
3D Descriptors for Object and Category Recognition: a Comparative
Evaluation

Luı́s A. Alexandre

Abstract— Often practitioners face the issue of choosing the
most adequate 3D features for their problem. As with many
other problems, there isn’t a “best” feature to use. Nonetheless,
we can gauge the relative accuracy of available features on
common datasets. That is what we propose to do in this paper:
we describe the existing feature extraction algorithms in a
public available point cloud library and perform a comparative
evaluation on 3D point clouds, investigation both the object
and category recognition performance. The main conclusions
are: increasing the number of keypoints improves recognition
results at the expense of size and time; since there are big
differences in terms of recognition performance, size and time
requirements, the descriptor has to be matched to the desired
task; one should use a descriptor that takes advantage of color;
the SHOTCOLOR descriptor shows a good balance between
recognition accuracy and time complexity.

I. INTRODUCTION

The appearance of cheap 3D cameras (such as the Xtion
and the Kinect) has increased exponentially the interest in
using depth information for solving vision tasks.

A useful resource for users of this type of sensors is the
PCL library [1] which contains many algorithms that deal
with point cloud data, from segmentation to recognition,
from search to input/output.

A difficulty that arises when using such a library is “how
to choose” which algorithm to use in a particular task, since
many different approaches are usually available.

In this paper we intend to help a user making such a choice
at the level of feature (or descriptor) extraction algorithms
for 3D point clouds. We describe the available descriptor
algorithms in version 1.6 of PCL, including a summary table
with the most distinctive properties of each descriptor, and
perform experiments to illustrate and evaluate their relative
performance using a public available data set with 48 objects
from 10 categories.

The paper is organized as follows: the next section dis-
cusses the recognition pipeline used in this paper; section
3 presents the evaluated descriptors; section 4 contains the
experiments and the final sections contains the conclusions.

II. THE 3D OBJECT RECOGNITION PIPELINE

The object recognition pipeline used in this paper is
presented in figure 1.

The input clouds are fed to the keypoint extraction al-
gorithm. Since the cost of computing descriptors is usually
high it makes sense to extract descriptors only on a subset of

Luı́s A. Alexandre is with the Dept. of Informatics, Univ. Beira Inte-
rior, and Instituto de Telecomunicações, Covilhã, Portugal lfbaa at
ubi.pt

the input cloud. More precisely, one can identify interesting
points that are somehow typical of the objects by using
keypoint detectors. The idea is then to find descriptors only
at keypoints: this can reduce substantially the computational
cost and presumably does note impact negatively on the
ability to discriminate the cloud contents.

Object 
database

Keypoint
extraction

Descriptor
extraction

Matching

Input cloud

Fig. 1. Object recognition pipeline used in this paper.

In this paper we present results using two approaches for
the keypoint extraction. The first uses the Harris3D keypoint
extractor [2] that uses the Hessian matrix of the intensity
around each point, smoothed by a Gaussian filter, to find the
keypoints. The second approach consists on sub-sampling
the input cloud and considering all the sub-sampled points
as keypoints. The experiments made include sub-sampling
with two different sizes.

After obtaining the keypoints, descriptors are obtained on
the extracted keypoints and these form a set that is used
to represent the input cloud. This set is matched against sets
already present in the object database and the one with largest
similarity (smallest distance) is considered the match for the
input cloud.

Many different methods can be used to match the set
of descriptors that represents a given input cloud against
the available sets that represent previously registered objects
(these are typically part of an object database). In this paper
we will use the following set distance: find the centroid
of each set plus the standard deviation for each dimension
(coordinate) of each set and return the sum of the L1

distances between them:

d(A,B) = L1(cA, cB) + L1(stdA, stdB)

where cA and cB are the centroids of sets A and B, and

stdA(i) =

√√√√ 1
|A|

|A|∑
j=1

(aj(i)− cA(i))2, i = 1, . . . , n

and likewise for stdB ; n is the size of the descriptor used
in the sets. The L1 distance between two descriptors a and



