
3D Distance Fields: A Survey of
Techniques and Applications
Mark W. Jones, J. Andreas Bærentzen, and Milos Sramek

Abstract—A distance field is a representation where, at each point within the field, we know the distance from that point to the closest

point on any object within the domain. In addition to distance, other properties may be derived from the distance field, such as the

direction to the surface, and when the distance field is signed, we may also determine if the point is internal or external to objects within

the domain. The distance field has been found to be a useful construction within the areas of computer vision, physics, and computer

graphics. This paper serves as an exposition of methods for the production of distance fields, and a review of alternative representations

and applications of distance fields. In the course of this paper, we present various methods from all three of the above areas, and we

answer pertinent questions such asHow accurate are these methods compared to each other? How simple are they to implement?, and

What is the complexity and runtime of such methods?

Index Terms—Distance field, volume, voxel, fast marching method, level-set method, medial axis, cut locus, skeletonization,

voxelization, volume data, visualization, distance transform.

�

1 INTRODUCTION

PERHAPS the earliest appearance of distance fields in the
literature is the 1966 image processing paper by

Rosenfeld and Pfaltz [97], where they present the applica-
tion of a chamfer distance transform to an image, and also
create a skeleton which is a minimal representation of the
original structure. Since then, many authors have improved
the accuracy of chamfer distance transforms, and have
introduced alternative algorithms such as vector distance
transforms, fast marching methods, and level sets. Most of
the earlier work concentrated on two-dimensional image
processing, but as three-dimensional data sets grew in
importance, recently much research has been targeted at
processing this and higher dimensional data. The literature
seems broadly split between the computer vision commu-
nity (for image processing), physics community (for
wavefront, Eikonal equation solving schemes), and compu-
ter graphics community (for object representation and
processing). This paper will draw together the literature
from these communities and will, for the first time,
independently and thoroughly compare the various main
algorithms and approaches.

For the purposes of this paper, we are most interested in
the application of algorithms using distance fields for the
modeling, manipulation, and visualization of objects for
computer graphics, and so we shall emphasize methods that
enable such processes. Recently, it seems that there is general
widespread agreement that distance fields provide the most

suitable antialiased representation of geometric objects for
the purposes of Volume Graphics. The term Volume Graphics
was first introduced by Kaufman et al. in 1993 [64], where
they presented the advantages of using volumetric models.
Although they were working with binary representations
which suffered from aliasing, many of the methods they
proposed anddiscussed have adaptedwell to distance fields.
Volume Graphics is now a subject area in its own right,
demonstrated by an annual “Volume Graphics” conference
series which started at Swansea in 1999 [24]. However,
distance fields have recently found many applications
unrelated to traditional volume graphics. For instance, they
can be used for collision detection, correcting the topology of
meshes, or to test whether a simplifiedmesh iswithin a given
distance threshold of the original.

A distance field representation of an object can be
particularly useful in situations where algorithms provide
for the fast processing of three-dimensional objects, and so
this paper shall concentrate on the methods by which
distance fields are produced, and the applications that can
use these distance fields to accelerate modeling, manipula-
tion and rendering techniques. Apart from a survey of the
literature in those areas, the main contributions of this
paper are a summary of some of the very latest results in the
production and use of distance fields, a new simplified
version of the Fast Marching Method (FMM) and the first
thorough comparison of FMM and its variants, Chamfer
Distance Transforms (CDTs) and Vector Distance Trans-
forms (VDTs) on both error and speed.

The remainder of this paper is organized as follows: In
Section 2, we present some properties of the continuous
distance field. Section 3 acquaints the reader with the main
approaches to calculating discrete distance fields. Aspects
such as computing the distance field directly from the data,
and computing the sign for a signed distance field are
accounted in Section 3.1. Using a shell boundary condition
as a basis it is possible to create distance fields using the
vector and chamfer transform methods and the fast
marching methods of Section 3.2. Section 3.6 provides the
first in-depth comparison of all three approaches—vector,

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 12, NO. 4, JULY/AUGUST 2006 581

. M.W. Jones is with the Department of Computer Science, Swansea
University, Singleton Park, Swansea, SA2 8PP, United Kingdom.
E-mail: m.w.jones@swan.ac.uk.

. J.A. Bærentzen is with the Informatics and Mathematical Modelling
Department, Technical University of Denmark, Richard Petersens Plads
DTU, Building 321, DK-2800 Lyngby, Denmark.
E-mail: jab@imm.dtu.dk.

. M. Sramek is with the OAW Visualisierung, Donau-City-Strasse 1, A-
1220 Vienna, Austria. E-mail: milos.sramek@oeaw.ac.at.

Manuscript received 21 Mar. 2005; revised 6 Sept. 2005; accepted 7 Dec.
2005; published online 10 May 2006.
For information on obtaining reprints of this article, please send e-mail to:
tvcg@computer.org, and reference IEEECS Log Number TVCG-0039-0305.

1077-2626/06/$20.00 � 2006 IEEE Published by the IEEE Computer Society

chamfer, and fast marching methods on a variety of data
sets. A thorough analysis of both time and error is given.
Section 4 examines alternative representation schemes for
distance fields including Adaptive Distance Fields (ADFs),
lossless compression schemes, wavelets, and the Complete
Distance Field Representation (CDFR). The main applica-
tion areas using distance fields are briefly examined in
Section 5. Finally, we conclude this paper with a discussion
in Section 6.

2 CONTINUOUS DISTANCE FIELDS

2.1 The Continuous Signed Distance Function

Assuming that we have a set �, we first define the unsigned
distance function as the function that yields the distance from
a point p to the closest point in �:

dist�ðpÞ ¼ inf
x2�

kx� pk: ð1Þ

Frequently, we are mainly interested in the signed distance
function associated with a solid S. The signed distance
function returns the distance to the boundary, @S, and the
sign is used to denote whether we are inside or outside S.
Here, we use the convention that the sign is negative inside.
This leads to the following formula for the signed distance
function corresponding to a solid S

dSðpÞ ¼ sgnðpÞ inf
x2@S

kx� pk; ð2Þ

where

sgnðpÞ ¼ �1 if p 2 S
1 otherwise:

�

When no ambiguity is possible, we drop the subscript S
from dS .

2.2 Derivatives of the Distance Function

An important property of the signed distance function d is
that

krdk ¼ 1 ð3Þ
almost everywhere, with the exception being points without
a unique closest point (e.g., the center of a sphere, see also
Section 2.3). In this case, the gradient is not defined.
Otherwise, the gradient at a given point p is orthogonal to
the isosurface passing through p. An isosurface is a set
fpjdðpÞ ¼ �g where � is the isovalue.

The second order derivatives contain information about
the curvature of isosurfaces of the distance function [50].
For general functions, f : IR3 ! IR, we can also obtain
curvature information from the second order derivatives,
but the equations become particularly simple for distance
functions.

The Hessian, H, of d is the matrix of second order partial
derivatives

H ¼
dxx dxy dxz
dyx dyy dyz
dzx dzy dzz

0

@

1

A: ð4Þ

Themean curvature of the isosurface passing through a given
point is simply the trace ofH at that point divided by two:

�M ¼ 1

2
ðdxx þ dyy þ dzzÞ: ð5Þ

The Gaussian curvature is

�G ¼ dxx dxy
dyx dyy

�

�

�

�

�

�

�

�

þ dxx dxz
dzx dzz

�

�

�

�

�

�

�

�

þ dyy dyz
dzy dzz

�

�

�

�

�

�

�

�

ð6Þ

and the principal curvatures are the two nonzero eigenva-
lues of H. The last eigenvalue is 0 reflecting the fact that d
changes linearly in the gradient direction. Monga et al. give
a good explanation of how the Hessian is related to
curvature [72].

2.3 Continuity and Differentiability

It follows from the triangle inequality that the signed and
unsigned distance functions of a given surface are contin-
uous everywhere. However, neither is everywhere differ-
entiable. This raises the question of where the signed
distance function is differentiable which is a question a
number of authors have considered.

In [67], it is demonstrated that for a Ck surface (k � 1),
the signed distance function is also Ck in some neighbour-
hood of the surface. In his technical report, Wolter [135]
presents various theorems regarding the cut locus. The cut
locus of a surface is the set of points equally distant from at
least two points on the surface. Hence, the cut locus is the
same as the union of the interior and exterior medial
surfaces. Theorem 2 in [135] pertains directly to the
differentiability of the distance function. Specifically, it is
shown that the unsigned distance function is differentiable,
and its gradient Lipschitz continuous at points which
neither belong to the surface nor to its cut locus. However,
the signed distance is differentiable also on the surface
(except at points where the cut locus touches the surface),
and the critical points1 of the signed distance coincide with
the cut locus.

In the remainder of this paper, we are mostly concerned
with discrete distance fields. Such distance fields may be
obtained by sampling a continuous distance function, and in
that case itmaybe important toknowwhether twogridpoints
straddle the cut locus. If they do, it means that their distance
values correspond to surface points that may be very far
apart. This can lead to poor reconstruction of the continuous
field, its gradient, and other characteristics, since they are
typically estimated using finite reconstruction kernels which
use a stencil of grid points. In [5], it is shown that if we can
touch all points (inside andout) of the surface, @S, by rolling a
ballwith a given radiusRs on the inside and the outside of the
surface, then the cut locus, and hence the critical points, does
not come closer to the surface than Rs.

This property becomes important in modeling and
visualization of objects represented by discrete DFs. In this
case, it is necessary to reconstruct the continuous field, and,
if shading is required, also its gradient in the vicinity of the
object surface. It is, therefore, required that the aforemen-
tioned distance Rs between the cut locus and the surface be
larger than the characteristic radius of the reconstruction
filter. These conditions will be further on referred to as the
DF representability criterion and an object which fulfils it a DF
representable solid. Note that the actual size of Rs depends on
the grid resolution and for common reconstruction kernels
it has values between one and three voxel units [113].

582 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 12, NO. 4, JULY/AUGUST 2006

1. For instance, where the distance function is not differentiable.

3 COMPUTING DISTANCE FIELDS

A brute-force algorithm for computation of a shortest
distance to a set of objects over a 3D discrete grid V is very
simple: For each voxel of V, its distance to all objects is
computed and the smallest one is stored. In spite of its
simplicity, this approach is impractical since it leads to
prohibitively long computational times. Therefore, techni-
ques were developed which 1) keeping the basic scheme
discard most of the objects by exploitation of their spatial
coherency (computing distances fromprimitives, Section 3.1)
and 2) methods, which in an initialization step evaluate the
distances in certain regions in a trivial way (inside the objects
or in a thin layer around the surface) and subsequently
propagate them through the whole volume (distance trans-
forms, Section3.2). Since someof theseaccelerated techniques
are only approximate, the role of the computationally
demanding but precise brute-force techniques is still un-
avoidable in algorithm evaluation.

3.1 Distance Computation for Common Surface
Representations

3.1.1 Triangle Meshes

The triangle mesh representation is probably the most
frequently used representation for 3D geometry. Therefore,
it is particularly important thatwe are able to convert triangle
meshes to signed distance fields. We can only generate
distance fields fromacertain classof trianglemeshes, namely,
meshes that are closed, orientable 2-manifolds. Inpractice,we
can impose the manifold condition by requiring that [54]:

. The mesh does not contain any self intersections:
Triangles may share only edges and vertices and
must be otherwise disjoint.

. Every edge must be adjacent to exactly two triangles.

. Triangles incident on a vertex must form a single
cycle around that vertex.

If the mesh fulfils these conditions, we know that it
partitions space into a well-defined interior, exterior, and
the mesh itself.

We will discuss first the basic methods for computing
unsigned distance fields and then discuss techniques for
generating the sign.

The distance to a triangle is easily computed using a
simple case analysis. When a point p is projected onto the
plane containing the triangle, the projected point p0 lies in
one of the seven regions shown in Fig. 1. If p0 is projected

onto R1 then the distance from the point to the triangle is
equal to the distance from the point to the plane containing
the triangle. If p0 lies in R2, R3, or R4 a distance to the
corresponding line should be calculated. Last, with regions
R5, R6, or R7 a distance to the corresponding vertex should
be calculated.

3.1.2 Hierarchical Organization

Since the brute force method requires N �M steps, where N
is the number of voxels, and M is the number of triangles, it
is sensible to use hierarchical data structures to allow
OðlogMÞ access to the triangles.

Payne and Toga have described the basic approach of
calculating distance to triangles [92]. They also proposed
some optimizations. For instance, one can compute squared
distances and then take the square root only when the
shortest distance is found. Further, in a more comprehen-
sive algorithm, they utilize the data coherency by storing
the triangles in a tree of bounding boxes. From a given
point, we can compute the smallest and greatest possible
distance to anything inside the box. This can be used to
prune branches as we move down the tree.

Quadtrees were used by Strain [123] to speed up
computation of distance to an interface in 2D (redistancing,
see Section 5.4.2) thus creating an OðN logNÞ algorithm
(where N is the size of the interface).

