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Abstract We propose a new edge detector for 3D gray-

scale images, extending the 2D edge detector of Desol-

neux et al. (J. Math. Imaging Vis. 14(3):271–284, 2001).

While the edges of a planar image are pieces of curve, the

edges of a volumetric image are pieces of surface, which are

more delicate to manage. The proposed edge detector works

by selecting those pieces of level surface which are well-

contrasted according to a statistical test, called Helmholtz

principle. As it is infeasible to treat all the possible pieces

of each level surface, we restrict the search to the regions

that result of optimizing the Mumford-Shah functional of

the gradient over the surface, throughout all scales. We as-

sert that this selection device results in a good edge detector

for a wide class of images, including several types of med-

ical images from X-ray computed tomography and magnetic

resonance.
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1 Introduction

Edge detection is the task of finding the boundaries between

the objects that appear in a digital image. Segmentation is

a different, but closely related problem, which consists in

finding the objects themselves. Both problems have differ-

ent constraints and applications. From a mathematical stand-

point, edge detection finds the discontinuities of a function

and segmentation finds a partition of the domain. Edge de-

tection, being of a lower-level nature than segmentation, is

aimed at picking structures all over the image and usually

needs no initialization. People have been using 2D edge de-

tection for years (see [33]) for many tasks. For example, to

obtain a visually appealing “primal sketch” [29, 42] of a pic-

ture, to reduce the amount of information present in an im-

age, to get a manageable list of “features” to perform regis-

tration [3, 8, 31] of two images, or shape matching [38, 44];

and finally as a first step towards the segmentation of the im-

age into regions. For an account of its applications to com-

puter vision see [24].

While traditional edge detection was initially introduced

for 2D images, most of the techniques can be extended to 3D

images. However in three-dimensional images, the bound-

aries between objects are not curves in the plane but sur-

faces in space. In that setting, the summarizing property of

edges is even more important because these images can not

be easily visualized as a whole (without resorting to spe-

cialized rendering techniques). On the contrary, a set of sur-

faces in space is easy to visualize, specially if the user can

rotate interactively the whole image domain. Even when the

surfaces are nested it is useful, because the surfaces can be
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endowed with transparency. Thus, edge detectors are an in-

valuable tool in 3D visualization, for they provide an effi-

cient way to glance through the content of whole images.

Aside from visualization, 3D edges are used also for other

tasks, e.g. registration [32] or landmarking [49].

Let us briefly review the main approaches to edge de-

tection. A gray level image can be realistically modeled as

a real-valued function u(x) where x represents an arbitrary

point of a rectangle Ω in R
N (N = 2 for usual pictures, 3 for

medical images and movies for example) and u(x) denotes

the gray level at x. In this continuous setting, when an image

u : Ω → R is a smooth function, edges are usually defined

in terms of a differential operator. Most, if not all, of them

are based on one of the following three:

The norm of the gradient |Du| =
√

u2
x + u2

y produces an

image which is interpreted as a measure of the “edgeness”

at each point of the image domain. Many detectors (e.g.,

Sobel [18], Prewitt [50], Roberts [51], Kirsch [36] and the

morphological gradient [6]) can be interpreted as numeri-

cal schemes to approximate this norm. The main advantage

of these operators is that they are fast and easy to compute.

Their main limitations are that their output is difficult to use

and blurry edges are not well localized.

The Laplacian. According to Marr-Hildreth [42], edges

can be defined as zero-crossings of the Laplacian �u =

uxx + uyy . This method has the advantage of being able to

directly produce curves which are well-localized, but it may

lead to false detections (e.g., at almost flat zones where noise

dominates).

Canny’s operator D2u(Du,Du) = u2
xuxx + 2uxuyuxy +

u2
yuyy is the second derivative of u along its gradient lines.

Its zero-crossings are called Haralick’s edges [27], and they

are better localized than the zero-crossings of the Lapla-

cian [28].