TABLE I
IMPORTANT FEATURES OF THE DESCRIPTORS EVALUATED IN THIS

PAPER. V=VARIABLE; Y=YES; N=NO; O=OMP; G=GPU; n=NUMBER

OF POINTS IN INPUT CLOUD; m=NUMBER OF STABLE REGIONS;
p=NUMBER OF AZIMUTH BINS. SEE TEXT FOR DETAILS

Descriptor N.points Point size Parallel Normals

3DSC n ∗ p V N Y
CVFH m ≤ n 308 N Y
ESF 1 640 N N
FPFH n 33 O+G Y
PFH n 125 G Y
PFHRGB n 250 G Y
PCE n 5 G Y
PPF n 5 O+G Y
RIFT n 32 N N
SHOT n 9+352 O Y
SHOTCOLOR n 9+1344 O Y
USC n V N N
VHF 1 308 G Y

b is given by:

L1(a, b) =
n∑

i=1

|a(i)− b(i)|

III. EVALUATED DESCRIPTORS

Our goal was to evaluate the available descriptors in the
current PCL version (1.6 pre-release, on June 2012).

There are some descriptors in PCL which we will not
consider in this paper, since they are not applicable to point
cloud data directly (need certain specific algorithms to be
applied before them). These are: spin-image descriptors [3]
that assume the data to be represented by a polygonal surface
mesh; Global Fast Point Feature Histogram (GFPFH) [4]
which assumes that the points are first labeled according to a
geometric primitive class label using FPFH (see below). The
Camera Roll Histogram [5] is also not considered since it is
an addition to the CVFH (see below) that serves to obtain
the 6DOF. Since we are only interested in evaluating the
classification performance, this descriptor was left out.

Table I summarizes some important points relative to
the descriptors presented in this paper. The second column
contains the number of points generated by each descriptor
given an input point cloud with n points. The third column
shows the dimensionality of each of the generated points.
The forth column indicates if there are parallelized versions
of the algorithm available in the PCL (either OMP or GPU
versions). The last column indicates if the algorithm requires
the calculation of the surface normals at each point.

The following sub-sections present the core ideas of each
descriptor. The descriptors are ordered chronologically fol-
lowing the year of their publication.

A. 3D Shape Context

This descriptor is was proposed in [6]. It uses a spherical
grid on each of the keypoints. The north pole of the grid
is oriented as the surface normal at the keypoint and the
grid consists of bins along the radial, azimuth and elevation
dimensions. The divisions along the radial dimension are

logarithmically spaced. The number of bins can be set by
the user. Each bin makes a weighted count of the number
of points that fall into it. The weights used are inversely
proportional to the bin volume and the local point density.
Since the axes tangent to the surface are placed randomly,
there is the need to extract as many versions of this descriptor
per database object as there are divisions along the azimuth
direction. All these versions of the descriptor need to be tried
on a test cloud to find an object match.

B. Rotation Invariant Feature Transform

The RIFT descriptor [7] was developed to generalize the
SIFT descriptor [8]. A circular normalized patch is built
at each input point. The circular patch is divided into 4
rings of equal width. For each ring, a histogram of gradient
orientations with 8 bins is computed, thus producing a 32
value descriptor for each input point. The orientations of this
histogram are obtained w.r.t. the radial outward direction at
each point.

C. Point Feature Histograms

Point Feature Histograms (PFH) [9] descriptor’s goal is
to generalize both the surface normals and the curvature
estimates. Given two points, p and q, a fixed reference frame
consisting of the three unit vectors (u, v, w) is built centered
on p using the following procedure: 1) the vector u is the
surface normal at p; 2) v = u × p−q

d 3) w = u × v; where
d = ‖p − q‖2. Using this reference frame, the difference
between the normals at p (np) and q (nq), can be represented
by : 1) α = arccos(v · nq); 2) φ = arccos(u · (p − q)/d);
3) θ = arctan(w · np, u · np). The angles α, φ, θ and the
distance d are computed for all pairs in the k-neighborhood
of point p. In fact, usually the distance d is dropped as
it changes with the viewpoint, keeping only the 3 angles.
These are binned into an 125-bin histogram by considering
that each of them can fall into 5 distinct bins, and the final
histogram encodes in each bin a unique combination of the
distinct values for each of the angles. One of these 125-bin
histograms is produced for each input point.

There is also a version of PFH that includes color informa-
tion: PFHRGB. This variant includes three more histograms,
one for the ratio between each color channel of p and the
same channel of q. These histograms are binned as the 3
angles of PFH and hence produce another 125 float values,
giving the total size of 250 values for PFHRGB.