Another hierarchical approach is the recent Meshswee-
per algorithm proposed by Guéziec [48]. The Meshsweeper
algorithm is based on a hierarchical representation of the
mesh. At each level, a bounding volume is associated with
every triangle. The bounding volume of a given triangle
encloses all child-triangles at more detailed levels. A
distance interval is computed for each bounding volume.
This distance interval gives the shortest and greatest
possible distance to any triangle inside the bounding
volume. The lower bound is finally used as an index to a
priority queue. A salient point is that we can remove a
bounding box from the queue if its lower bound is greater
than the greater bound of some other bounding box thus
removing a branch of the hierarchy from consideration.
Guéziec compares his method to an octree based method
and to a brute force approach.

3.1.3 Characteristic Methods

Hierarchies are not always needed. If the actual value is
only required up to a certain distance from the surface, then
the influence of a triangle becomes local. If only distances
up to, say, five units are required, we can use a bounding
volume around each triangle to ensure that distances are
only computed for grid points that are potentially closer
than five units. The smaller this max distance, the smaller
the need for a hierarchical structure.

For each triangle, we simply compute the distance to that
triangle for all grid points inside the corresponding
bounding volume. In [34], Dachille et al. propose such a
method where the volume is a simple axis aligned
bounding box. Their contribution is to perform the case
analysis (Fig. 1) using only distance to plane computations.
The advantage is that only one addition is needed for each
voxel to compute its distance to a given plane—using an
incremental approach—making the technique suitable for
hardware acceleration.

Many other methods that generate distance fields with
distances only up to some maximum value are based on
the notion of a characteristic which was introduced by

JONES ET AL.: 3D DISTANCE FIELDS: A SURVEY OF TECHNIQUES AND APPLICATIONS 583

Fig. 1. Calculating distance to a triangle: If p projects onto R1 it is closest
to the plane, R2�R4 edge, R5�R7 vertex.

Mauch [70], [71]. Each feature in the triangle mesh is
converted to a polyhedron—the characteristic—which
contains the points closest to that feature. For instance,
an edge becomes a wedge, a face becomes a prism, and a
vertex becomes a cone with polygonal base. These
characteristics contain all points that are closest to their
respective feature and within a certain distance of the
mesh. Thus, the characteristics can be seen as truncated
Voronoi regions. However, in general, they are made to
overlap slightly to avoid missing grid points. The
characteristics are then scan converted and for each voxel
within the characteristic, the distance to the generating
feature is computed.

A recent improvement of this method was proposed by
Sigg et al. [119]. They use graphics hardware to scan convert
the characteristics. First, the characteristic is sliced, and then
the slices are sent to graphics hardware and rasterized in
the usual way. The distances are computed in a fragment
program [100]. However, slicing is done on the CPU and
this may be a bottleneck. To alleviate this problem, only a
single characteristic is computed for each triangle. This
reduces both the amount of work to be performed by the
CPU and the amount of bandwidth required in order to
send the slices to the graphics card. The per-triangle
characteristics are denoted prisms. Details on prism compu-
tation are provided in [91].

Another work that involves hardware acceleration is due
to Sud et al. [118] who also use observations regarding
spatial coherence to limit the number of primitives
considered for each slice. Sud et al. claim to be two orders
of magnitude faster than a plain software implementation
of characteristics scan conversion.

One may construe the characteristics as very tight
bounding boxes around the triangles, and herein lies their
advantage. The methods are linear in both the number of
triangles and voxels [70]. On the other hand, the character-
istics must be created and scan converted. It is simpler to
bound each triangle by a box aligned with the voxel grid.
This can be made more effective by culling voxels that are
farther from the plane of the triangle than a given distance.

3.1.4 Computing the Sign

The most obvious method for computing the sign when
generating a signed distance field is to use the surface
normals. If we have a C1 smooth surface, the sign of the
distance can be found by evaluating the dot product of the
normal, n, and a direction vector, d, from the closest point
to the point p where the sign is desired. d will always point
either in the same direction as n (if we are outside) or the
opposite (if we are inside).

The problem with triangle meshes is that they are not C1:
The normal is not defined on edges and vertices. As a
simple solution, one could use the normal of the incident

triangle even when the closest feature is an edge or a vertex.
Unfortunately, this does not work, because in many cases
we have the same distance to two or more triangles but
different sign [92]. In particular, this occurs if the closest
feature is a vertex, and the corresponding situation in 2D is
shown in Fig. 2.

Most authors propose to use scan conversion to generate
the sign [58], [92], [123], [70]. Typically, this is done in the
following way: For each z-level plane in the grid, we
compute the intersection of the mesh and the plane. This
produces a 2D contour that we can scan convert [92]. An
even simpler approach would be to cast rays along rows of
voxels. At voxel locations where the ray has crossed the
mesh an uneven number of times, we know we are inside.

The characteristics methods [70], [119], [91] are a bit
different. A voxel belongs to precisely one characteristic
associated with the closest edge, vertex, or face. This means
that the sign problems do not occur in principle, since we can
compute the sign for that characteristic. However, it is
necessary to dilate the characteristics slightly to ensure that
voxels do not “fall between” characteristics. Unfortunately,
thisoverlapmeansthat therearecaseswherecharacteristicsof
opposite signoverlap inareaswhere thenumericaldistance is
the same, and this can lead to erroneously classified voxels
[35]. Of course, this problem will be far worse if one simply
uses a bounding box around each triangle.

A plausible approach would be to approximate a normal
at each vertex and edge, but it is far from obvious how to do
this. A recent method by Aanæs and Bærentzen [1], [4]
solves this problem using pseudonormals assigned to edges
and vertices. The challenge is to define a pseudonormal
which is guaranteed to have a positive dot product with the
direction vector whenever the point is outside and negative
whenever the point is inside. Aanæs and Bærentzen use the
angle weighted normal [126] as their choice of pseudonor-
mal. To compute the angle weighted normal at a vertex, one
sums the normals of the incident faces, weighting each
normal with the angle between the two legs that are
incident to the vertex. This is illustrated in Fig. 3.

As shown in [1], [4], the dot product of a direction vector
d from a mesh point c to a point p and the angle weighted
normalN at c is always positive if p is outside and negative
otherwise. This leads to a method for computing signed
distance fields that is simply an extension of the method for
unsigned distance fields [1]. Details on a practical and
efficient method for signed distance computation and a
discussion of numerical robustness are provided in [4].

Another advantage of angle weighted normals is that
they are independent of tessellation [126]. In other words, as
long as the geometry is unchanged, we can change the
triangulation of the mesh without affecting the vertex

584 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 12, NO. 4, JULY/AUGUST 2006

Fig. 2. The mesh feature closest to p is a vertex, but the dot products

d � n1 and d � n2 do not have the same sign.

Fig. 3. The angle weighted normal N ¼
P

i
ni�i

k
P

i
ni�ik

.

normals. The notion of angle weighted normals is easily
extended to edges—the normals of the two faces adjacent to
the edge are simply both weighted by �.

3.1.5 Triangle Soups

Unfortunately, triangle meshes do not always form closed
two-manifold surfaces, and then the methods above do not
work, since only closed two-manifold surfaces divide space
into a well-defined interior, exterior, and boundary. How-
ever, in many cases, we have just a slight self-intersection,
or a small hole in the surface. In these cases, we might still
want to compute an estimated distance field.

It has been shown that a binary volume can be generated
from a triangle mesh by projecting the mesh from many
directions [82]. From each direction, one generates what can
be seen as a run-length coded binary volume representing
the original triangle mesh. If the mesh contains holes or
other degeneracies these will be reflected by holes in the
scan conversion. However, a plausible volume can be
reconstructed by voting amongst the scan conversions for
each voxel.

The scan conversions can also be used to generate a
cloud of points with normal information. From this point
cloud, we can estimate distances as discussed in [7]. The
points will be missing in areas where the original mesh
contains holes, but using a diffusion scheme it is possible to
fill in the missing distance values.

3.1.6 Implicit and Parametric Surfaces

The simplest objects to voxelize are implicit surfaces. An
implicit surface is really just a function f : IR3 ! IR which
serves as the embedding of a surface B which is a level-set
or isosurface of f , i.e.,

B ¼ fpj fðpÞ ¼ �g; ð7Þ
where � is the isovalue. In practice, f should be constrained
so that the value of f is always f > � on the inside and f < �
on the outside or vice versa. Often, we require that rf 6¼ 0
for any point p 2 B since this means that � is a regular value
and, hence, that B is a manifold [127]. For an in-depth
discussion of implicit surfaces, see [127], [13].

The analytic definitions of a 3D sphere fðpÞ ¼ jjp� p0jj or
hyperplane fðpÞ ¼ ðp� p0Þ � n are good examples of implicit
surfaces, and these two areparticular because the value of f is
also the signed distance to the sphere or hyperplane,
respectively. Hence, we can voxelize a sphere or hyperplane
simplybysampling f . Ingeneral,morework is required. Ifwe
can accept some error, it is frequently possible to voxelize the
implicit surface by sampling an approximation of the signed
distance, typically ðf � �Þ=jjrf jj. This method is used in the
VXT class library of DF-based voxelization techniques by
Sramek [115]. A more precise but also more costly method is
to find the foot point numerically: Given a point p find the
closest point pfoot so that fðpfootÞ ¼ � . The distance is then
jjp� pfootjj and the sign is trivially computed. Hartmann has
designed such a foot point algorithm [50] which accepts a
point p in the vicinity of an implicitly defined surface and
produces a footpoint. Thebasic idea is tomove in thegradient
direction until a pointp0 on the surface is found. The estimate
is then iteratively refined until the surface normal points top.

Certain implicit solids can contain sharp surface details,
where the aforementioned methods, which assume suffi-
cient smoothness of the implicit function, fail to produce
meaningful distance values. To cope with this, a technique
was proposed by Novotny et al. [83], where such areas are

identified and the solid is locally modified in order to

comply with the DF representability criterion (Section 2).
There are several possibilities for computing distances to

parametric surfaces. In a few cases (sphere and double

cone) closed form solutions are available. In some other

ones (superellipsoids [8] supershapes [44]), it is possible to

convert their parametric representation to an implicit one

[69] and to use the techniques mentioned above. However,

in general, it is necessary to minimize for each grid point p

the expression

dðu; vÞ ¼ jjSðu; vÞ � pjj; ð8Þ
where Sðu; vÞ is the surface’s parametric representation. For

example, gradient descent minimization was used by Breen

et al. [16]. In general, minimization of (8) may lead to

numerical problems and trapping in local minima.

3.2 Distance Transforms

The principle behind the use of the distance transform (DT) is

that a boundary condition close to the surface boundary can

be generated (using any of the direct methods of Section 3.1)

from which the remaining distances may be evaluated. The

boundary condition is discussed in Section 3.2.1.
In a second phase, distances are propagated to the rest of

the volume using a DT. As distances away from the

boundary condition are not calculated using the exact

methods of Section 3.1, some errors may be introduced. This

section will examine the errors produced by many of the

popular distance transform techniques. DT algorithms can

be classified according to how we estimate the distance

value of a given voxel from the known quantities of its

neighbors and how we propagate the distances through the

volume. The first classification criterion leads us to

. chamfer DTs, where the new distance of a voxel is
computed from the distances of its neighbors by
adding values from a distance template (Fig. 4),

. vector DTs where each processed voxel stores a
vector to its nearest surface point and the vector at
an unprocessed voxel is computed from the vectors
at its neighbors by means of a vector template (Fig. 6),
and

. Eikonal solvers, where the distance of a voxel is
computed by a first or second order estimator from
the distances of its neighbors.

According to the second criterion, the distances can be

propagated through the volume in a

. sweeping scheme, when the propagation starts in
one corner of the volume and proceeds in a voxel-
by-voxel, row-by-row fashion to the opposite corner,
typically requiring several passes in different direc-
tions, or in a

. wavefront scheme, when the distances are propa-
gating from the initial surface in the order of
increasing distances until all voxels are processed.

If required, it is possible to stop the computations in a

wavefront scheme as soon as the desired distance isolevel is

reached. One can take advantage of this property in

numerous applications, as, for example, in morphological

operations, surface offsetting and level-set methods.

JONES ET AL.: 3D DISTANCE FIELDS: A SURVEY OF TECHNIQUES AND APPLICATIONS 585

3.2.1 Initialization

Most distance transformations are reported as operating on
discrete binary classified data F which has been obtained
by scan-conversion of analytically defined solids or by
segmenting volumetric data (e.g., by thresholding) to
extract the feature points of a surface:

F ðpÞ ¼ 0 p is exterior

1 p is interior;

�

ð9Þ

where voxel p 2 II3 and F : II3 ! IR. This classification when
operated on by a distance transformation will produce a
distance field internal (or external, when reversed) to the
object. To produce an unsigned distance field of the type in
(1) the following classification could be used:

F ðpÞ ¼ 0 p is on the discrete surface

1 elsewhere:

�

ð10Þ

Here, the numerous voxelization techniques can be used to
identify the 0-value voxels [62].