Since Canny’s operator is the second derivative of u

along its gradient lines, it vanishes where the first deriv-

ative of u is maximal in the direction of the gradient. In-

stead of computing second derivatives, these maxima can be

found directly by looking at the values of the derivative at

the neighboring pixels in the gradient direction and discard-

ing those pixels that have higher contrasted neighbors. This

process, called non-maximum suppression, forms the basis

of an efficient implementation of Canny’s filter. The explicit

details of the method (see [19] and [9]) are somewhat in-

tricate because the choice of previous filtering is critical to

ensure the best localization. The result of this non-maximum

suppression is then pruned using two threshold parameters

in a process called hysteresis. Thus, Canny’s edge detec-

tor, while being able to give very good results, uses three

parameters which are usually set by hand, specifically for

each image, by visual inspection: The first parameter is the

width of the (necessary) initial linear filtering, whose op-

timal value depends on the overall amount of noise in the

original image, and the other two parameters are thresholds,

whose optimal value depends on the distribution of the con-

trast.

Edge detectors usually give as edges a set of pixels, and

those have to be connected to produce a set of curves. Active

contours or snakes were developed to obtain a boundary seg-

menting a region of the image (or a set of regions) [13, 16,

34, 35, 41]. They are interfaces (curves in 2D images, sur-

faces in 3D images) that evolve to minimize an energy func-

tional. The minimization is usually performed using gradi-

ent descent starting from a given initialization. The choice

of a good initialization is thus critical because the energy

functional may have several local minima. Other particu-

lar approaches, based on segmentations, include finding a

partition of the image domain that globally minimizes an

energy, as in graph cuts [7]; or finding watersheds (i.e.,

connected components of lower level sets) of the gradient

norm [53, 55].

Desolneux, Moisan and Morel proposed in [20] a new

method for edge detection (named DMM, from now on),

based on a general theory (see [21, 26, 40]) aimed at giv-

ing sensible values to perceptual thresholds. It is possible to

apply that theory directly to set the hysteresis thresholds for

Canny’s filter, but DMM is more elaborate in that it finds a

separate threshold for each edge, according to its size and its

contrast. The main steps of this method are the following:

(i) The family of level lines of the image and the distrib-

ution of the modulus of the gradient are computed and

stored.

(ii) Then, all arcs of level lines are subsequently tested, one

by one, to verify that they are well contrasted. The arcs

that pass the statistical test are the output of the algo-

rithm (they are named meaningful edges).

This algorithm contains no tunable parameters because the

minimum contrast required for a given curve to be meaning-

ful is determined automatically by the statistics of the image

contrast. With respect to Canny’s detector, it has the advan-

tage of not producing an unstructured set of edge points, but

a set of continuous planar curves on the image domain (e.g.,

with sub-pixel precision). Let us mention that, in order to

refine the computation of the boundary of an object, a mean-

ingful level line may be used as an initialization for a classi-

cal active contour model [23]. It is worth noting that [20] in-

troduced two variants of this algorithm, testing either whole

level curves or arcs of them, and the respective outputs were

named meaningful boundaries and meaningful edges. Our

method is based on the second, more general, variant.

Our purpose is to follow the main steps of DMM algo-

rithm in order to construct an edge detector for 3D images.

Thus, the first step of our edge detector will be to com-

pute the family of its level surfaces. For that, we require
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the use of an image representation (and its associated data

structure) that enables us to compute and store them effi-

ciently for later manipulation. Data structures are commonly

used in image processing, each of them being adapted to a

class of image operations (e.g. the Fourier transform is well

adapted to the application of linear filters). Level surfaces

are defined as the boundaries of the connected components

of the (upper and lower) level sets of the image. They give

a complete and non-redundant representation of the image

which is contrast independent. The family of level surfaces

of the image is organized in a data structure called the “tree

of shapes” [14] of the image which extends to the 3D case

the tree of shapes defined for 2D images in [46] and [45].

This structure merges into a single tree the information con-

tained in the trees of connected components of upper and

lower level sets and is well adapted to compute morpholog-

ical operations on the image. Even if we identify it as the

tree of shapes, this structure is nothing else than a region

adjacency graph for the level lines of the image. The theo-

retical foundation of this data structure is described in de-

tail in [4] and [14], and its practical implementation for the

2D case in [45] and independently in [54], under the name

of monotonic tree. Other closely related data structures are

those developed by Cox-Karron-Ferdous [17], by Pascucci-

Cole-McLaughlin [48], by Carr-Snoeyink-Axen [12], and

by Sarioz-Kong-Herman [52]. The idea of using trees to en-

code the complexity of 3D structures dates back to the ori-

gins of image processing [15].