D. Fast Point Feature Histograms

The Fast Point Feature Histograms (FPFH) [10] are a
simplification of the PFH descriptor above that reduce the
computational complexity of the PPF algorithm from O(nk2)
to O(nk). The first step is to compute the histogram of the
three angles between a point p and its k-nearest neighbors
(not between all pairs of neighbors!) in the same way as in
PPF. This produces the Simplified Point Feature Histogram
(SPFH). Then, for each point p, the values of the SPFH
of its k neighbors are weight by their distance wi = d to
p to produce the FPFH at p: FPFH(p) = SPFH(p) +



1/k
∑k

i=1 SPFH(i)/wi. The three angles are binned into
11-bin histograms that are concatenated into a single 33-
bin FPFH descriptor. In [4], the authors found that using a
different weighting scheme improves the recognition rates:
wi =

√
exp ‖d‖.

E. Point Pair Feature

Given two points p1 and p2 and their normals n1

and n2, the Point Pair Feature (PPF) [11] is given
by: PPF (p1, p2) = (‖d‖2,∠(n1, d),∠(n2, d),∠(n1, n2))
where ∠(a, b) ∈ [0, π] represents the angle between a and
b and d = p2 − p1. The PPF is found for all pairs of
points. The distances are sampled in ddist steps and the
angles in dangle = 2π/nangle steps and the vectors with
the same discrete representation are grouped.Consider M to
be an object model and S to be the input scene. A global
model descriptor is a mapping from the sampled space to
the model space.

Consider that an arbitrary reference point sr ∈ S is chosen
and assume it lies on a given object M . Then there is a
point mr ∈M that corresponds to sr. If mr and its normal
are aligned with sr and its normal, it is possible to align
the model to the scene with a further rotation α around
the aligned normal. The pair (mr, α) is called the local
coordinates of the model w.r.t. sr.

A point pair (mr,mi) ∈ M2 is aligned to a scene
pair (sr, si) ∈ S2 that has the same feature vector. The
transformation from the local model coordinates to scene
coordinates is given by si = T−1

s→gRx(α)Tm→gmi.
To find the local coordinates that maximize the number

of scene points that lie on the model, a voting scheme
is used. This optimal local coordinate system allows the
recovery of the global object pose. The poses obtained by
the voting scheme are clustered according to how similar
their rotations and translations are. The final pose is the one
that corresponds to the average pose of the cluster with the
largest sum of votes obtained by its members in the voting
scheme.

F. Signature of Histograms of OrienTations

The SHOT descriptor [12] is based on obtaining a repeat-
able local reference frame using the eigenvalue decompo-
sition around an input point. Given this reference frame, a
spherical grid centered on the point divides the neighborhood
so that in each grid bin a weighted histogram of normals is
obtained. The descriptor concatenates all such histograms
into the final signature. It uses 9 values to encode the
reference frame and the authors propose the use of 11 shape
bins and 32 divisions of the spherical grid, which gives an
additional 352 values. The descriptor is normalized to sum
1. There is also a color version (SHOTCOLOR) proposed
in [13] that adds color information (based on the CIELab
color space) to the SHOT descriptor resulting in a 1344
value descriptor (plus 9 values to describe the local reference
frame).

G. Unique Shape Context

The Unique Shape Context [14] was proposed as an
upgrade of the 3DSC with the goal of avoiding the need
to obtain as many versions of the descriptor as the number
of azimuth bins. Consider a point p with a spherical neigh-
borhood of radius R. A weighted covariance matrix M of
the points in the neighborhood is computed as

M =
1
Z

∑
i:di≤R

(R− di)(pi − p)(pi − p)T

where pi is a point in the spherical neighborhood, di =
‖pi − p‖2 and Z =

∑
i:di≤R(R − di). The eigenvector

decomposition of M is used to obtain the 3 unit vectors of
the local reference frame. The sign of the eigenvectors with
the biggest and smallest eigenvalues is changed so that it is
coherent with the majority of the vectors they represents. The
sign of the third eigenvector is obtained from the other two
considering that they must form an orthonormal base. The
eigenvector with the smallest eigenvalue gives the normal
direction. Apart from this reference frame determination
process, the USC descriptor is obtained like the 3DSC.