It is recommended that for higher accuracy, a so-called
gray-level classification should be used in a shell around the
surface [58]:

F ðpÞ ¼ dSðpÞ in the shell

1 elsewhere:

�

ð11Þ

Theboundarycondition is said tobeminimal if it onlyconsists
of inside voxels that are 26-connected to voxels outside (and
vice versa) and all voxels that are on the surface. This requires
that gray-level voxels known to be close to the surface be
calculated using a short cut. Surface mesh data could be scan
converted to the voxel grid using many of the triangle-based
techniques mentioned in Section 3.1.1, whereas parametric

surfaces and curves can be voxelized by splatting [113]. In the
case of implicit solids or scalar fields, when the surface is
defined by the isovalue � , the distance should be explicitly
computed for all voxels which have a 6-neighbor on the other
side of the isovalue using the aforementioned linear approx-
imation ðf � �Þ=jjrf jj. In vector DTs, techniques for estima-
tionof thenearest isosurfacepoint listed inSection3.1.6 canbe
used.

After classification the distance transformation is ap-
plied. A simpler chamfer distance transformation gives
poorer results than the vector distance transformation.

3.2.2 Chamfer Distance Transform

In chamfer distance transforms (CDTs) [97], [96], [141], [18],
[2], the distance template (Fig. 4) is centered over each
voxel, and the distance at the central voxel is computed as
the minimum of all of its neighbors’ distances with the
appropriate component added. Both sweeping (two pass)
and wavefront schemes were formulated.

In a sweeping scheme, the distance template is split in
two parts: one is used in a forward pass and the other in a
backward pass. The forward pass calculates the distances
moving from the surface towards the bottom of the data set,
and is followed by the backward pass calculating the
remaining distances. Fig. 4 is used as the basis with Table 1
giving the appropriate template values for each chamfer
method. Note that some values are empty in order to ensure
that calculations that yield the identical result are not
repeated (if they are filled we have a 53 Complete Euclidean
DT). The distance transformation is applied using the
pseudocode in Fig. 5, where i; j; k 2 f�2;�1; 0; 1; 2g for a
5� 5� 5 transform, fp and bp are the sets of transform
positions used in the forward and backward passes,
respectively, and checks are made to ensure fp and bp only
contain valid voxels at the edges of the data set. Svensson
and Borgefors [102] present an analysis of chamfer distance
transforms and give numerous examples of distance

586 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 12, NO. 4, JULY/AUGUST 2006

Fig. 4. A distance template. In the forward pass, distances (a)-(f) are

added to voxels in the current, z-1 and z-2 slices. In the backward pass,

distances are added to voxels in the current, z+1 and z+2 slices.

TABLE 1
Values Used to Produce Each Chamfer Type

Fig. 5. Pseudocode for chamfer distance transform application.

templates. Cuisenaire [31] also gives a good review of

distance transforms (both Chamfer and Vector).
In wavefront techniques, voxels are processed in the

order of their increasing distance [141], [26]. To ensure the

correct order, the processed voxels are inserted into a

priority queue. In a loop, the voxel from the top of the

queue is removed, and distances of its not yet processed

voxels are computed according to the distance template and

subsequently inserted into the queue. The process continues

as long as there are any voxels in the queue.
Asymptotic complexity of the wavefront approaches

(OðN logNÞ, N being total number of processed voxels) is

worse than of the sweeping approaches (OðNÞ) due to the

priority queue management. However, in special setups,

the wavefront approaches were reported to be “consider-

ably faster” [141]. Here, in an algorithm adopted from [129],

Zuiderveld et al. take advantage of an observation that the

direction of the shortest distance propagation is kept. In

other words, knowing a position of the voxel the distance of

which was used to compute the distance of the current

voxel, it can be predicted, which of its neighbours should be

processed. The speed up is thus obtained, in regard to the

sweeping schemes, by eliminating computations of dis-

tances, which would later be overwritten by lower values.

3.2.3 Vector Distance Transform

CDTs suffer from poor accuracy as the distance from the
surface increases (Section 3.6). This problem is overcome by
using Vector (or Euclidean) Distance Transforms (VDTs or
EDTs) [32], [78], [110] which use a boundary condition of
voxels containing a vector to the closest point on the surface,
and propagating those vectors according to a pattern (vector
template) such as the one given in Fig. 6 (the Vector-City
Vector Distance Transform, VCVDT, [110]). Fig. 7 shows the
pseudocode for one pass of a vector distance transform (F1 of
the VCVDT), where vec is a voxel grid containing actual or
estimated vectors to the surface @S and dir¼fð0;0;�1Þ;
ð0;�1;0Þ; ð�1;0;0Þg. Pass F2 would be a loop with increas-
ing y and decreasing x with dir ¼ fð1;0;0Þ; ð0;�1;0Þg. All
forward passes are carried out within one single outer loop
with increasing z. Backward passes are implemented
similarly.

The VCVDT technique requires eight passes through the
volume, and in each pass just 6-neighbors of the actual
voxel are visited. Of course, different schemes are also
possible. Ragnemalm [94] classifies them in separable and
nonseparable. In the former, the passes are mutually
independent and can be applied in any order. Thus, they
are suitable for parallel implementation, while the latter are
more appropriate for sequential implementations. Further,
in [94], a separable four pass algorithm with 26-neighbor-
hood vector template is proposed.

Breen et al. [16], [17] implement a wavefront version of a
VDT technique by passing closest point information
(trivially equivalent to passing vector information) between
voxels at a moving wavefront from CSG objects. Breen et al.
[17] also demonstrate the passing of color information to
create colored offset surfaces.

3.3 The Fast Marching Method

The fast marching method (FMM) [125], [106], [107], [55] is a
technique for computing the arrival time of a front (which
we can think of as, e.g., a balloon) expanding in the normal
direction at a set of grid points. This is done by solving the
Eikonal equation from a given boundary condition. The
Eikonal equation is

krTk ¼ 1

F
; ð12Þ

where F � 0 is the speed of the front, and T is the arrival
time of the front. Given a point p, the arrival time T ðpÞ is
the time at which the skin of the balloon passed p. The
Eikonal equation states the obvious inverse relationship
between the speed of the front and the gradient of the
arrival time. Since F does not have to be unit or even
constant, the FMM is not solely a method for computing
distance fields.

JONES ET AL.: 3D DISTANCE FIELDS: A SURVEY OF TECHNIQUES AND APPLICATIONS 587

Fig. 6. Vector templates for one pass of the VCVDT technique.

Fig. 7. Pseudocode for pass F1 of a vector distance transform.

However, if F ¼ 1, the front moves at unit speed, and the
arrival time at p is simply the distance from p to the closest
point on the front at time 0. Hence, the FMM can be and is
frequently used to compute distance fields. The FMM is
defined on both 2D and 3D grids [117] and also on surfaces
represented as triangle meshes [68], [107]. The FMM was
independently proposed first by Tsitsiklis [125] and then
Sethian [105] and Helmsen et al. [55].

The FMM is in principle a wavefront scheme which
computes the values of T from a set of boundary values, and
the structure of the algorithm is almost identical to Dijkstra’s
single-source shortest path algorithm [CLR]. We say that a
gridpointwith aknownarrival time is frozen. In the first step,
the distances of all grid points adjacent to a frozen grid point
of the boundary condition are computed. Then, we pick the
smallest of these distance values and freeze the correspond-
ing grid point. Next, we recompute the distance at all its
adjacent grid points (except at those that are already frozen,
see Fig. 8). Finally,we loop back and freeze the grid point that
now contains the smallestdistancevalue. In thisway, the set of
frozen grid points keeps expanding, and around the frozen
set there is a layer of grid points where the distance is
computed but not yet frozen. A priority queue implemented
as a binary heap is typically used to store these distance
values.Whenever, a distance is computed or recomputed,we
have to be able to update the heap to reflect this change. This
requires that each grid point holds a pointer to its
corresponding heap element.

In order to compute the distance at a new grid point, a
discretized version of (12) is solved. The discretization is
based on a first order accurate finite difference approxima-
tion to the gradient which only uses the frozen grid points
in the neighborhood of the current grid point. To solve this
discretized version of the Eikonal equation, we simply need
to find the largest root of a second order polynomial.
Unfortunately, the standard FMM is not very precise. This
has motivated another version (FMMHA) of the method
which is more precise by virtue of the fact that second order
finite difference approximations to the partial derivatives
are used [106]. Hence, it is necessary to know the distance
two grid points away from the grid point where a new
distance is computed. In practice, though, it is possible to
fall back to the standard FMM if this condition is not met.

For more details on how to implement the FMM and
FMMHA, the reader is referred to [6]. In the form described
above, the FMM is an OðN logNÞ algorithm where N is the

number of grid points. The reason why the FMM is not
linear is the fact that at each step, we need to find the
smallest distance that is not yet frozen. Typically, the
distance values are stored in a heap, and it is a constant time
operation to pick the smallest. However, we also need to
keep the heap sorted which is a logarithmic operation.

3.4 Variations of the FMM

A problem in the implementation of the FMM is that voxels
in the priority queue may be recomputed. If they are
recomputed they should be moved in the priority queue
which entails that we need to store handles to priority
queue elements in the voxels. However, two observations
can be used to motivate a simplified FMM which does not
require these handles:

. It is our experience that errors increase if one allows
the values of priority queue voxels to increase as a
result of a recomputation. This means that we do not
need handles into the priority queue, instead we
accept having multiple values in the priority queue
for a single voxel. The smallest value will emerge
first, and then we freeze the voxel. If a second value
for a given voxel is popped from the priority queue,
it is simply disregarded.

. Errors also increase if nonfrozen voxels are used in
the computation of priority queue voxels. Hence, it is
not necessary to assign distance values to voxels
before they are frozen. This, in turn, means that we
know a voxel has been frozen simply because it has
been assigned a value.

The advantage of this scheme is that it is simpler, and we
can use a standard priority queue. The following pseudo-
code illustrates the simplified FMM loop:

Extract voxel with smallest value.

If voxel is not frozen,

freeze voxel

compute unfrozen neighbors

and insert them in priority queue

We will refer to this simplified fast marching method as
SFMMHA.

Tsai [124] proposes a hybrid algorithm. For each voxel
with three known neighbors, the distance is calculated to the
closest of two points which are the intersection of spheres
centerd on each neighboring voxel with radius equal to the
distance at that neighboring voxel. If only one neighbor is
known a fixed amount h is added to the distance of that
neighbor. If the intersection of the spheres is ambiguous, then
the distance is calculated using the Godunov Hamiltonian.
Adding the fixed amount h is the same as using a Chamfer
Distance Transform, with h set to be an appropriate value
from Table 1. The sphere intersection part of the algorithm
produces at best the same result as a Vector Transform
(although, relies on less storage, but requires more complex
calculation to solve the intersection of the spheres). The
Godunov Hamiltonian calculates the distance from a wave
front propagating through the data. The algorithm combines
all threemethods (FMM,CDT, andVDT). It seems to produce
accurate results from point data, and from piecewise linear
objects when they are oriented so their normals are integer
multiples of �=4 (the combined use of the CDT andGodunov
Hamiltonian makes that restriction for accurate results). For
arbitrarydata aswe test here, theVDT is superior in accuracy,
speed and simplicity of implementation.

588 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 12, NO. 4, JULY/AUGUST 2006

Fig. 8. This figure illustrates the structure of the FMM. The distances are
initially known at the boundary condition (blue squares in (a)). The
distance is then computed at all adjacent grid points (red squares) and
the grid point with the smallest of these distances is frozen (the hatched
blue square in (b)). Then, the distance is recomputed at its (hatched red)
neighbors. The red arrows indicate which neighbors are used to
recompute a distance.

Kim [65] proposed the group marching method (GMM)
where a group of voxels on the wavefront is used to calculate
the distances for their neighboring voxels. The group is
determined as those voxels that are within a certain distance
of the wavefront and are chosen so that they do not affect the
travel time calculation to each other. Due to the fact that their
neighboring voxels could be affected by several members
within the group, iterations in two different directions are
carried out. GMM is tested on simple artificial problems for
which similar errors aregenerated (toFMM).AlthoughGMM
isOðNÞ, it has a high overhead in the form of keeping track of
the group, and determining whichmembers of the group are
to be updated.

Zhao [140] uses a sweeping method to solve the Eikonal
equation. The volume is swept in forward-and-backward
directions in a similar manner to Chamfer and Vector
Transforms. At each voxel, the Godunov discretization of
the Eikonal equation is calculated, rather than the chamfer
matrix multiplication of the Chamfer Transform, or the
vector additions of the Vector Transforms. This results in an
O(N) method which produces a similar result to the FMM
at a similar speed to O(N) Chamfer and Vector Transforms.
He also proves convergence for sweeping methods using
the Godunov Hamiltonian to solve the Eikonal equation.
Going a bit further, Kao et al. proposed a fast sweeping
method for more general hamiltonians based on Lax-
Friederichs rather than Godunov’s scheme [66].

Hysing and Turek [121] compare and evaluate the FMM
method with various methods including the methods of
Tsai and Zhao.

Yatziv et al. [137] create an OðNÞ implementation by
replacing the heap with an array of linked lists. The arrival
times are discretized and placed at the end of their
appropriate linked list (Oð1Þ insertion). By keeping track
of which array represents the least time, the head of the list
is used as the next grid point to compute (Oð1Þ removal). As
the lists are not sorted, errors are introduced, but these were
found to be acceptable when compared to the time saving.