The proposed edge detector takes a three-dimensional

image as input and produces a set of surfaces as output. The

produced surfaces can be defined in the following way: first

we build a list of all the possible connected patches of all

the level surfaces of the gray scale image. Then we run a

statistical test on each of these patches to decide whether it

is well-contrasted or not. The output of the algorithm is the

set of patches that pass the test. The method has a single

parameter ε whose meaning is the sensitivity of the edge de-

tector, defined as the number of bad edges that are expected

to be produced. By “bad edges” we mean edges whose dis-

tribution of gradients can be explained by a model of noise,

in a very precise sense described below. It is customary to

set ε = 1, so that at most one output surface can be expected

to be a result of noise. This paper explains how to imple-

ment such a selection process efficiently, and what kind of

pre and post-processing can help to make the algorithm run

much faster and produce better output. As most edge de-

tectors, our method is based on the idea that edges occur

at sharp intensity changes (or discontinuities) of the image

intensity.

Our method relies on the following assumption: in an

ideal case (e.g., a perfect acquisition method giving infinite

resolution images without noise) the boundaries of the ob-

jects could be obtained by thresholding the image intensity.

Fig. 1 Two different isosurfaces of the same medical image. Note that

each choice of threshold segments well some part of the image, but no

threshold gives a globally correct segmentation

This assumption holds for a wide class of real world im-

ages, like many medical images, namely, X-ray computed

tomographies and magnetic resonances, where the acquisi-

tion apparatus measures the density of a physical or chemi-

cal property of objects in space. In practice, however, a sin-

gle threshold does not suffice, because there are artifacts due

to the reconstruction of the image, and the limitations in-

herent to its finite representation. For example, thin vessels

having the same width as a voxel appear in the images much

darker than the interior of large vessels, even if the contrast

agent concentration or the measured property is the same in

both places. See Fig. 1 for an illustration of this fact. Note

that not all 3D images satisfy this assumption. For example,

in ultra-sound images the objects are defined mostly by tex-

tures, and for these the proposed method will likely not give

good results (nor the existing methods described above).

This paper is organized as follows. In Sect. 2 we recall the

basic ideas related to the construction of the tree of shapes

of an image. In Sect. 3 we describe a general statistical test

which we use to decide which subsets (from within a given

family) of an image are well-contrasted. In Sect. 4 we ex-

plain how to produce a family of subsets to run the previ-

ous statistical test on. Together, both sections contain the de-

scription of the proposed method. Section 5 describes a sim-

ple pre and post-processing of the data and results which im-

proves the performance of the proposed method. In Sect. 6

we illustrate our method with a set of synthetic and real data.

Finally, we summarize our conclusions in Sect. 7.

2 Preliminaries

The purpose of this section is to give a brief description of

the family of level surfaces of a 3D image and its organi-

zation as a tree of shapes [4, 45]. Since we are considering

3D images, let us consider a gray scale image u : Ω → R

where the image domain Ω is a closed rectangle in R
3. The
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upper and lower level sets of the image u are defined respec-

tively as

[u ≥ λ] = {x ∈ Ω : u(x) ≥ λ}

[u < λ] = {x ∈ Ω : u(x) < λ}

for λ ∈ R. We assume that u : Ω → R is an upper semi-

continuous function, that is, we assume that its upper level

sets [u ≥ λ], λ ∈ R, are closed sets. Equivalently, the lower

level sets [u < λ] are open sets. This allows to give a short

description of the main objects contained in the tree of

shapes [4, 45]. Moreover it covers the case of discrete sup-

ported images. Indeed, we may always transform a discrete

supported image u(i, j, k), (i, j, k) ∈ {1, . . . ,N}3 into an

upper semi-continuous function in Ω = [0,N]3 by defin-

ing u(x1, x2, x3) = u(i, j, k) when (x1, x2, x3) ∈ (i − 1, i)×

(j − 1, j) × (k − 1, k), and taking at a common boundary

element (be either, face, edge or vertex) the highest value of

the neighboring points.

Given a point x ∈ Ω and a set A ⊆ Ω , we denote by

cc(A,x) the connected component of A that contains x, or

the empty set if x �∈ A.

Heuristically, the tree of shapes of a 3D image, u, is a data

structure which encodes in a tree the family of its level sur-

faces. To be able to handle discontinuous functions, more

specifically, upper semi-continuous ones, we define level

surfaces as the external boundaries of the connected com-

ponents of the level sets of the image. This leads us to the

notion of shape, which consists in filling-in the holes of the

connected components of the upper and lower level sets of u.