H. Viewpoint Feature Histogram

The Viewpoint Feature Histogram (VFH) [15] adds view-
point variance to the above FPFH by using the viewpoint
vector direction. It also produces only one descriptor for the
input point cloud (it is a global descriptor). The process is
the following: 1) find the input cloud centroid, c; 2) for each
point p in the cloud, build the the local reference frame
(u, v, w) using 2a) u = nc ; 2b) v = (p − c) × u; 2c)
w = u × v; 3) Find the angles (α, φ, θ) as in the PFH,
using this reference frame. Each of the three angles is binned
into a 45-bin histogram. The angle β = arccos(np.c/‖c‖)
that the central viewpoint direction translated to each normal
makes with each point’s normal is also encoded in a 128-
bin histogram. The implemented version of this descriptor
in PCL also uses a 45-bin histogram with the distances d
between each point and the centroid. Thus the total length
of the VFH descriptor is 308.

I. Clustered Viewpoint Feature Histogram

The Clustered Viewpoint Feature Histogram (CVFH) de-
scriptor for a given point cloud dataset containing XYZ data
and normals, was proposed in [5].

Stable regions are obtained by first removing the points
with high curvature and then applying a smooth region
growing algorithm.

The CVFH is obtained using the following steps: 1)
determine the set S of stable regions; 2) for each si ∈
S, find the centroid (c) and its normal (nc); 3) build a
local reference frame (ui, vi, wi) like in the VHF but using
c and nc instead of the centroid and respective normal
for the whole input cloud; 4) find the histograms of the
angles (α, φ, θ, β) as in VHF (the first 3 coded as 45-
bin histograms and β coded as a 128-bin histogram); 5)
find the Shape distribution Component (SDC) as SDC =

(c−pi)
2

max{(c−pi)2} , i = 1, . . . , |S|. The CVFH is given by the



concatenated histograms (α, φ, θ, SDC, β) which is a 308-
bin histogram.

J. Ensemble of Shape Functions

This is a global shape descriptor proposed in [16] con-
sisting of 10 concatenated 64-bin histograms resulting in a
single 640 value histogram for a given input point cloud. It is
based on three shape functions [17] describing distance (D2:
distance between two randomly selected points), angle (A3:
the angle enclosed by two lines created from 3 randomly
selected points) and area (D3: area of the triangle formed
by 3 randomly selected points) distributions. They also use
an idea from [18] that is to classify each of the values into
three classes based on where the connecting lines between
points reside: on the object surface, off the surface and mixed
(partly on and off). So the sub-histograms used to form the
ESF are: 3 (on, off, mixed) for A3, 3 (on, off, mixed) for D3
, 3 (on, off, mixed) for D2 and a final one for the ratio of line
distances D2 between off and on parts of each considered
line. Before finding these distances the cloud is approximated
by a voxel grid of side 64. The match is done using L1-
distance. The authors propose to optimize this descriptor by
learning weights for the sub-histograms. In this paper we
used the same weight for all sub-histograms.

K. Principal Curvatures Estimation

This descriptor calculates the directions (eigenvectors) and
magnitudes (eigenvalues) of principal surface curvatures on
each keypoint. It produces a 5 value descriptor on each point:
3 values for the principal curvature, which is the eigenvector
with the largest eigenvalue, plus the largest and smallest
eigenvalues. These are obtained using the cloud normals.

IV. EXPERIMENTS

A. Dataset

We used a subset of the large dataset of 3D point clouds
from [19]. The original dataset contains 300 objects from 51
different categories captured on a turntable from 3 different
camera poses. We used 48 objects representing 10 categories.
Figure 2 shows one point cloud of one object from each of
the 10 categories.

The training data contain clouds captured from two differ-
ent camera views, and the test data contains clouds captured
using a third different view. The training set has a total of
946 clouds while the test set contains 475 clouds. Since
for each test cloud we do an exhaustive search through the
complete training set to find the best match, this amounts to a
total of 449.350 cloud comparisons for each of the evaluated
descriptors and each of the keypoint extraction approaches.