3.5 Reinitialization of Distance Fields

The goal of reinitialization is to convert an arbitrary scalar
field, � : IR3 ! IR, whose 0-level isosurface (or 0-level set)
represents some interface, to a distance field in such a way
that the 0-level isosurface is unchanged. Reinitialization is
often required as a part of the level set method (LSM) [86],
[107], [84] (c.f. Section 5.4.2), and most work on reinitializa-
tion has been carried out in the context of the LSM.

There is a simple solution to reinitialization based on the
methods discussed in the previous sections. If we assume
that the grid points immediately adjacent to the 0-level
isosurface contain correct distances, FMM can be used to
rebuild the distance field up to the required value.
Unfortunately, this condition may be violated, which was
addressed by Chopp [23]. Here, in each cell (group of eight
grid points) intersected by the 0-level set of �, a cubic
polynomial which interpolates the values at the corners is
constructed. The value of each corner grid point is,
subsequently, replaced by the distance to the 0-level set of
this polynomial.

While the FMM is often employed for reinitialization,
other distance transforms could also be used, and, in fact,
there is an entire class of methods based on the reinitializa-
tion equation,

�t þ sð�0Þðkr�k � 1Þ ¼ 0; ð13Þ

which was introduced by Sussman et al. [122] extending
work by Rouy and Tourin [99]. In (13), � is a function that is
typically almost but not quite a distance function. sð�0Þ is
the sign of the original function which must be known for
all grid points in advance. Most authors use a “smeared”
sign function which is very small near the interface to avoid
instability. Sussman et al. proposed

sð�0Þ ¼
�0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�0
2 þ �2

p ; ð14Þ

where � is a constant often chosen to be about the size of a
cell in the grid [90]. A different sign function more adapted
to steep gradients was proposed in [90]. kr�k must be
computed in an upwind fashion, i.e., the derivatives should
be one sided which means that for a given grid point they
should look in the direction to the 0-level set [84].

Evolving (13) forward in time will cause the value of � to
iteratively increase or decrease in order to attain a gradient
length of unity. When a steady state has been reached, � is a
distance function. Thus, methods based on (13) can be used
as distance transforms provided the sign is given for each
grid point. However, this is not efficient since many time
steps are needed.

Most authors use a small, constant number of steps (e.g.,
one or two) to correct a field that is already close to a
distance field. In this scenario, the schemes are OðNÞ, where
N is the total number of grid points while FMM is
OðN logNÞ. However, in practice, FMM might be faster.
We surmise that (13) is best if small frequent corrections are
needed while FMM could be better for infrequent, large
corrections. It is also easy to stop the FMM when all
distance up to a given maximum have been computed.
However, when evolving (13), the distance information
flows outward from the interface just like in the fast
marching method. This indicates that a similar wavefront
scheme should be feasible as mentioned in [98].

Aconcernwith themethodsbasedon (13) is that the 0-level
set may move slightly. As a countermeasure Sussman et al.
[108] proposed a volumetric constraint, and Russo et al. [98]
an upwindmethod which does not accidentally look beyond
the 0-level set. Finally, it should be noted that (13) can be
discretized in a variety of ways both with regard to time
derivatives and spatial derivatives. In [84], the interested
reader will find an overview with more details about this.

3.6 Comparison

Each tested distance transformation was executed on
several test data sets, and the results are presented in
Table 2. The Point data set is a single point in a 2563 voxel
grid, the RotCube data set is a voxelized cube rotated by 30o

on both the x and y-axes (again 2563). Hyd is a distance field
to the 643 AVS Hydrogen data set (measured to � ¼ 127:2)
and CT is a distance field to the bone (� ¼ 400) of the UNC
CThead (256�256�113, Fig. 9). In the latter two cases, the
distance field was measured to the triangles created by the
tiling tetrahedra algorithm [92] using a threshold of � . The
boundary condition consists of internal voxels with an
external 26-neighbor, and external voxels with an internal
26-neighbor. The vector transform requires the vector to the
closest point whereas the other transforms just require the
distance to the surface. Each method is compared to a
ground truth distance field that has been computed using a
direct method. Note that a 53 Complete Euclidean exists
which creates an equivalent result to the 53 Quasi Euclidean

JONES ET AL.: 3D DISTANCE FIELDS: A SURVEY OF TECHNIQUES AND APPLICATIONS 589

(Table 1), and so it is not reported here. The following

conclusions may be drawn:

3.6.1 Precision

. The VDTs (represented here by the VCVDT) are the
fastest to execute and have the lowest error.

. VDTs produce accurate results for cases where
distances are measured to point data sets. The
FMM is accurate in the case of planar surfaces.

. The greater precision of the VDT reflects, to some
extent, that more information from the boundary
condition is used: VDT requires that a vector to the
closest point is stored in each boundary condition
voxel.

. VDTs produce the least error for an offset surface n
for any n (Table 3).

. VDTs are the only methods where the error
diminishes as a function of distance (Table 3).

. Larger CDT kernels give more directional possibi-
lities for the source of the shortest distance, and are
therefore more accurate, but they increase computa-
tional time.

. The < a; b; c >opt method is the best 33 CDT as it has
been optimally designed to limit the distance error
[102].

. The max error of the CDTs rise significantly as a
function of distance (compared to FMM and VDTs).

. The FMMHA is significantly more accurate than the
original FMM.

. If the original analytic representation (in addition to
the boundary data) is available, the result of a VDT
can be used to measure distances to the original data
to improve accuracy further [16], [109].

3.6.2 Speed

. CDTsandVDTsareOðNÞmethods,whereasFFMsare
OðN logNÞ. This is reflected in the computational
times.

. Wavefront methods should be faster than the other
techniques when requesting only distances up to a
level, say � , at least for small � . We have tried to
verify this with the SFMMHA. Indeed, for � � 3, the
SFMMHA outperforms all other methods, but only
narrowly in the case of the CT head.

3.6.3 Ease of implementation

. Arguably, VDTs and CDTs are easier to implement
than FMMs.However, the simplified FMM is easier to
implement than the method proposed by Sethian
[107].

. FMM, being anEikonal solver ismore general and can
also compute arrival times for non unit-speed fronts.

4 REPRESENTATION oF DISTANCE FIELDS

Discrete distance fields are usually stored in voxel grids due

to the great simplicity of this representation. However, there

are some disadvantages to regular voxel grids. In order to

590 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 12, NO. 4, JULY/AUGUST 2006

TABLE 2
Each Distance Transformation Method was Tested with Each Data Set

The average error, maximum error, and runtime are given for each (2.6Ghz P4). The number in brackets indicates the amount of voxels in the
boundary condition.

Fig. 9. True 3D distance closure of 20, 10, and 5 voxels of UNC CThead

data set (bottom right).

capture tiny details, a high resolution grid must be used, but
large grids are extremelymemory consuming.Hence, there is
a great incentive to develop more parsimonious representa-
tions which adapt better.

A very simple, effective improvement over a regular grid
is to use either a hierarchical or run-length encoded grid.
Both of these representations are useful in cases where the
distances are clamped beyond a maximum value, as, for
example, in object modeling (Section 5.4.1) or in LSM
methods (Section 5.4.2). However, even for other applica-
tions this need not be a limitation, since the the clamped
distances can be extended to a full distance field easily
(Section 3.2). A hierarchical grid is simply a grid of cells
where each cell contains a small voxel grid (e.g., 16� 16�
16 voxels). In this case, we often have large homogeneous
regions that can be represented with a single value for the
entire cell. In the run-length approach, voxels of each data
row are classified either as inside, outside and transitional
[80]. A row of voxels is then represented as a linked list of
spans of voxels of the same category. The transitional spans
are represented fully, while only length of the other spans is
stored. In both cases, reading and writing are efficient, and
if there are large homogeneous regions in the data set
(which is often the case), the memory efficiency is very
good, reaching compression values at the level of a few per
cent of the full volume representation. However, if the
distance field contains features at very diverse scales, the
Adaptive Distance Fields technique, proposed by Frisken et al.
[45] is a better choice for its representation, at the cost of
more complex storage and retrieval. The basic idea is to
subdivide space using an octree data structure [74], [101].
The distance values are sampled from a continuous distance
field at the vertices of each cell in the octree, and a cell is
split recursively until the interpolated distance field within
closely matches the continuous field.

ADFs are useful for compactly representing complex
distance fields. Frisken et al. also demonstrate how their
ADFs can be manipulated using CSG operations. In more
recent work, Perry and Frisken [88] improve on some of

their results. Especially, techniques for fast rendering using
points and techniques for triangulation are proposed. The
triangulation is an extension of surface nets [43] from
regular to adaptive grids. In recent work by Ju et al. [57], the
method has been extended further to adaptive grids where
precise edge intersections and normals are known. Finally,
a new, faster tile-based generation of ADFs is proposed.

An ADF scheme was also proposed by Bærentzen [5].
The data structure and the CSG operations resemble the
work by Frisken and Perry. However, Bærentzen proposes
a simple decoupling of the space subdivision and the
representation of distances at cell corners. An octree is used
to represent the space subdivision whereas a 3D hash table
is used to represent points. This decoupling is important
because cells share corners. Thus (without a separate point
data structure), each cell must have either separate copies of
the distance values at its corners or pointers to these values.
With a 3D hash table, the corner position is simply used to
look up distance values.

In [53], a representation called a Complete Distance Field
Representation (CDFR) is proposed. A CDFR is a regular
subdivision of space into a 3D grid of cells where each cell
contains a set of triangles. These are the triangles which
might affect the distance field within the cell. To build this
data structure, triangles are initially stored in the cells they
intersect. Subsequently, the triangles are pushed to neigh-
boring cells. A neighboring cell tests whether the triangle
might influence its distance field and stores the triangle if
this is the case. When no cells contain triangles that
influence neighboring cells, the process stops. From the
triangles stored in each cell, we can compute the exact
shortest distance from a point in the cell to the surface.

Another approach which was recently proposed by Wu
et al. is to construct a BSP tree from a triangle mesh [133].
Within each cell, the distance field is approximated by a
simple linear function (plane distance). The triangle model
is passed to a function that recursively splits the model into
smaller pieces. For each piece of the model, a distance field
approximation is generated and the approximation error is
estimated. If the error is above a given tolerance the model

JONES ET AL.: 3D DISTANCE FIELDS: A SURVEY OF TECHNIQUES AND APPLICATIONS 591

TABLE 3
The Average and Maximum Error for the UNC CThead Using Several Methods

For each method, the column n indicates the errors for all voxels up to distance n from the surface (that are not in the boundary condition).

is split again. Medial axis information is used to split the
model approximately along high curvature ridges. The
method leads to a very compact representation. It is not
even C0, but the authors argue that this is less important as
long as the maximum approximation error can be con-
trolled. As an example of an application, the method is used
to guarantee a bound on the error during mesh decimation.

The techniquesproposedbyKobbelt et al. [63] andQuet al.
[93] are aimed at representation and subsequent reconstruc-
tion of surfaceswith sharp edges by triangulation techniques.
This is, referring to the sampling theory, a task which is in
general not possible to accomplish by means of a regular
sampled field. Therefore, additional information should be
provided. In the first case, the enhanced DF representation [63],
for each voxel its directed distances along the x, y, and z axes
to the surface are stored. Thus, more precise information
about the surface shape is provided. In the latter technique,
the offset DF (ODF) [93], the distance field is sampled in a
semiregular pattern, which iteratively adapts itself to the
actual geometry. Further on, the authors propose a unified DF
(UDF), which combines the aforementioned offset DF with
representations proposed in [63], [53], [57], together with the
plain DF storing just theminimal distances. Their motivation
is that none of these techniques can itself successfully capture
all the possible variations of surface details and therefore the
most suitable one should always be chosen.

These representations have very different properties:
CDFR, ODF, UDF, and Wu’s BSP tree representation can be
construed as static data structures for accelerating distance
computations (almost like Meshsweeper [48]). Hierarchical
and run-length encoded grids and ADFs on the other hand
allow for modifications of the distance field, the latter being
the most suitable in situations where very small features in
the distance field are of interest.

Nielsen and Museth [79] propose Dynamic Tubular Grids
(DT-grids) as a data structure for representing the evolving
interface during PDE simulation. DT-grids are a very
compact data structure just representing the interface, and
are therefore dependent upon the size of the interface rather
than the size of the domain of the simulation (as gridmethods
such as ADFs are). The advantages of this scheme include
being able to track the interface “out of the box”—the
interface is not restricted to a finite grid as is the case in the
other representations. They give an example simulation
where their method requires just 64MB compared to a
hierarchical method which would require 5GB of grid
storage, and offers better time performance. The data is
represented by 1Dcolumnswhich are runs of connecteddata.
Additional structures store (or imply) the coordinates of
voxels within the run, and store the voxel values. Algorithms
are given for accessing the grid randomly, via neighboring
voxels in the coordinate direction and within a stencil.

Jones [61] gives a study into compressing distance fields.
He derives a predictor for calculating distance based upon
the vector transform (Section 3.2.3). If the predictor is
successful in one of 13 previously visited directions a
direction value indicating the direction can be stored.
Otherwise, the full distance value is stored. This is followed
by entropy encoding on the directions, and bit-plane
encoding followed by entropy encoding on the distance
values. He shows that this lossless Vector Transform
predictor gives a compression similar to the lossy wavelet
transform where around 75 percent of the coefficients have
been set to zero (i.e., files sizes are 25 percent of the
original). Jones [61] gives further analysis.