The operation of hole filling was called saturation in [4, 45].

Thus, level surfaces are the boundaries of shapes and giving

them is equivalent to give the family of shapes. Notice that

it is easy to imagine them when the image is smooth.

Definition 1 Let A ⊂ Ω . We call holes of A in Ω the com-

ponents of Ω\A. Let p∞ ∈ Ω\A be a reference point, and

let T be the hole of A in Ω containing p∞. We define the

saturation of A with respect to p∞ as the set Ω\T and we

denote it by Sat(A,p∞). We shall refer to T as the exter-

nal hole of A and to the other holes of A as the internal

holes. By extension, if p∞ ∈ A, by convention we define

Sat(A,p∞) = Ω . Note that Sat(A,p∞) is the union of A

and its internal holes.

Definition 2 Given an image u : Ω → R and p∞ ∈ Ω , we

call shapes of inferior (resp. superior) type the sets

Sat(cc([u < λ],x),p∞) (resp. Sat(cc([u ≥ λ],x),p∞))

where λ ∈ R, x ∈ Ω . We call shapes of u any nonempty

shape of inferior or superior type. We denote by S(u) the

family of shapes of u.

Fig. 2 An example of a tree of shapes. Left: the graph of a 2D function

with its corresponding shapes. Right: the tree of shapes corresponding

to the figure on the left, the nodes of the tree are numbered following a

post-order traversal

The reference point p∞ acts as a point at infinity and

can be fixed anywhere without affecting the description of

the tree of the level surfaces encoded in the tree of shapes

[4, 45]. In practice, we have taken p∞ as the origin of coor-

dinates, which lies at corner of the image. Observe that since

Ω is a rectangle the boundary of any shape of an image is

connected. Moreover, as it is proved in [4, 45], if a shape S

is closed, then S = Sat(∂S,p∞). This is the mathematical

translation of the fact that a shape is essentially equivalent

to its boundary, the level surface.

The main result of this construction, proved in [4], says

that any two shapes are either disjoint or nested. From this

result, we can conclude that the set of shapes of an (upper

semi-continuous) image has an inclusion tree structure. If

the image is discrete, then we can represent the tree as a

finite structure; the shapes are the tree nodes and the parent-

child relationship, represented by the links between nodes,

is determined by inclusion. The root of the tree is Ω , and

there is no loop: if A,B1,B2,C are shapes and A ⊆ Bi ⊆

C, i = 1,2, then the sets B1 and B2 must be nested, since

they are not disjoint. See Fig. 2 for the tree of shapes of a

simple 2D image.

Let us note that, for discrete images, the number of

shapes is at most equal to the number of voxels; thus it can

be stored efficiently in a tree data structure using a space

proportional to the original image.

3 Well-Contrasted Subsets of an Image:

An A-contrario Approach

As we explained in the introduction, the proposed edge de-

tector consists of two steps: first we produce a family of can-

didate surfaces and then we select the most contrasted ones

(if any) among this family. In this section we give a general
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Fig. 3 Well-contrasted level curves of an image. These figures display

three different sets of 10 points thrown in the domain of the Lena im-

age. Left: points thrown randomly. Middle: points thrown randomly in

places where the gradient is high. Right: points on a well-contrasted

level curve. The first subset will fail the test described on Sect. 3, and

the other two subsets will pass it. However, only the third subset will

be presented to the test by the method described on Sect. 4

definition of well-contrasted subsets of an image according

to a statistical test. In Sect. 4 we construct a family of sur-

face patches to which we may apply the contrast test. The

two sections together form the core of the method.

Let us define the concept of well-contrasted subset of an

image. The definition is a slight generalization of the one

given in [20, 21] based on an a-contrario model: Knowing

the distribution function for the image contrast, we would

sample the contrast values of the image at a randomly se-

lected set of points, and we would look whether the sam-

ple had a distribution with exceptionally high contrast. In

that case, this set of samples would be accepted as a well-

contrasted set. Numerically, this reduces to selecting the sets

which are large and whose minimum contrast is high. For

a thorough discussion of the statistical foundation of this

method, see [26], where it was described using the vivid

name “conspiracy of random”. For the intuitive idea in our

case, see Fig. 3. Notice that this a-contrario model is not

based on an image of noise, but on noisy curves over the

original image.

