between the classification out-
puts and target labels for training the classification head. It was
also used to maximize the Dice coefficient between the pre-
dicted masks and the real nodule masks for training the
segmentation head. The two heads are trained jointly with a
multitask loss ljoint ,

‘joint ¼ ‘cls þ l‘seg

‘cls ycls; tclsð Þ ¼ � 1
n

X
n

X
c

tccls log y
c
cls

‘seg yseg ; tseg
� � ¼ � 1

n

X
n

2 � P
ysegtsegP

yseg þ
P

tseg

lcls shows the cross-entropy loss, ycls is the output of classification
head, tcls is the invasiveness label. lseg shows the dice loss, yseg is
the output of segmentation head, and tseg is themanually labeled
nodulemask. The study chose l ¼0.2 since segmentationworks
as an auxiliary supervised task.

To train the ConvNets, all the network parameters are well
initialized using "he uniform" method (9). We have tried to
pretrain the neural networks on LIDC-IDRI (22), a widely used

lung nodule database, in a multitask learning scheme with radio-
logical benign or malignant labels and nodule segmentation;
However, it did not help in practice in terms of classification
performance. During optimization, the study sampled the train-
ing data with a ratio of 1 : 1 : 1 for the 3 classes with a batch size
of 24, and used Adam (23) optimizer with a fix learning rate of
10�4 to update the model parameters. We early stop the training
after 60 epochs. No weight decay nor dropout (24) has been
used in the network.

Prediction
Given an input 3D patch of 32 mm � 32 mm � 32 mm

from CT scan, the trained network is able to predict the 3-class
probability of invasiveness together with the nodule mask
with the single forward pass. Because of the randomness
in the neural network optimization process, the 15-run ensem-
ble is constructed to reduce the error variance, which is
an average result of 15 experiments with the same hyper-
parameter setting. The predicted invasiveness labels are

assigned by y ¼ argmaxk
1
15

P15
i probai.

Results
Evaluation on three-category classification

After training, all nodules in the test set were processed by the
proposed deep network, namelyDenseSharpNetwork, amultitask
architecture for classification and segmentation. As mentioned
earlier, instead of classifying the 4 categories of AAH, AIS, MIA,
and IA, the study merged AAH and AIS into one single category
AAH-AIS, which makes a 3-category classification.

The study evaluated the classification performance of the best
result on the test set, which is an ensemble of 15 experiments with
the same setting to reduce the variance of neural network training.
Because of the skewness of the distribution of the 3 nodule types,
the classification accuracy [Accuracy ¼ 1

n

P
1ðyi ¼ tiÞ], per-class

F1-score (F1cls ¼ 2Precisioncls � Recallcls
Precisioncls þ Recallcls

) and weighted average

F1-score (F1cls ¼ nAAH�AISF1AAH�AIS þ nMIAF1MIA þ nIAF1IA
nAAH�AIS þ nMIA þ nIA

) is

compared with human radiologist performance. Besides, multi-
classMatthews correlation coefficient (MCC; ref. 25), ametric less
sensitive to class imbalance, is also used for evaluation. The results

Table 2. Three-category classification performance for nodule invasiveness, in
terms of accuracy, per-class F1-score, weighted average F1-score, and MCC

Accuracy F1AAH-AIS F1MIA F1IA F1AVG MCC

3D DenseSharp
Network

64.1% 55.7% 68.1% 62.7% 63.3% 0.407

3D DenseNet 59.4% 45.2% 62.9% 66.7% 58.4% 0.332
2D DenseNet 43.0% 54.9% 50.5% 59.3% 53.6% 0.293
Pretrained
Inception-v3

35.9% 55.6% 34.8% 53.6% 44.9% 0.249

Senior 1 55.4% 50.0% 55.9% 63.0% 55.6% 0.304
Senior 2 56.3% 50.6% 57.9% 62.5% 56.6% 0.307
Junior 1 53.9% 49.4% 53.3% 63.8% 54.3% 0.271
Junior 2 50.8% 48.9% 59.6% 48.7% 51.0% 0.234

NOTE: "3D DenseSharp Network" denotes the results of our proposed network,
and "3D DenseNet" denotes the performance without multitask learning. A 2D
DenseNet with similar architecture and comparable parameters and an Incep-
tion-v3 pretrained on ImageNet database processing 2.5D (multiview) CT
images are shown for comparison. Results for four observers (2 senior and
2 junior radiologists) are also reported. The higher is better.
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of the comparison are reported in Table 2, the best model
(3D DenseSharp Network) achieves better classification perfor-
mance in terms of all metrics except for the minor disadvantage
in F1IA, even compared with senior radiologists, indicating
the effectiveness of the proposed method. The proposed model
without multitask learning (3D DenseNet) continues to achieve
classification performance at a level matching or exceeding the
observers.