5 APPLICATIONS

5.1 Object Skeletons, Centerlines, and Medial Axes

An object skeleton (medial axis, centerline [14]) in a plane is
a locus of points having equal distance to at least two
distinct points on the object boundary. In 3D space this
leads to the notion of a medial surface and, in order to
obtain a 1D centerline, the condition must be strengthened
to at least three closest surface points. Unfortunately, such a
set of points can be discontinuous and subsequent proces-
sing ensuring continuity is necessary.

Skeletons are a highly compact representation of objects,
serving for their description, recognition, collision detec-
tion, navigation, animation, etc. This multitude of purposes
leads to different requirements on the precision, with which
a skeleton should describe the given object. For further
analysis and eventual recreation [32], [26] they should
represent the object with high fidelity, keeping all its
topological properties. At the other extreme, when used as
navigation paths, just the most important features should be
kept [143], [12]. Therefore, a large variety of specialized
skeletonization and centerline detection approaches exist,
many of which depend on DF analysis [77] and detection of
its C1 discontinuities—ridges. For example, Blum [14]
defined the skeleton as a locus of those DF points, where
it is not possible to define a tangent plane. Gagvani and
Silver detect skeletal points taking advantage of an
observation that the distance of a ridge point is larger than
average of its neighbors [46]. This, by specifying a threshold
of this difference, enables them to control the skeleton
complexity. For a similar purpose, in order to enable the
level-of-detail representation and also to decrease skeleton
sensitivity on surface noise, Malandain and Fernández-
Vidal [75] use the fact that in vector DTs the position of the
closest surface point is registered and that two mutually
close points, which straddle the medial axis, have their
corresponding closest surface points far apart (Section 2.3).
Observing that magnitude of the angle defined by these
surface points and the medial axis location reflects im-
portance of the given voxel as a skeletal one, they propose
adjustable parameters for their classification. The skeleton
detection approach proposed by Siddiqi et al. [103] arises
from the conservation of energy principle, which is violated
at the ridge (shock) locations of a vector field. First, a
Euclidean distance field to a continuous approximation of
the object surface is computed. In a second step, its gradient
vector field is obtained, followed by local computation of
the field’s net outward flux. The flux field is zero every-
where, except for the shock (skeleton) points, where it is
negative due to local energy loss. Thus, the skeletal points
are obtained by thresholding of the flux field. This
algorithm can lead to a skeleton topology which is different
with respect to the topology of the original object. There-
fore, in a sequel [20], the technique was extended to
preserve topology by introduction of a homotopy preser-
ving thinning technique.

In navigation, a centerline, i.e., a central path through the
often elongated and winding object is required [143], [12],
[130]. It is usually a simple path connecting the start and
end points. If the goal is navigation in a tree structure, the
path can be represented by a tree structure of simple
segments. In this sense the centerline should be connected
and should not contain segments, which represent unim-
portant windings, bulges or even noisy artifacts. Since
neither of these requirements is ensured by the general

592 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 12, NO. 4, JULY/AUGUST 2006

purpose skeletonization algorithms, special ones were
developed.

Typically, two distance fields are employed. One, which
similarly as in the aforementioned skeletonization ap-
proaches ensures centering of the path within the object
and is computed with respect to the object boundary, and
one which is computed with respect to the path starting
point and provides the necessary topological and connec-
tivity information. Zhou and Toga [143] use a 3-4-5 distance
metric for the first field and a simpler 1-2-3 metric for the
second one. Areas with constant values (codes) of the
second field are denoted clusters. Since a cluster is
approximately planar and perpendicular to the object axis,
it usually contains a single voxel with a maximum value of
the first field. Thus, sequentially inspecting clusters in the
order of their increasing code, centerline voxels are
extracted with ensured connectivity and centering.

The penalized volumetric skeleton algorithm proposed
by Bitter [21], [12] builds upon Dijkstra’s minimum cost
path algorithm [25]. Here, the cost is given as a sum of the
piecewise Euclidean lengths of path segments (segments are
on the voxel level, so the possible distances are 1,

ffiffiffi

2
p

, and
ffiffiffi

3
p

) and voxel penalties, which increase with decreasing
distance to the object boundary. Thus, the centerline is the
simple path of maximum length among all lowest cost
paths. Further, object skeletons may be built as the tree of
maximum length lowest cost paths found in the object.

5.2 Morphology

Distance fields have been found useful for morphological
operations [104] of erosion (upon which the medial axis
algorithms are usually based) and dilation.

Themathematicalmorphological operation of erosion [49]
will remove external parts of an object (depending upon the
structuring element). Dilation will add parts to the boundary
of the object. Opening will enlarge cracks and cavities, and
closing will remove cavities and smooth spikes.

Given a structuring element B, erosion of an object X is
defined as:

X �B ¼ pjBp � X
� �

ð15Þ

and dilation as:

X 	B ¼ pjBp \X 6¼ ;
� �

: ð16Þ

Closing is a dilation followed by an erosion:

X
B ¼ ðX 	BÞ �B ð17Þ
and opening is an erosion followed by a dilation:

X �B ¼ ðX �BÞ 	B: ð18Þ
If B is defined as a ball of radius r, then erosion can be
defined as:

X �B ¼ pjdðpÞ � �rf g ð19Þ
and dilation as:

X 	B ¼ pjdðpÞ � rf g: ð20Þ
This gives us a practical algorithm for closing volumetric

objects [59]. First, the distance field, d is calculated (2). The
surface, S	r , representing a dilation with a ball of radius r is
equivalent to S	r ¼ q : dðqÞ ¼ rf g, where q 2 IR3. To

calculate the erosion with a ball of radius r for this surface
S	r , we calculate a new distance field, d0 based upon
distances from surface S	r using one of the techniques
described earlier (measuring to the isosurface). The surface
S
r which has been closed with a ball of radius r using a
dilation of degree r followed by an erosion of degree r is
given by S
r ¼ q : d0ðqÞ ¼ �rf g. Opening is defined in a
similar manner.

Morphological operators have been carried out on binary
segmented data by Höhne [52]. The use of three-dimen-
sional erosions and dilations was reported as a useful
application for the extraction of homogenous regions in
body scans. They have also been used by Museth et al. [73]
as editing operators for level sets. Distance fields allow the
intuitive view of morphological operations that a dilation or
erosion of 5mm should be an offset surface 5mm outside or
inside the object.

Fig. 9 demonstrates accurate 3D closing operations of 20,
10, and 5 voxels on the eye socket and cheek of the UNC
CThead.

5.3 Visualization

5.3.1 Accelerated Ray-Tracing of Volumetric Data

In volume graphics [64], objects are represented by 3D grids
of densities, distances, or other attributes. The Volume of
Interest (VOI) usually only occupies part of the complete
grid and the proportion of time spent on processing the
irrelevant areas can be significant. One possibility to
minimize the time spent processing these areas is to
identify the empty background voxels by segmentation
and to gather them into macroregions which can be ignored
during rendering. In ray-tracing, this increases the mean
step length, and results in the speed up of single ray tracing
in comparison with fixed length algorithms.

In distance-based acceleration, empty cuboid, octahedral,
or (at least approximately) spherical macro regions are
defined for each background voxel with a radius equal to its
distance to the nearest surface point. This idea was
introduced by Zuiderveld et al. [141], [142] in the Ray
Acceleration by Distance Coding (RADC) scheme, which
works in two phases. First, a chamfer approximation of the
Euclidean distance (using a 5� 5� 5 kernel according to
[129], Section 3.2.2) is computed for each background voxel
and stored in a volume of the same dimension as the data
grid. The distance information permits skipping of an
appropriate number of samples in the background, while in
the foreground the ray is traversed with unit step length.

The IsoRegion Leaping technique [39] extends the RADC
in that also homogeneous foreground regions are identified
and filled by distances to their boundary. Once a voxel with a
certain density and step length is reached, color and opacity
of the whole segment is accumulated, and the appropriate
length is skipped. A similar Skip Field technique [40] enables
higher acceleration rates by trading quality for speed. The
gradient base error metrics [33] are used to identify the
homogeneous regions. If no error is tolerated, the inside
distance information is ignored, otherwise the homogeneous
inside regions are skipped rapidly.

The Proximity Clouds (PC) technique, similar to RADC,
was proposed by Cohen and Sheffer [29]. It differs from

JONES ET AL.: 3D DISTANCE FIELDS: A SURVEY OF TECHNIQUES AND APPLICATIONS 593

RADC in that it takes the shape of the free zone—the
proximity cloud—around a background voxel into account:
therefore, the step size depends not only on the distance
value, but also on the type of distance and ray direction.

The Chessboard Distance (CD) voxel traversal algorithm
[114] takes advantage of the simple cubic geometry of
macroregions defined by the chessboard distance which
enables the accelerated traversal of cubic, regular, and even
rectilinear voxel grids. The algorithm defines a ray as a
nonuniform sequence of samples, which are positioned
exactly at voxel faces. This property enables rapid ray-
surface intersection computation by gradient-based root
finding techniques. Further, a variant of the CD algorithm
was proposed in [114] for traversal of anisotropic macro-
regions. Its motivation resides in that distance to already
passed objects is often the limiting factor of the traversal
speed. Therefore, each background voxel is assigned to
eight macroregions, each registering directed distance to the
nearest object in the direction of the main body axis of the
volume. A similar technique was proposed in by Semwal
and Kvanrstrom [112], which needs only six distance
volumes but requires more complex distance computation.

In [56], [114], the CD distance field was used to speed up
the template-based voxel traversal [138] with 26-connected
ray templates. If such a template is implemented as an array
of voxel positions, a known CD value d of a given voxel
enables a jump of d voxels in this array template.

5.3.2 Distance Acceleration in Endoscopy

Using distance-based acceleration for endoscopy often leads
to low values, which reflect distances to structures which are
out of the viewing frustum. Therefore, in addition to the
standard distance-based acceleration [134], [136], techniques
have been developed which attempt to find a better
acceleration than that obtained by the basic distance trans-
form. Shargi and Ricketts [120] assigned most of the voxels
inside the colon cavity to nonoverlapping spheres, which the
ray can safely skip. The spheres are constructed by means of
the 3-4-5 chamfer distance transform (Section 3.2.2) and
identification of its local extrema. Spheres are obviously not
the optimal shape to approximate tubular structures. The
technique proposed by Vilanova et al. [128] therefore uses
cylinders for their approximation and, consequently, they
obtain a higher speed up than the aforementioned plain
distance and sphere techniques. Distances play a twofold
role, they are used both in the cylinder construction and
rendering.

5.3.3 Distance Field Visualization

Distance fields may be visualized like any other implicit
representation, but they also have one big advantage:
Except for points belonging to the cut locus, we know that
a point p can be projected onto the surface using a simple
formula

pf ¼ p�rdSðpÞdSðpÞ; ð21Þ

where pf 2 @S is sometimes denoted as the foot point of p.
The foot point can be drawn directly as a point primitive
[100]. This method was used in [10], and in [88], Perry and
Frisken implement a similar method in the context of
adaptive distance fields.

5.4 Modeling

5.4.1 CSG Operations

In standard CSG, the basic operations union, intersection,
and difference on solids are defined by the regularized
Boolean set operations [38]. This concept was extended also
to solids represented by scalar fields [19], [132], [30], with
the Boolean operations replaced by fuzzy set operations,
and later even to distance fields [16], [115]. Unfortunately,
such an implementation often leads to sharp details, where
the resulting values do not represent distance to the
boundary of the solid �S anymore (Fig. 10a). While this
situation occurs mainly in the vicinity of object edges, it is
not a problem in many applications (for example, in
visualization, unless it causes visible reconstruction artifacts
[81]). However, in volumetric shape modeling and sculpt-
ing this becomes a major problem [11].

Assuming that the operands of a CSG operation are DFs
of representable solids (Section 2.3), in order to obtain a
correct result (i.e., a distance field of a representable solid),
it is necessary to incorporate the DF representability
criterion (Section 2.3) also in the distance field CSG
operators. Such a scheme based on morphology was
developed by Bærentzen and Christensen [11] for the
purpose of volumetric sculpting and implements volu-
metric CSG operations between a discrete distance field and
an unsampled continuous distance field of a sculpting tool.

Another scheme proposed by Novotny et al. [81]
processes two sampled distance fields. They assume that
the DFs of input objects are truncated (Section 4) at a
distance equal to the radius Rs, as it is defined in the DF
representability criterion. Thus, each object O partitions the
space in three areas: a transition area TO with �Rs < d < Rs,
inner area IO with d ¼ �Rs and outer area OO with d ¼ Rs.
The boundary between the inner (outer) and transition area
is called inner (outer) surface (Fig. 10). In CSG intersection
(extension to other operations is straightforward), the fuzzy
operators can be used for both inner and outer areas, and
even for most voxels which are in the transition area of just
one solid. Such areas are delineated in Fig. 10 by the yellow
lines. However, in the edge vicinity, its is necessary to
ensure that the corresponding medial surface at most
touches the inner surface of the result, in order to keep
the representability criterion fulfilled. Therefore, it is
necessary to detect the intersection line of the operands’

594 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 12, NO. 4, JULY/AUGUST 2006

Fig. 10. A cut through a tetrahedron defined by intersection of
halfspaces. (a) Intersection by the fuzzy intersection operator and
(b) DF representable intersection. Green lines: inner surface, black:
medial axis, and blue: surface of the DF representable Intersection.

inner surfaces and to store the distance to this intersection
in the edge area voxels.