B. Setup

To make a fair comparison between the descriptors, all
steps in the pipeline are equal. All descriptors that use
normals are evaluated with the normal estimation radius
search equal to 1 cm. The Harris3D keypoint detector was
used also with a radius search equal to 1.0 cm. The cloud
sub-sampling was obtained using a voxelgrid with leaf size

Fig. 2. One view of one object from each of the 10 categories used in the
experiments. Left column, top to bottom: cap, calculator, binder, banana,
apple. Right column, top to bottom: cell phone, camera, bowl, bell pepper,
ball.

equal to 1 cm and 2 cm. Note that the fact that we sub-sample
to 2 cm and have a normal estimation radius search equal to
1 cm is not incompatible since to find the normals at each of
the sub-sampled points, the original (not sub-sampled) cloud
is used. Some descriptors have several parameters: the values
used were the ones set by default in PCL.

C. Results

Table II contains the experiments’ results in terms of the
best match, and figures 3 to 5 contain the recall × (1-
precision) curves for the object recognition experiments.

The process of discriminating between different objects in
the same category is much harder than the detection of the
object’s category since they objects from the same category
can be very similar. This is clear from the difference in
performance of all descriptors from the category to the object



TABLE II
CATEGORY AND OBJECT RECOGNITION ACCURACY USING THE

HARRIS3D KEYPOINT EXTRACTOR AND CLOUD SUB-SAMPLING (WITH

1CM AND 2CM LEAF SIZE)

Harris3D Sub-sampl. 1cm Sub-sampl. 2cm
Descriptor Category Object Category Object Category Object

3DSC 74.05 32.91 87.34 50.63 78.06 40.51
CVFH 55.16 20.63 64.13 35.23 51.05 19.41
ESF 82.91 39.03 83.54 39.66 81.65 37.34
FPFH 81.89 44.63 87.55 49.58 86.08 47.26
PFH 86.95 48.42 89.87 56.75 89.24 55.49
PFHRGB 93.89 77.89 94.09 79.32 94.73 79.75
PCE 37.89 9.26 50.84 17.09 47.26 16.46
PPF 37.47 8.63 56.33 18.14 52.32 17.09
RIFT 34.11 9.68 75.11 35.44 60.34 24.05
SHOT 81.26 42.53 91.77 55.49 88.19 46.84
SHOTCOLOR 88.40 69.20 92.62 75.53 90.72 73.42
USC 73.00 35.44 86.50 51.05 82.07 45.78
VFH 28.84 6.11 52.11 23.63 21.73 5.27

Average 65.83 34.18 77.83 45.20 71.03 39.13

TABLE III
SIZE OF THE FEATURE DATABASE IN MEGABYTES AND TIME TO

PROCESS THE TEST SET IN SECONDS USING THE HARRIS3D KEYPOINT

EXTRACTOR AND CLOUD SUB-SAMPLING (WITH 1CM AND 2CM LEAF

SIZE)

Harris3D Sub-sampl. 1cm Sub-sampl. 2cm
Descriptor Size Time Size Time Size Time

3DSC 143 475 1011 1206 281 504
CVFH 1.1 15 2.1 13 1.4 13
ESF 5.7 25 5.8 15 5.7 15
FPFH 12 241 69 240 21 228
PFH 21 1054 131 6049 40 1668
PFHRGB 40 1883 249 10753 76 2992
PCE 1.8 77 11 36 3.3 13
PPF 158 92 5400 1550 461 153
RIFT 7.8 15 68 19 17 14
SHOT 50 112 310 175 94 76
SHOTCOLOR 159 121 987 676 297 178
USC 142 184 1014 1195 285 381
VFH 0.8 15 1.8 14 1 13

Average 57.1 331.5 712.3 1687.8 121.8 480.6

recognition experiments.
Two sizes for the sub-sampling process were evaluated.

Both give more keypoints than the ones obtained from
the Harrys 3D keypoint detector. The average number of
keypoints extracted in the training set from these three
approaches was: 40.73 (Harris), 249.56 (sub-sample 1cm)
and 75.18 (sub-sample 2cm).

We can see by the average value for each column in table
II that the number of extracted points has a big influence on
the recognition performance: the larger the number of points
extracted, the better the algorithms perform, on average. So,
the results using sub-sample 1cm are the best and the ones
using Harrys 3D keypoint detector the worst, on average.