Two 2D deep convolutional neural networks are used for
comparison. As depicted in Table 2, the 2D (or 2.5D) CNNs
work less well than the 3D ones. These 2D networks process
3-channel inputs of 2.5D CT images (on axial-coronal-sagittal
views), see Supplementary Fig. S1 for illustration. The 2D Dense-
Nets follow similar design pattern with our 3D DenseNets, using
2D convolutions instead of 3D convolutions; besides, we change
the depth and filters of 2D DenseNets to keep the number of
trainable parameters comparable with our 3DDenseNets. On the
other hand, Inception-v3 Networks (26) have achieved a great
success in both natural images and 2D medical images (11). We
use an Inception-v3 network pretrained on ImageNet (27), and
fine tune the network on the 2.5D CT images. See more in
Supplementary "The details on the 2D CNNs processing the
2.5D CT images."

The 3-class confusion matrix is shown in Table 3. The model is
not prone to make severe mistakes: Nodules labeled as AAH-AIS
will not be predicted as IA, and those labeled as IA will not be
predicted as AAH-AIS. It means the model implicitly learns the
relationship of the 3 categories. However, the observers' results
don't hold this property.

Evaluation on two subtasks of binary classification
To fairly analyze the classification performance of our model

trained on three-category classification, we have considered two
clinically important subtasks: (i) binary classification of invasive
nodules (IA or MIA) and preinvasive nodules (AIS or AAH), and
(ii) binary classification of IA nodules and non-IA nodules (MIA,
AIS or AAH).

The subtask (a) is urgently needed in clinical practice. Accord-
ing to the recently proposed IASLC/ATS/ERS classification (7), the
lesions correspond to preinvasive AAH or AIS sufficiently often
warrant a conservative approach emphasizing long-term CT sur-
veillance, whereas MIA and IA need elective or immediate surgery
treatment due to a worse prognosis than preinvasive lesions. On
the subtask (a), wemerged the output score, by the trainedmodel
for three-category classification, for IA and MIA by addition, that
is, yinvasive ¼ yIA þ yMIA. In this way, our model achieved an area
under receiver operating characteristic curve (AUC) of 0.788 on
the subtask (a).

However, patients with MIA have a disease-free survival rate
close to 100% if they are safely treated with limited resection (7),
whereas thosewith IAhave a disease-free survival rate of only 60%
to 70% (28–30), indicating that more aggressive surgical treat-

ment and subsequent treatment (e.g., chemotherapy) were need-
ed. Besides, a few previous studies have merged AAH, AIS, and
MIA into one category as well (31, 32). These are the reason
why we addressed the subtask (b). We considered solely the
output score of IA for the subtask (b), and our model achieved
an AUC of 0.880.

As depicted in Fig. 3, the deep models trained with three-
category classification approach produced competitive perfor-
mances on two subtasks of binary classification, which were on
par with, if not better than, the performances of the radiologists in
our observer study. In fact, this strategy, that is, training the CNNs
on finer disease partition, but running coarse inference, have been
successfully applied in previous study (11). See Supplementary
Tables S2 and S3 for detailed evaluation metrics of accuracy,
weighted average F1-score, MCC and AUC on these two subtasks,
and Supplementary Table S4 for the original experimental results.

Importance of multitask learning
The study argues that the top-down segmentation head is

critical for training the bottom-up classification head, which
teaches the network to attend the nodule part. The DenseSharp
Network with multitask learning outperforms the one without
multitask learning (see "3D DenseNet" in Table 2) in terms of
classification performance on almost all metrics. Besides, it was
found that the DenseSharp Networks are faster to train. The
DenseSharp Networks achieve the best performance after training
about 60 epochs, whereas the 3D DenseNets need 100 epochs of
training. See Supplementary "Training and inference time cost"
for more details.

Though segmentation works just as an auxiliary task, the
DenseSharp Networks are able to predict fairly good nodule
masks (see Fig. 4). On the test set, the study achieved an average
Dice coefficient of 74.12% between the manually labeled and the
model predicted masks.

Discussion
Automatic tumor invasiveness prediction from theCT scans can

provide important medical insights. In the article, this task is
tackled using novel 3D convolutional neural networks based on
DenseNet. The approachwith efficientmultitask learning demon-
strates promising accuracy with respect to this task and achieves
better classification performance than the radiologists in the
observer study.

Continuing to learn and discover hierarchical features invisible
to the human eye is one of deep learning system's strengths,
facilitating better performance to differentiate subtypes of lung
cancer. On the contrary, radiologists diagnose the lesions mainly
based on typically visible radiographic features (size, lesion
margin, solid component, etc.), which might be less sensitive to
some local evidence when compared with machine learning
models. Moreover, substantial overlaps among radiographic

Table 3. Confusion matrix of the 3-category classification on the test set

3D DenseSharp network Radiologists (mean � STD)
Ground Truth AAH-AIS MIA IA AAH-AIS MIA IA

AAH-AIS 17 21 0 22.00 � 0.71 14.25 � 0.43 1.75 � 0.83
MIA 6 49 9 26.00 � 3.08 32.00 � 2.55 6.00 � 1.41
IA 0 10 16 2.5 � 1.12 8.25 � 1.30 15.25 � 1.09

NOTE: 15-run ensemble results are listed in "3D DenseSharp Network," and the observers' (Radiologists) are also reported as the mean and standard variance
of the four radiologists' results.