Schroeder et al. [116] use distance fields to create swept
surfaces and volumes. The object to be swept is voxelized to
create a distance field. For each segment along the swept
path voxels within the domain are inverse transformed back
to the distance field, and the distance field is trilinearly
sampled. The result is that the level 0 isosurface of the
produced DF represents the swept volume.

5.4.2 Level Set Method

The level set method (LSM) [86], [107], [84] is a technique for
tracking deforming interfaces with a great number of
applications [107], [85]. The interface is defined as the 0-level
set of a function� : IR3 ! IR, and it is deformed indirectly by
changing � according to the speed of the interface F .

Almost invariably, � is initialized to a signed distance
field, and in the interest of numerical stability this property
is usually maintained using some method for reinitializa-
tion (c.f. Section 3.5). It has been observed that the distance
property can be maintained to some degree of accuracy if
the speed function is constant along a line perpendicular to
the interface [139], [27], [3]. Alternatively, Gomes and
Faugeras [42] propose a reformulation of the LSM which
preserves the distance field property apparently without
need for reinitialization. Yet, another approach is the sparse
field method proposed by [131] where a simplified
reinitialization is an integral part of the method which
keeps explicit lists of layers (ordered by distance) of
adjacent grid points.

5.4.3 Animation

Gagvani and Silver [46], [47] use distance fields to create a
skeletonized model of a volumetric data set. The distance
field model is thinned (or peeled) to create a 1 voxel thick
representation of the volume model. The user then defines
those voxels about which motion can take place, and then
this inverse kinematic (IK) skeleton is loaded into and
manipulated using standard animation software to create
motion. Finally, the volumetric data set is reconstructed
around the manipulated IK skeletons for each frame of the
animation. Reconstruction is carried out by scan filling
known spheres about the skeleton where the size of the
sphere corresponds to the isosurface data.

5.4.4 Collision Detection

For collision detection, distance fields have been used both
in the context of rigid [41], [36] and deformable [51], [15]
body simulations.

A simple approach in the case of rigid bodies is to use a
dual representation. A set of sample points on the object
surface (e.g., the vertices) is one representation and a
distance field is the other. When two objects collide, the
points of one object can be tested against the distance field
of the other. If a point is detected to be inside the other
object (according to the distance field sign) it counts as a
contact point, and the gradient of the distance field can be
used as contact normal [36]. Alternatively, one might trace a
ray in the direction of the gradient to find the exact contact
point and the true surface normal at that point [41].

5.4.5 Dynamic Simulation

Fujishiro and Aoki [37] approximated thawing ice by using
erosion and dilation operations (Section 5.2) on binary

voxelized data (each of their voxels is two-state—inside or
outside). Their method provides a certain amount of
realism (irregular melting) by using different sized structur-
ing elements (in their case different radii spheres) in areas
where the object surface can see more of the heat source.
Their model is not physically based as there is no
calculation of heat energy and by using a distance field
the process is just visually improved.

Jones [60] introduces a model that accurately models
both thermal flow and latent heat in rigid solids with
complex surfaces. By using the phase mixture formulation
based upon the distance field, the method allows a fast
(volume preserving) physically-based animation that allows
effective control of the melting process by using well-
defined parameters derived from the physical properties of
the material undergoing the phase transition. One major
advantage of employing a distance field on a voxel grid is
that it provides a structure that allows the fast computation
of heating due to radiative transfer.

By replacing the partial derivatives with finite differ-
ences, Jones [60] shows that it is relatively straightforward
to solve the Enthalpy formulation of the Heat Equation
using a discrete voxel grid giving results like that of Fig. 11.

5.4.6 Morphing

Cohen-Or et al. [28] implement morphing with a user-
defined geometric warping between the source and target
distance fields. Interpolation between the warped distance
fields is then used to create the in-between object. Breen and
Whitaker [22] use level sets and distance fields to create a
morph between solid models. First, the source and target
objects are converted into signed distance fields. The two
objects are registered in order to create an affine transfor-
mation between them. A level set is fitted to the zero level of
the source object, and using the transformation a corre-
sponding point in the distance field of the target object is

JONES ET AL.: 3D DISTANCE FIELDS: A SURVEY OF TECHNIQUES AND APPLICATIONS 595

Fig. 11. 24cm high wax legoman. k ¼ 0:18 W=ðmoCÞ, � ¼ 1; 000 kgm�3,

c ¼ 2; 000 J=kgoC, h ¼ 0:001m, L ¼ 105kJ, with radiation from a 100oC

heat source at the top left.

found. The level set evolves in the direction of the local
surface normal with a speed proportional to the signed
distance to the target at the corresponding transformed
point. They demonstrate that this method creates convin-
cing morphs between objects with little or no user input.

5.4.7 Hypertexture

Perlin and Hoffert [89] proposed hypertexture as a way of
adding texture detail or noise (such as fur, smoke, and fire)
to objects. The method relies upon being able to specify a
soft region DðpÞ around the object, such that each point p
can be classified as inside the object, in the soft region
(where the hypertexture effect is applied), or completely
outside the influence of the object and its texture. This is
relatively straightforward for implicitly defined objects
fðx; y; zÞ ¼ r, such as spheres and torii, where the soft
region can be established for all points p where ri < fðpÞ <
ro for some inner radius ri and outer radius ro.

Objects defined using triangular mesh data do not readily
have such a property, but Satherley and Jones [111]
demonstrated that a space-filled distance field d could be
used, and a soft regionDðpÞ couldbedefined about the object:

DðpÞ ¼
1 if dðpÞ2 � r2i

0 if dðpÞ2 � r2o
r2o�dðpÞ2
r2o�r2i

otherwise;

8

>

>

<

>

>

:

where

ri ¼ inner radius;

ro ¼ outer radius;

and p 2 IR3:

ð22Þ

DðpÞ is used in the hypertexture gain, bias, noise and
turbulence functions of Perlin and Hoffert [89]. Using
voxelization, this approach allowshypertexture to be applied
to general objects. Fig. 12 shows hypertexture on a voxelized
tank and the UNC CThead data set, and also demonstrates
combining hypertexture and clipping hypertexture. Miller
and Jones [76] demonstrate the implementation of hypertex-
ture on a GPU to enable real-time rendering of animated fire
texture amongst other effects on complex objects.

5.4.8 Mesh Processing

Distance fields are potentially very useful in mesh
manipulation algorithms. In [9], Botsch et al. argue that
when multiple manipulations are applied to a mesh, it is
difficult to precisely compute the cumulative error.

An effective solution to this problem is to construct a
distance field around the original surface. The manipulated
surface can then be checked against this distance field. In

practice, Botsch et al. propose to render the manipulated
mesh using the distance field of the original as a 3D texture.
Thus, we can render themanipulatedmeshwith the distance
to the original mesh mapped on as a color using 3D texture
mapping.Pixels are then culled if themappeddistancevalues
are below some tolerance. Consequently, pixels are only
drawn if they are above the tolerance. Thus, a simple
occlusion query [100] can be used to check whether the
manipulated mesh is within a given distance of the original.

5.4.9 Mesh Generation

For many applications, such as soft body simulations,
simplicial meshes (i.e., triangle meshes in 2D or tetra-
hedral meshes in 3D) are required. These meshes are
typically generated from some known geometry. Distance
fields can be a useful representation of this geometry,
since it is very easy to detect whether a mesh vertex is
inside the shape, and the vertex is easily projected onto
the boundary. See Bridson et al. [95] and the PhD thesis of
Per-Olof Persson [87].

6 DISCUSSION

Building upon the properties of continuous distance fields
(Section 2), this paper has presented a survey of the main
techniques for the production of three-dimensional discrete
distance fields (Section 3). In particular, we gave detailed
directions for creating correctly signed distance fields of
triangular mesh data (Section 3.1). To reduce voxelization
time, we have shown that it is possible to clamp the distance
field to a shell around the object, and make use of distance
transform methods (such as chamfer, vector and FMM) to
enumerate the remainder of the discrete space (Section 3.2).
As these methods are approximating, it becomes natural to
ask the questions we gave in the abstract—How accurate are
these methods compared to each other?, How simple are they to
implement?, and What is the complexity and runtime of such
methods? Section 3.6 gave an analysis to provide answers to
thosequestions. In summary, it appears that forbest accuracy,
we should ensure the the initial surface shell (Section 3.2.1)
contains vectors to the surface rather than just distances, and
then use a vector transform. Where just distances are
available, then it appears that using the new SFMMHA
method will give the most accurate results, in the least time,
and is easier to implement than the previously published
FMMs. After giving a review on the production of distance
fields,wedocumentedalternative representations (Section4),
and their application to various situations (Section 5).

REFERENCES

[1] H. Aanæs and J.A. Bærentzen, “Pseudo-Normals for Signed
Distance Computation,” Proc. Conf. Vision, Modeling, and Visualiza-
tion, pp. 407-413, 2003.

[2] M. Akmal Butt and P. Maragos, “Optimum Design of Chamfer
Distance Transforms,” IEEE Trans. Image Processing, vol. 7, no. 10,
pp. 1477-1484, 1998.

[3] D. Adalsteinsson and J.A. Sethian, “The Fast Construction of
Extension Velocities in Level-Set Methods,” J. Computational
Physics, vol. 148, no. 1, pp. 2-22, 1999.

[4] J.A. Bærentzen and H. Aanæs, “Signed Distance Computation
Using the Angle Weighted Pseudo-Normal,” IEEE Trans. Visua-
lization and Computer Graphics, vol. 11, no. 3, pp. 243-253, May/
June 2005.

[5] J.A. Bærentzen, “Volumetric Manipulations with Applications to
Sculpting,” PhD thesis, IMM, Technical Univ. of Denmark, 2001.

596 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 12, NO. 4, JULY/AUGUST 2006

Fig. 12. (a) Bozo and melting texture on tank. (b) Clipped hair on skull.

[6] J.A. Bærentzen, “On the Implementation of Fast Marching
Methods for 3D Lattices,” Technical Report IMM-REP-2001-13,
DTU.IMM, 2001.

[7] J.A. Bærentzen, “Robust Generation of Signed Distance Fields
from Triangle Meshes,” Proc. Int’l Workshop Volume Graphics, pp.
167-175, June 2005.

[8] A.H. Barr, “Superquadrics and Angle-Preserving Transforma-
tions,” IEEE Computer Graphics and Applications, vol. 1, no. 1, pp. 11-
23, Jan. 1981.

[9] M. Botsch, D. Bommes, C. Vogel, and L. Kobbelt, “GPU-Based
Tolerance Volumes for Mesh Processing,” Proc. Conf. Pacific
Graphics ’04, pp. 237-243, 2004.

[10] J.A. Bærentzen and N.J. Christensen, “Interactive Modelling of
Shapes Using the Level-Set Method,” Int’l J. Shape Modeling, vol. 8,
no. 2, pp. 79-97, Dec. 2002.

[11] J.A. Bærentzen and N.J. Christensen, “A Technique for Volumen-
tric CSG Based on Morphology,” Proc. Conf. Volume Graphics ’01,
pp. 71-79, June 2002.

[12] I. Bitter, A.E. Kaufman, and M. Sato, “Penalized-Distance
Volumetric Skeleton Algorithm,” IEEE Trans. Visualization and
Computer Graphics, vol. 7, no. 3, pp. 195-206, 2001.

[13] Introduction to Implicit Surfaces, J. Bloomenthal, ed., Computer
Graphics and Geometric Modeling, Morgan Kaufman, 1997.

[14] H. Blum, “A Transformation for Extracting New Descriptors of
Shape,” Proc. Symp. Models for the Perception of Speech and Visual
Form, Nov. 1964.

[15] R. Bridson, S. Marino, and R. Fedkiw, “Simulation of Clothing
with Folds and Wrinkles,” Proc. ACM SIGGRAPH/Eurographics
Symp. Computer Animation (SCA), pp. 28-36, 2003.

[16] D.E. Breen, S. Mauch, and R.T. Whitaker, “3D Scan Conversion of
CSG Models into Distance Volumes,” Proc. IEEE Symp. Volume
Visualization, pp. 7-14, Oct. 1998.

[17] D. Breen, S. Mauch, and R. Whitaker, “3D Scan Conversion of CSG
Models into Distance, Closest-Point and Colour Volumes,” Volume
Graphics, M. Chen, A.E. Kaufman, and R. Yagel, eds., pp. 135-158,
London: Springer, 2000.

[18] G. Borgefors, “On Digital Distance Transforms in Three Dimen-
sions,” Computer Vision and Image Understanding, vol. 64, no. 3,
pp. 368-376, 1996.