It is interesting to see that even though the data ob-
tained from the sub-sampling with 2cm has around twice
the number of points that the Harrys 3D keypoint detector
produces, results using the later sometimes outperform the

results obtained with the former. This happens with the
CVFH, ESF and VHF in both the category and object
recognition tasks. This is possibly the result of the Harrys
3D keypoints being more “meaningfull” whereas the sub-
sampled keypoints are “blind” to the type of region they are
in: even in regions that show no relevant information there
will be sub-sampled keypoints with exactly the same density
as the keypoints obtained on more interesting object regions,
such as those with edges or other rapidly changing features
(such as curvature or color). This makes us think that if the
same number of keypoints is extracted using the Harrys 3D
detector and a sub-sampling approach, the former will yield
better results than the latter.

The best results were obtained in both the keypoint and
sub-sampled experiments with the PFHRGB. It is interesting
to compare it to the PFH: the differences in performance can
only be attributed to the use of color in the former. The same
is true for the SHOTCOLOR versus the SHOT descriptor.
The importance of color can also be seen in the fact that
the two descriptors that use it present always the two best
results in terms of both category and object recognition. The
curves in figures 3 to 5 also clearly show the superiority of
these two descriptors versus the remaining.

Another interesting result is the one obtained by the
FPFH when compared to the PFH: as the proposers of this
descriptor suggested, it has a performance slightly worst than
the performance of the PFH, but it is faster to extract and
uses about half the space (check table III).

The USC was proposed as an upgrade to the 3DSC and
our results confirm that in fact it improves the 3DSC results
in all three object recognition tasks; but in the category tasks,
the 3DSC beats the USC, by a small amount, when using
the Harris and the 1cm sub-sampling.

We must stress that the obtained recognition results are
dependent of the used set distance. As such, the relative
performance of the presented descriptors can change if other
set distances are used.

Table III presents training database size and the time
using a i7-3930K@3.2GHz CPU on Fedora 17. In terms of
time, the best descriptor is also the most costly by a very
large difference. The SHOTCOLOR descriptor seams to have
a very good balance between recognition results and time
complexity.

The descriptor’s requirements varies a lot: the difference
in terms of time can be as much as 800 times, and in
terms of space as high as 3.000 times. This tells us that if
the application needs real-time performance there are some
descriptors that cannot be considered; same thing applies in
terms of space, for instance, when using embedded devices
with limited resources.

V. CONCLUSIONS

In this paper we focused on the available descriptors on
the PCL library, explaining how they work, and made a
comparative evaluation on public available data. The main
conclusions are: 1) increasing the number of keypoints
improves recognition results at the expense of size and time;



2) since there are big differences in terms of recognition per-
formance, size and time requirements, the descriptor should
be matched to the desired task; 3) a descriptor that uses
color information should be used instead of a similar one that
uses only shape information; 4) the SHOTCOLOR descriptor
presents a good balance between recognition performance
and time complexity.

REFERENCES

[1] R. Rusu and S. Cousins, “3D is here: Point Cloud Library (PCL),” in
IEEE International Conference on Robotics and Automation (ICRA),
Shanghai, China, May 2011.

[2] C. Harris and M. Stephens, “A combined corner and edge detector,”
in Alvey Vision Conference, Manchester, 1988, pp. 147–152.

[3] A. E. Johnson and M. Hebert, “Surface matching for object recognition
in complex three-dimensional scenes,” Image Vision Comput., vol. 16,
no. 9-10, pp. 635–651, 1998.

[4] R. Rusu, A. Holzbach, and M. Beetz, “Detecting and segmenting
objects for mobile manipulation,” in S3DV Workshop of the 12th
International Conference on Computer Vision (ICCV), 2009.

[5] A. Aldoma, N. Blodow, D. Gossow, S. Gedikli, R. Rusu, M. Vincze,
and G. Bradski, “Cad-model recognition and 6 dof pose estimation,” in
ICCV 2011, 3D Representation and Recognition (3dRR11) workshop,
2011.

[6] A. Frome, D. Huber, R. Kolluri, T. Bülow, and J. Malik, “Recognizing
objects in range data using regional point descriptors,” in 8th European
Conference on Computer Vision, 2004, pp. 224–237.

[7] S. Lazebnik, C. Schmid, and J. Ponce, “A sparse texture representation
using local affine regions,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 27, pp. 1265–1278, 2005.