Zhao et al.

Cancer Res; 78(24) December 15, 2018 Cancer Research6886

D
ow

nloaded from
 http://aacrjournals.org/cancerres/article-pdf/78/24/6881/2775207/6881.pdf by guest on 27 August 2022



features of preinvasive lesions and invasive lesions make it very
challenging for radiologists to correctly assess them. Experiences
can help radiologists, as proved in this study (see Table 2), to
improve the diagnostic accuracy on tumor invasiveness.However,
the incremental progress is relatively limited, probably due to
inadequate training for radiologists in subcentimeter GGNs inter-
pretation. Therefore, when radiographic features suggesting
malignancy are absent or not fully identified by a radiologist, an
inappropriate diagnosis would appear, especially in early stage of
lung cancers.

Although the proposed deep learning system shows some
advantages over the radiologists on this problem, there are still
a lot of limitations. Biased and insufficient data for training the
neural networks could limit the performance. Themodel tends to
predict AAH-AIS to be MIA, whereas the radiologists tend to label
theMIA to be AAH-AIS (see Table 3), whichmay also indicate the
data collection bias. Besides, the proposed deep learning system
uses 32 mm � 32 mm � 32 mm patches of nodules to diag-

nose the tumor invasiveness, whereas ideally, radiologists can use
the entire CT scan, together with other information (patient's age,
smoking, medical history, etc.), to better estimate tumor inva-
siveness. Aggregating the global context of the lung and patient's
information may boost the classification performance further.

To the best of our knowledge, the dataset is already the largest
for this kind of research on automatic predicting tumor invasive-
ness for subcentimeter GGNs, it is, however, still insufficient.
Pathological subtypes of lung cancer like mucinous AIS, non-
lepidic predominant growth pattern lung adenocarcinomas (i.e.,
acinar, papillary, micropapillary, and/or solid; ref. 7), are rare and
maynot be fully learnedby the deepneural networks. The training
of deep neural networks should benefit frommore data. Another
limitation is the lack of external validation on an independent
validation dataset from other institutions, regions, races. How-
ever, such a particular public dataset (subcentimeter lung adeno-
carcinoma, mainly presented as GGN, with new diagnosis stan-
dard of AAH, AIS, MIA, and IA) hardly exists to date. Transferring

Figure 3.

ROC curves for two binary-
classification subtasks. The
performance of radiologists in the
observer study are also depicted in the
graph. A, Binary classification of
invasive nodules (IA or MIA) and pre-
invasive nodules (AIS or AAH).
B, Binary classification of IA nodules
and non-IA nodules (MIA, AIS, or
AAH).

Figure 4.

Examples of the nodule segmentation
predicted by the trained model. The
blue contours show the manual
segmentation, and the orange ones
show the predicted segmentation at
the center slice of the patches. The
manually labeled masks (ground
truth) and the predicted masks are
also illustrated as the 3D contours. The
color indicates the depth for each
voxel in the coronal dimension. The
well-trained neural network predicts
the nodule mask and the invasiveness
type in single forward computation.
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neural network knowledge trained from larger databases for
other related tasks (33), other than nodule segmentation and
invasiveness classification, could also bring further improve-
ments. Alternatively, pretraining on thousands of relatively cheap
natural images is still worth more exploration. Inspired by recent
advances in video analysis, it is feasible to convert 2D convolution
kernels into 3D by "inflating" them (34). Plus, our 3D neural
networks for medical image analysis may also benefit from large
3D neural networks pretrained on large-scale video dataset (35).
We leave this as a future direction, which may boost the discrim-
inative performance of our method further.

Another limitation for this study is the interpretability of the
deep learning system. Though there have been great process on
interpretability of machine learning system (36, 37)/deep learn-
ing system (38, 39), fully understanding the internal mechanism
in deep neural networks is still a non-trivial task. Particularly, in
biomedical analysis, we do want to understand how the imaging
representations associate with specific molecular patterns, geno-
type (e.g., EGFR) and intratumoral microenvironment, which
remains a rougher challenge at present. Such work, explaining
the biological processes of the deep learning models was per-
formed in our study, by investigating the association analysis
between deep learned representations and EGFR mutations
status. However, only 94 out of 651 nodules in this study were
performed the EGFR mutation testing (see Supplementary
Fig. S2), which are not enough for current deep learning
methods to produce reasonable results. We will further address
the interpretability for AI, especially in the medical context, by
associating imaging information with genotypes and biomarkers,
in a probabilistic deep learning framework.Moreover, combining
deep learning with radiomics (33) may also help with robustness
and interpretability.
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