[19] D. Breen, “Constructive Cubes: CSG Evaluation for Display Using
Discrete 3D Scalar Data Sets,” Proc. EUROGRAPHICS ’91, pp. 127-
142, 1991.

[20] S. Bouix and K. Siddiqi, “Divergence-Based Medial Surfaces,”
ECCV ’00: Proc. Sixth European Conf. Computer Vision-Part I,
pp. 603-618, June 2000.

[21] I. Bitter, M. Sato, M. Bender, K.T. McDonnell, A. Kaufmann, and
M. Wan, “CEASAR: A Smooth, Accurate and Robust Centerline
Extraction Algorithm,” Proc. Conf. Visualization ’00, pp. 45-52,
2000.

[22] D.E. Breen and R.T. Whitaker, “A Level-Set Approach for the
Metamorphosis of Solid Models,” IEEE Trans. Visualization and
Computer Graphics, vol. 7, no. 2, pp. 173-192, 2001.

[23] D.L. Chopp, “Some Improvements of the Fast Marching Method,”
SIAM J. Scientific Computing, vol. 23, no. 1, pp. 230-244, 2001.

[24] Volume Graphics, M. Chen, A.E. Kaufman, and R. Yagel, eds.,
London: Springer Verlag, 2000.

[25] T.H. Cormen, C.E. Leiserson, and R.L. Rivest, Introduction to
Algorithms. MIT Press, 1990.

[26] O. Cuisenaire and B. Macq, “Applications of the Region Growing
Euclidean Distance Transform: Anisotropy and Skeletons,” Proc.
ICIP ’97 VOLI, pp. 200-203, 2000.

[27] S. Chen, B. Merriman, S. Osher, and P. Smereka, “A Simple Level
Set Method for Solving Stefan Problems,” J. Computational Physics,
vol. 135, no. 1, pp. 8-29, July 1997.

[28] D. Cohen-Or, A. Solomovic, and D. Levin, “Three-Dimensional
Distance Field Metamorphosis,” ACM Trans. Graphics, vol. 17,
no. 2, pp. 116-141, 1998.

[29] D. Cohen and Z. Sheffer, “Proximity Clouds—An Acceleration
Technique for 3D Grid Traversal,” The Visual Computer, vol. 10,
no. 11, pp. 27-38, Nov. 1994.

[30] M. Chen and J.V. Tucker, “Constructive Volume Geometry,”
Computer Graphics Forum, vol. 19, no. 4, pp. 281-293, 2000.

[31] O. Cuisenaire, “Distance Transformation: Fast Algorithms and
Applications to Medical Image Processing,” PhD thesis, Univ.
Catholique de Louvain, Oct. 1999.

[32] P.-E. Danielsson, “Euclidean Distance Mapping,” Computer
Graphics and Image Processing, vol. 14, pp. 227-248, 1980.

[33] J. Danskin and P. Hanrahan, “Fast Algorithms for Volume Ray
Tracing,” Proc. Workshop Volume Visualization, pp. 91-98, 1992.

[34] F. Dachille and A. Kaufman, “Incremental Triangle Voxelization,”
Proc. Graphics Interface ’00, pp. 205-212, 2000.

[35] K. Erleben and H. Dohlman, personal communication, 2005.
[36] K. Erleben, “Stable, Robust, and Versatile Multibody Dynamics

Animation,” PhD thesis, Dept. of Computer Science, Univ. of
Copenhagen, 2004.

[37] I. Fujishiro and E. Aoki, “Volume Graphics Modeling of Ice
Thawing,” Proc. Conf. Volume Graphics ’01, pp. 69-80, 2001.

[38] J.D. Foley and A. Van Dam, Fundamentals of Interactive Computer
Graphics. Addison-Wesley, 1982.

[39] P.-F. Fung and P.-A. Heng, “Efficient Volume Rendering by
Isoregion Leaping Acceleration,” Proc. Sixth Int’l Conf. Central
Europe Computer Graphics and Visualization ’98, pp. 495-501, 1998.

[40] J. Freund and K. Sloan, “Accelerated Volume Rendering Using
Homogenous Region Encoding,” Proc. IEEE Conf. Visualization ’97,
pp. 191-196, Nov. 1997.

[41] E. Guendelman, R. Bridson, and R.P. Fedkiw, “Nonconvex Rigid
Bodies with Stacking,” ACM Trans. Graphics, vol. 22, no. 3, pp. 871-
878, 2003.

[42] J. Gomes and O.D. Faugeras, “Reconciling Distance Functions and
Level Sets,” Scale-Space Theories in Computer Vision, pp. 70-81, 1999.

[43] S.F.F. Gibson, “Using Distance Maps for Accurate Surface
Representation in Sampled Volumes,” Proc. IEEE Symp. Volume
Visualization, pp. 23-30, Oct. 1998.

[44] J. Gielis, “A Generic Geometric Transformation that Unifies a
Wide Range of Natural and Abstract Shapes,” Am. J. Botany,
vol. 90, pp. 333-338, 2003.

[45] S.F. Frisken Gibson, R.N. Perry, A.P. Rockwood, and T.R. Jones,
“Adaptively Sampled Distance Fields: A General Representation
of Shape for Computer Graphics,” Proc. SIGGRAPH ’00, pp. 249-
254, 2000.

[46] N. Gagvani and D. Silver, “Parameter-Controlled Volume Thin-
ning,” Proc. CVGIP: Graph. Models Image Process., vol. 61, no. 3,
pp. 149-164, 1999.

[47] N. Gagvani and D. Silver, “Animating Volumetric Models,”
Graph. Models, vol. 63, no. 6, pp. 443-458, 2001.

[48] A. Guéziec, “Meshsweeper: Dynamic Point-to-Polygonal Mesh
Distance and Applications,” IEEE Trans. Visualization and Compu-
ter Graphics, vol. 7, no. 1, pp. 47-60, Jan.-Mar. 2001.

[49] R. Gonzalez and R. Woods, Digital Image Processing. Addison-
Wesley, 1993.

[50] E. Hartmann, “On the Curvature of Curves and Surfaces Defined
by Normalforms,” Computer Aided Geometric Design, vol. 16, no. 5,
pp. 355-376, 1999.

[51] G. Hirota, S. Fisher, and A. State, “An Improved Finite Element
Contact Model for Anatomical Simulations,” The Visual Computer,
vol. 19, no. 5, pp. 291-309, 2003.

[52] K.H. Höhne and W.A. Hanson, “Interactive 3D Segmentation of
MRI and CT Volumes Using Morphological Operations,”
J. Computer Assisted Tomography, vol. 16, no. 2, pp. 285-294, 1992.

[53] J. Huang, Y. Li, R. Crawfis, S.-C. Lu, and S.-Y. Liou, “A Complete
Distance Field Representation,” Visualization, 2001, VIS ’01 Proc.,
pp. 247-254, 2001.

[54] C.M. Hoffmann, Geometric and Solid Modeling. Morgan Kaufmann,
1989.

[55] J. Helmsen, E. Puckett, P. Colella, and M. Dorr, “Two New
Methods for Simulating Photolithography Development in 3D,”
SPIE 2726, pp. 253-261, 1996.

[56] I. Holländer and M. Sramek, “An Interactive Tool for Manipula-
tion and Presentation of 3D Tomographic Data,” Proc. CAR ’93
Computer Assisted Radiology, pp. 278-383, 1993.

[57] T. Ju, F. Losasso, S. Schaefer, and J. Warren, “Dual Contouring of
Hermite Data,” Proc. 29th Ann. Conf. Computer Graphics and
Interactive Techniques, pp. 339-346, 2002.

[58] M.W. Jones, “The Production of Volume Data from Triangular
Meshes Using Voxelisation,” Computer Graphics Forum, vol. 15,
no. 5, pp. 311-318, 1996.

[59] M.W. Jones, “Facial Reconstruction Using Volumetric Data,” Proc.
Vision Modeling and Visualization Conf. ’01 (VMV-01), pp. 135-150,
Nov. 2001.

[60] M.W. Jones, “Melting Objects,” The J. WSCG, vol. 11, no. 2, pp. 247-
254, 2003.

[61] M.W. Jones, “Distance Field Compression,” The J. WSCG, vol. 12,
no. 2, pp. 199-204, 2004.

JONES ET AL.: 3D DISTANCE FIELDS: A SURVEY OF TECHNIQUES AND APPLICATIONS 597

[62] A. Kaufman, “Efficient Algorithms for 3D Scan-Conversion of
Parametric Curves, Surfaces, and Volumes,” Computer Graphics
(SIGGRAPH ’87 Proc.), vol. 21, no. 4, pp. 171-179, July 1987.

[63] L.P. Kobbelt, M. Botsch, U. Schwanecke, and H.-P. Seidel,
“Feature Sensitive Surface Extraction from Volume Data,”
SIGGRAPH ’01: Proc. 28th Ann. Conf. Computer Graphics and
Interactive Techniques, pp. 57-66, 2001.

[64] A. Kaufman, D. Cohen, and R. Yagel, “Volume Graphics,”
Computer, vol. 26, no. 7, pp. 51-64, July 1993.

[65] S. Kim, “An O(N) Level Set Method for Eikonal Equations,” SIAM
J. Scientific Computing, vol. 22, no. 6, pp. 2178-2193, 2000.

[66] C.-Y. Kao, S. Osher, and J. Qian, “Lax-Friedrichs Sweeping
Scheme for Static Hamilton-Jacobi Equations,” J. Computational
Physics, vol. 196, no. 1, pp. 367-391, May 2004.

[67] S.G. Krantz and H.R. Parks, “Distance to Ck Hypersurfaces,”
J. Differential Equations, vol. 40, no. 1, pp. 116-20, 1981.

[68] R. Kimmel and J.A. Sethian, “Computing Geodesic Paths on
Manifolds,” Proc. Nat’l Academy of Sciences, vol. 95, no. 15, pp. 8431-
8435, 1998.

[69] H. Löffelmann and E. Gröller, “Parameterizing Superquadrics,”
Proc. Winter School of Computer Graphics ’95, pp. 162-172, Feb. 1995.

[70] S. Mauch, “A Fast Algorithm for Computing the Closest Point and
Distance Transform,” Technical Report caltechASCI/2000.077,
Applied and Computational Math., Calif. Inst. of Technology,
2000.

[71] S. Mauch, “Efficient Algorithms for Solving Static Hamilton-Jacobi
Equations,” PhD thesis, Calif. Inst. of Technology, Pasadena,
Calif., 2003.

[72] O. Monga, S. Benayoun, and O.D. Faugeras, “From Partial
Derivatives of 3D Density Images to Ridge Lines,” Proc. SPIE-
The Int’l Soc. for Optical Eng., vol. 1808, pp. 118-26, 1992.

[73] K. Museth, D.E. Breen, R.T. Whitaker, and A.H. Barr, “Level Set
Surface Editing Operators,” SIGGRAPH ’02: Proc. 29th Ann. Conf.
Computer Graphics and Interactive Techniques, pp. 330-338, 2002.

[74] D. Meagher, “Geometric Modeling Using Octree Encoding,”
Computer Graphics and Image Processing, vol. 19, no. 2, pp. 26-147,
June 1982.

[75] G. Malandain and S. Fernández-Vidal, “Euclidean Skeletons,”
Image and Vision Computing, vol. 16, no. 5, pp. 317-327, 1998.

[76] C.M. Miller and M.W. Jones, “Texturing and Hypertexturing of
Volumetric Objects,” Proc. Int’l Workshop Volume Graphics ’05,
pp. 117-125, 2005.

[77] U. Montanari, “A Method for Obtaining Skeletons Using a Quasi-
Euclidean Distance,” J. ACM, vol. 15, no. 4, pp. 600-624, 1968.

[78] J.C. Mullikin, “The Vector Distance Transform in Two and Three
Dimensions,” CVGIP: Graphical Models and Image Processing, vol. 54,
no. 6, pp. 526-535, 1992.

[79] M.B. Nielsen and K. Museth, “Dynamic Tubular Grid: An Efficient
Data Structure and Algorithms for High Resolution Level Sets,”
J. Scientific Computing, 2006.

[80] P. Novotny, “CSG Operations with Voxelized Solids,” master’s
thesis, Comenius Univ., Faculty of Math., Physics and Informatics,
Bratislava, Slovakia, May 2003.

[81] P. Novotny, M. Sramek, and L.I. Dimitrov, “CSG Operations with
Voxelizad Solids,” Proc. CGI Conf. ’04, pp. 370-373, 2004.

[82] F.S. Nooruddin and G. Turk, “Simplification and Repair of
Polygonal Models Using Volumetric Techniques,” IEEE Trans.
Visualization and Computer Graphics, vol. 9, no. 2, pp. 191-205, Apr.-
June 2003.

[83] P. Novotny and M. Sramek, “Representation of Objects with Sharp
Details in Truncated Distance Fields,” Proc. Conf. Volume Graphics
’05, pp. 109-116, 2005.

[84] S.J. Osher and R.P. Fedkiw, Level Set Methods and Dynamic Implicit
Surfaces, first ed., Springer Verlag, Nov. 2002.