[8] D. G. Lowe, “Distinctive image features from scale-
invariant keypoints,” Int. J. Comput. Vision, vol. 60,
no. 2, pp. 91–110, November 2004. [Online]. Available:
http://dx.doi.org/10.1023/B:VISI.0000029664.99615.94

[9] R. Rusu, N. Blodow, Z. Marton, and M. Beetz, “Aligning point cloud
views using persistent feature histograms,” in International Conference
on Intelligent Robots and Systems (IROS), Nice, France, September
22-26 2008.

[10] R. Rusu, N. Blodow, and M. Beetz, “Fast point feature histograms
(fpfh) for 3d registration,” in International Conference on Robotics
and Automation (ICRA). Kobe, Japan: IEEE, May 12-17 2009.

[11] B. Drost, M. Ulrich, N. Navab, and S. Ilic, “Model globally, match
locally: Efficient and robust 3d object recognition,” in The Twenty-
Third IEEE Conference on Computer Vision and Pattern Recognition,
CVPR 2010, San Francisco, CA, USA, 2010, pp. 998–1005.

[12] F. Tombari, S. Salti, and L. Di Stefano, “Unique signatures of
histograms for local surface description,” in Proceedings of the 11th
European conference on computer vision conference on Computer
vision: Part III. Berlin, Heidelberg: Springer-Verlag, 2010, pp. 356–
369.

[13] ——, “A combined texture-shape descriptor for enhanced 3D feature
matching,” in IEEE International Conference on Image Processing,
September 2011.

[14] ——, “Unique shape context for 3d data description,” in Proceedings
of the ACM workshop on 3D object retrieval, ser. 3DOR ’10.
New York, NY, USA: ACM, 2010, pp. 57–62. [Online]. Available:
http://doi.acm.org/10.1145/1877808.1877821

[15] R. B. Rusu, G. Bradski, R. Thibaux, and J. Hsu, “Fast 3D Recognition
and Pose Using the Viewpoint Feature Histogram,” in Proceedings of
the 23rd IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), Taipei, Taiwan, October 18-22 2010.

[16] W. Wohlkinger and M. Vincze, “Ensemble of shape functions for 3D
object classification,” in Robotics and Biomimetics (ROBIO), 2011
IEEE International Conference on, December 2011, pp. 2987 –2992.

[17] R. Osada, T. A. Funkhouser, B. Chazelle, and D. P. Dobkin, “Matching
3D models with shape distributions,” in International Conference on
Shape Modeling and Applications, Genoa, Italy, 2001, pp. 154–166.

[18] C. Y. Ip, D. Lapadat, L. Sieger, and W. C. Regli, “Using shape distri-
butions to compare solid models,” in Symposium on Solid Modeling
and Applications, 2002, pp. 273–280.

[19] K. Lai, L. Bo, X. Ren, and D. Fox, “A Large-Scale hierarchical
Multi-View RGB-D object dataset,” in Proc. of the IEEE International
Conference on Robotics & Automation (ICRA), 2011.

0

0.2

0.4

0.6

0.8

1

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R
e
c
a
l
l

1-Precision

PFHRGB

PFH

FPFH

PPF

VFH

ESF

CVFH

RIFT

PCE

USC

3DSC

  SHOTCOLOR

SHOT

Fig. 3. Recall× (1-Precision) curves for the object recognition experiments
using the Harris3D keypoints (best viewed in color).

0

0.2

0.4

0.6

0.8

1

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R
e
c
a
l
l

1-Precision

PFHRGB

PFH

FPFH

PPF

VFH

ESF

CVFH

RIFT

PCE

USC

3DSC

  SHOTCOLOR

SHOT

Fig. 4. Recall× (1-Precision) curves for the object recognition experiments
using the sub-sampled (1 cm) keypoints (best viewed in color).

0

0.2

0.4

0.6

0.8

1

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R
e
c
a
l
l

1-Precision

PFHRGB

PFH

FPFH

PPF

VFH

ESF

CVFH

RIFT

PCE

USC

3DSC

  SHOTCOLOR

SHOT

Fig. 5. Recall× (1-Precision) curves for the object recognition experiments
using the sub-sampled (2 cm) keypoints (best viewed in color).