[85] Geometric Level Set Methods in Imaging, Vision, and Graphics, S.
Osher and N. Paragios, eds., Springer, 2003.

[86] S. Osher and J.A. Sethian, “Fronts Propagating with Curvature-
Dependent Speed: Algorithms Based on Hamilton-Jacobi For-
mulations,” J. Computational Physics, vol. 79, no. 1, pp. 12-49, Nov.
1988.

[87] P.-O. Persson, “Mesh Generation for Implicit Geometries,” PhD
thesis, Mass. Inst. of Technology, Feb. 2005.

[88] R.N. Perry and S.F. Frisken, “Kizamu: A System for Sculpting
Digital Characters,” Proc. SIGGRAPH, pp. 47-56, 2001.

[89] K. Perlin and E. Hoffert, “Hypertexture,” Computer Graphics (Proc.
SIGGRAPH ’89), vol. 23, no. 3, pp. 253-262, July/Aug. 1989.

[90] D. Peng, B. Merriman, S. Osher, H. Zhao, and M. Kang, “A PDE-
Based Fast Local Level Set Method,” J. Computational Physics,
vol. 155, no. 2, Nov. 1999.

[91] R. Peikert and C. Sigg, “Optimized Bounding Polyhedra for GPU-
Based Distance Transform,” Dagstuhl Seminar 023231 on Scientific
Visualization: Extracting Information and Knowledge from Scientific
Data Sets, 2003.

[92] B.A. Payne and A.W. Toga, “Distance Field Manipulation of
Surface Models,” Computer Graphics and Applications, vol. 12, no. 1,
1992.

[93] H. Qu, N. Zhang, R. Shao, A. Kaufman, and K. Mueller, “Feature
Preserving Distance Fields,” VV ’04: Proc. 2004 IEEE Symp. Volume
Visualization and Graphics (VV ’04), pp. 39-46, 2004.

[94] I. Ragnemalm, “The Euclidean Distance Transform in Arbitrary
Dimensions,” Pattern Recogn. Lett., vol. 14, no. 11, pp. 883-888,
1993.

[95] N. Molino, R. Bridson, J. Teran, and R. Fedkiw, “Adaptive Physics
Based Tetrahedral Mesh Generation Using Level Sets,” Eng. with
Computers, vol. 21, pp. 2-18, 2005.

[96] F. Rhodes, “Discrete Euclidean Metrics,” Pattern Recognition
Letters, vol. 13, no. 9, pp. 623-628, 1992.

[97] A. Rosenfeld and J.L. Pfaltz, “Sequential Operations in Digital
Picture Processing,” J. ACM, vol. 13, no. 4, pp. 471-494, 1966.

[98] G. Russo and P. Smereka, “A Remark on Computing Distance
Functions,” J. Computational Physics, vol. 163, no. 1, pp. 51-67, 2000.

[99] E. Rouy and A. Tourin, “A Viscosity Solutions Approach to
Shape-From-Shading,” SIAM J. Numer. Anal., vol. 29, no. 3, pp. 867-
884, 1992.

[100]M. Segal and K. Akeley, The 100 Graphics System: A Specification
(Version 2.0). SGI, 2004.

[101]H. Samet, The Design and Analysis of Spatial Data Structures.
Addison-Wesley, 1990.

[102] S. Svensson and G. Borgefors, “Digital Distance Transforms in 3D
Images Using Information from Neighbourhoods up to 5� 5� 5,”
Computer Vision and Image Understanding, vol. 88, pp. 24-53, 2002.

[103]K. Siddiqi, S. Bouix, A. Tannenbaum, and S.W. Zucker, “The
Hamilton-Jacobi Skeleton,” ICCV ’99: Proc. Int’l Conf. Computer
Vision, vol. 2, p. 828, 1999.

[104] J. Serra, Image Analysis and Mathematical Morphology. Academic
Press, 1982.

[105] J.A. Sethian, “A Fast Marching Level Set Method for Mono-
tonically Advancing Fronts,” Proc. Nat’l Academy of Sciences US-
Paper Ed., vol. 93, no. 4, pp. 1591-1595, 1996.

[106] J.A. Sethian, “Fast Marching Methods,” SIAM Rev., vol. 41, no. 2,
pp. 199-235, 1999.

[107] J.A. Sethian, Level Set Methods and Fast Marching Methods, Cam-
bridge Monographs on Applied and Computational Math.,
second ed., Cambridge Univ. Press, 1999.

[108]M. Sussman, E. Fatemi, P. Smereka, and S. Osher, “An Improved
Level Set Method for Incompressible Two-Phase Flows,” Compu-
ters and Fluids, vol. 27, nos. 5-6, pp. 663-680, 1998.

[109] R. Satherley and M.W. Jones, “Hybrid Distance Field Computa-
tion,” Proc. Conf. Volume Graphics, pp. 195-209, 2001.

[110] R. Satherley and M.W. Jones, “Vector-City Vector Distance
Transform,” Computer Vision and Image Understanding, vol. 82,
no. 3, pp. 238-254, 2001.

[111] R. Satherley and M.W. Jones, “Hypertexturing Complex Volume
Objects,” The Visual Computer, vol. 18, no. 4, pp. 226-235, 2002.

[112] S.K. Semwal and H. Kvarnstrom, “Directed Safe Zones and the
Dual Extent Algorithms for Efficient Grid Traversal during Ray
Tracing,” Graphics Interface, W. Davis, M. Mantei, and V. Klassen,
eds., pp. 76-87, May 1997.

[113]M. Sramek and A. Kaufman, “Alias-Free Voxelization of Geo-
metric Objects,” IEEE Trans. Visualization and Computer Graphics,
vol. 5, no. 3, pp. 251-266, 1999.

[114]M. Sramek and A. Kaufman, “Fast Ray-Tracing of Rectilinear
Volume Data Using Distance Transforms,” IEEE Trans. Visualiza-
tion and Computer Graphics, vol. 6, no. 3, pp. 236-252, 2000.

[115]M. Sramek and A. Kaufman, “vxt: A C++ Class Library for Object
Voxelization,” Volume Graphics, M. Chen, A.E. Kaufman, and
R. Yagel, eds., pp. 119-134, London: Springer Verlag, 2000.

[116]W.J. Schroeder, W.E. Lorensen, and S. Linthicum, “Implicit
Modeling of Swept Surfaces and Volumes,” Proc. IEEE Conf.
Visualization, pp. 40-45, Oct. 1994.

[117] J.A. Sethian and A. Mihai Popovici, “3D Traveltime Computation
Using the Fast Marching Method,” Geophysics, vol. 64, no. 2,
pp. 516-523, 1999.

598 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 12, NO. 4, JULY/AUGUST 2006

[118]A. Sud, M.A. Otaduy, and D. Manocha, “Difi: Fast 3D Distance
Field Computation Using Graphics Hardware,” Computer Graphics
Forum, vol. 23, no. 3, 2004.

[119] C. Sigg, R. Peikert, and M. Gross, “Signed Distance Transform
Using Graphics Hardware,” Proc. IEEE Conf. Visualization ’03,
pp. 83-90, 2003.

[120]M. Sharghi and I.W. Ricketts, “A Novel Method for Accelerating
the Visualisation Process Used in Virtual Colonoscopy,” Proc. Fifth
Int’l Conf. Information Visualization, pp. 167-172, Aug. 2001.

[121] S. Turek and S.-R. Hysing, “The Eikonal Equation: Numerical
Efficiency vs. Algorithmic Complexity on Quadrilateral Grids,”
Proc. ALGORITMY 2005, pp. 22-31, Mar. 2005.

[122]M. Sussman, P. Smereka, and S. Osher, “A Level Set Approach for
Computing Solutions to Incompressible Two-Phase Flow,”
J. Computational Physics, vol. 114, no. 1, pp. 146-159, Sept. 1994.

[123] J. Strain, “Fast Tree-Based Redistancing for Level Set Computa-
tions,” J. Computational Physics, vol. 152, no. 2, pp. 664-686, 1999.

[124] Y.R. Tsai, “Rapid and Accurate Computation of the Distance
Function Using Grids,” J. Computational Physics, vol. 178, pp. 175-
195, 2002.

[125] J.N. Tsitsiklis, “Efficient Algorithms for Globally Optimal Trajec-
tories,” IEEE Trans. Automatic Control, vol. 40, no. 9, pp. 1528-1538,
Sept. 1995.

[126]G. Thürmer and C.A. Wüthrich, “Computing Vertex Normals
from Polygonal Facets,” J. Graphics Tools, vol. 3, no. 1, pp. 43-46,
1998.

[127] L. Velho, J. Gomes, and L.H. Figueiredo, Implicit Objects in
Computer Graphics. New York: Springer Verlag, 2002.

[128]A. Vilanova i Bartrolı̀, A. König, and E. Gröller, “Cylindrical
Approximation of Tubular Organs for Virtual Endoscopy,” Proc.
Computer Graphics and Imaging Conf. ’00, pp. 283-289, 2000.

[129] B.J.H. Verwer, P.W. Verbeek, and S.T. Dekker, “An Efficient
Uniform Cost Algorithm Applied to Distance Transforms,” IEEE
Trans. Pattern Analysis and Machine Intelligence, vol. 11, no. 4,
pp. 425-429, 1989.

[130]M. Wan, F. Dachille, and A. Kaufman, “Distance-Field Based
Skeletons for Virtual Navigation,” VIS ’01: Proc. Conf. Visualization
’01, pp. 239-246, 2001.

[131] R.T. Whitaker, “A Level-Set Approach to 3D Reconstruction from
Range Data,” Int’l J. Computer Vision, vol. 29, no. 3, pp. 203-231,
1998.

[132] S.W. Wang and A. Kaufman, “Volume-Sampled 3D Modelling,”
Computer Graphics and Applications, vol. 14, no. 5, pp. 26-32, Sept.
1994.

[133] J. Wu and L. Kobbelt, “Piecewise Linear Approximation of Signed
Distance Fields,” Proc. Vision, Modeling, and Visualization Conf.,
pp. 513-520, 2003.

[134]M. Wan, A. Kaufman, and S. Bryson, “High Performance
Presence-Accelerated Ray Casting,” Proc. IEEE Conf. Visualization
’99, pp. 379-386, Oct. 1999.

[135] F.E. Wolter, “Cut Locus and Medial Axis in Global Shape
Interrogation and Representation,” technical report, MIT, 1993.

[136]M. Wan, A. Sadiq, and A. Kaufmann, “Fast and Reliable Space
Leaping for Interactive Volume Rendering,” Proc. IEEE Conf.
Visualization ’02, pp. 195-202, 2002.

[137] L. Yatziv, A. Bartesaghi, and G. Sapiro, “O(n) Implementation of
the Fast Marching Algorithm,” IMA Preprint Series No. 2021, Feb.
2005.

[138] R. Yagel and A. Kaufman, “Template-Based Volume Viewing,”
Proc. Eurographics ’92, pp. 153-167, June 1992.

[139]H.-K. Zhao, T. Chan, B. Merriman, and S. Osher, “A Variational
Level Set Approach to Multiphase Motion,” J. Computational
Physics, vol. 127, no. 1, pp. 179-195, Aug. 1996.

[140]H.K. Zhao, “Fast Sweeping Method for Eikonal Equations,” Math.
of Computation, vol. 74, pp. 603-627, 2004.

[141]K.J. Zuiderveld, A.H.J. Koning, and M.A. Viergever, “Acceleration
of Ray-Casting Using 3D Distance Transforms,” Proc. Conf.
Visualization in Biomedical Computing ’92, pp. 324-335, 1992.

[142]K.J. Zuiderveld, A.H.J. Koning, and M.A. Viergever, “Techniques
for Speeding up High-Quality Perspective Maximum Intensity
Projection,” Pattern Recognition Letters, vol. 15, pp. 507-517, 1994.

[143] Y. Zhou and A.W. Toga, “Efficient Skeletonization of Volumetric
Objects,” IEEE Trans. Visualization and Computer Graphics, vol. 5,
no. 3, pp. 196-209, July/Sept. 1999.

Mark W. Jones received the BSc and PhD
degrees from the University of Wales Swansea.
He is now a lecturer in the Department of
Computer Science at Swansea, where his
research interests include 3D object modeling,
voxelization, and visualization.

J. Andreas Bærentzen received the MSc and
PhD degrees from the Technical University of
Denmark (DTU). He is now an assistant profes-
sor of informatics and mathematical modeling at
DTU. His research is focused on the develop-
ment of techniques for geometry representation
and effective techniques for interactive shape
manipulation and visualization.

Milos Sramek received the Ing (MSc) degree in
1982 from the Slovak Technical University,
Bratislava, Slovakia, and the PhD degree in
1996 from the Vienna University of Technology,
Austria. From 1997 to 1999, he worked as a
postdoctorate student at the State University of
New York at Stony Brook. Since 1999, he has
been with the Commission for Scientific Visua-
lization of Austrian Academy of Sciences,
Vienna, Austria. His research interests include

image processing, 2D and 3D data segmentation, voxelization, and
volume rendering algorithms.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

JONES ET AL.: 3D DISTANCE FIELDS: A SURVEY OF TECHNIQUES AND APPLICATIONS 599