The norm of the gradient defines a contrast for every

point on the image domain. We regard the values of the

contrast at each voxel as independent and identically dis-

tributed random variables, Xi , whose distribution is given

by the histogram of the contrast. This notation will be used

throughout this section. This is a good model when a few

voxels are chosen randomly over the image domain, but it

fails when the voxels are not chosen independently (for in-

stance, if they are specially chosen along the boundary of

an object). This failure is precisely what we look for, as the

method can be regarded as an hypothesis testing of the inde-

pendence assumption.

In the following paragraphs we describe a general setting

to detect whether a sample from a distribution has abnor-

mally large values. This device can be used to detect excep-

tionally well-contrasted subsets of an image. The proposed

edge detector is a particular case of this when the subsets

are the level surfaces of the image (or their connected parts).

To measure the contrast of sets of points we use an arbi-

trary statistic f , which for now is a parameter of the method:

contrast({Xi}) := f (X1, . . . ,Xn).

This statistic serves to summarize the whole contrast distri-

bution of the set of points into a single real number. It may

help to think that f is increasing in each of its components,

but this is not logically needed for the following proposi-

tions to hold. Possible choices of f are the minimum X(1),

the mean value n−1
∑

Xi , the median X(n/2), or some other

quantile X(
q

100 n). From the statistic f we need its distribu-

tion functions Fn:

Fn(μ) := P(f (X1, . . . ,Xn) ≥ μ)

which are decreasing functions of a real variable with val-

ues in the [0,1] interval. Notice that these are the comple-

ment of the usual cumulative distribution function of f (Xi).

We also define for every positive integer n a meaningfulness

function Mn as

Mn(x1, . . . , xn; ε,N) := log ε − logN

− logFn(f (x1, . . . , xn))

which is a real-valued function of n real variables (and two

real parameters ε,N ). In the following, when the subindex n

of both F and M can be deduced from context, it will be

omitted.

Now we define our statistical test. Suppose that we are

going to deal with N sets of samples of the contrast:

Si = {Xi
1, . . . ,X

i
ni

} i = 1, . . . ,N

Definition 3 We define the meaningfulness of the set Si as

M(Xi
1, . . . ,X

i
ni

; ε,N). We say that the set Si is meaningful

when its meaningfulness is positive. If we want to empha-

size the parameters ε and f we will talk about ε-meaning-

fulness of Si in the f -sense, or of whether the set Si is ε-

meaningful in the f -sense.

Notice that the set Si is meaningful when

N · Fn(f (Xi
1, . . . ,X

i
ni

)) < ε

and this is the usual definition of “meaningfulness” given

in [20, 21]. The quantity on the left hand side of the previous

inequality is then called the Number of False Alarms of the

set Si .

Definition 3 is justified by the following proposition.

Proposition 1 Under the same statistical model as Defini-

tion 3, the expectation of the number of ε-meaningful sets is

smaller than ε.
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The proof of the proposition is an easy consequence of

this elementary result.

Lemma 1 Let Y be a random variable and let G be its dis-

tribution function G(y) = P(Y ≥ y). Then, for t ∈ [0,1]

P(G(Y ) < t) ≤ t

Proof of the Proposition 1 Let V be the random variable that

counts the number of ε-meaningful sets. Notice that V is a

function of the variables Xi
j . We want to prove that E(V ) ≤

ε. Let Vi be the random variable that equals 1 if the set Si

is ε-meaningful and 0 otherwise, thus

E(V ) = E(V1) + · · · + E(VN )

Now we have

E(Vi) = P(Vi = 1) = P
(

N · F(f (Xi
1, . . . ,X

i
ni

)) < ε
)

= P

(

F(f (Xi
1, . . . ,X

i
ni

)) <
ε

N

)

≤
ε

N

where the last step is the application of the lemma to the ran-

dom variable Y = f (Xi
1, . . . ,X

i
ni

), whose distribution func-

tion if G(y) = F(y). Substituting this result in the previous

formula we get

E(V ) =
ε

N
+ · · · +

ε

N
= ε

The above proof is adapted from the proof given in [10]. �

The original definition of meaningfulness given in [20]

used the statistic f = min. There is a reason to allow for dif-

ferent choices of f , that can give more robust detectors; see

for example Sect. 5.1 where it is used with a statistic other

than f = min. In the case of the minimum, the function F

can be obtained directly from the distribution of the contrast,

which is approximated using its histogram:

H(μ) = P(X ≥ μ) :=
number of voxels with |Du| ≥ μ

total number of voxels

Then we have

Fn(μ) = H(μ)n

where n is the number of points in the subset (the number

of arguments of the function f ). This minimum is a special

case of the quantiles:

Proposition 2 (Distribution of quantiles) Let X1, . . . ,Xn

be independent and identically distributed random vari-

ables with distribution function H(μ) = P(X1 ≥ μ) and let

X(1), . . . ,X(n) be the outcomes of these variables ordered

Fig. 4 An image where level lines selection using f = min fails to

detect a boundary which is visually obvious. Left: the image. Right: its

contrast

increasingly. Then X(k) is a random variable whose distribu-

tion function is given by a binomial tail of parameter H(μ):

P(X(k) ≥ μ) =

k−1
∑

i=0

(

n

i

)

(1 − H(μ))iH(μ)n−i (1)

in particular, we have the distribution of the minimum com-

puted before: P(X(1) ≥ μ) = H(μ)n.

The right hand side of (1) can be written in terms of the

incomplete beta function (see [1]) as IH(μ)(n − k + 1, k).

We used the GSL library [25] which provides a function call

for it.

Remark 1 In allowing for a choice of statistic f we are

motivated by the fact that the minimum contrast is not a

robust descriptor: if one single point of the set has very

low contrast, the whole set is discarded regardless of the

contrast of all other points. We refer to Fig. 4 for a syn-

thetic image illustrating this phenomenon. In that figure we

have a well-contrasted object, surrounded by level curves

whose gradient is maximum at almost the totality of their

points. However, all the curves cross a blurred region of

the image, where the gradient can be made to be arbitrarily

low. Then, none of these curves will be detected as mean-

ingful. There are two approaches to deal with this kind of

problem: either we work with parts of level curves instead

of whole level curves, or we choose a different statistic

such f = 10th quantile. The first approach is the one cho-

sen in this paper, but the use of a robust statistic f is much

faster and, in some cases, gives similar results.

4 Computing Meaningful Patches of Level Surfaces

This section treats the main difference between the 2D and

3D versions of the edge detector.

4.1 Hierarchies of Partitions

The objects of our study are parts of level surfaces. This

is the place where our method differs from the 2D case: a
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connected subset of a surface can be much more convoluted

than a connected subset of a curve (which is determined by

its two endpoints). This means that we can not treat all the

connected subsets of each level surface, as is done in 2D:

the search space would be too large. The first aid in the re-

duction of this search space comes from the observation that

we are not really interested in all the subsets of a surface

that pass the ε-meaningfulness test, but only in those that

are “maximal” in the following sense:

Definition 4 ([20]) Let S be a level surface of the image.

A connected subset S ⊆ S is maximal meaningful when it is

meaningful and

– it does not contain a strictly more meaningful connected

subset,

– it is not contained in a more meaningful connected subset.

Proposition 3 ([20]) Maximal meaningful subsets in the

min-sense are disjoint inside its level surface.

Definition 4 was given in [20] when the set S is a level

curve and S an edge curve, that is, a connected subset of Si .

In that case the NFA is given by the function

F(μ, l) = N · H(μ)l (2)

where N is the number of edge curves of the image. Since

edge curves are connected subsets of level curves, N can be

computed for a given image. Definition 4 is analogous to the

one given in [20]. For the time being, we assume that N is a

constant that can be computed. Then, the proof of Proposi-

tion 3 is the same as in [20] and is based on the observation

that, for a fixed value of μ, the function F(μ, l) is nonde-

creasing in l.

Proposition 4 Let S be a level surface of the digital im-

age u. Maximal meaningful subsets of S are connected com-

ponents of upper level sets of the modulus of the gradient

restricted to S .

Observe that there may not be any meaningful connected

subset of S , in which case the proposition is vacuously true.

In case there is one, then the connected subset with the

smallest NFA is maximal meaningful.

Proof Let S be a maximal meaningful subset of S , and let

μ = minx∈S |∇u(x)|. If y is a neighboring point of S with

|∇u(y)| ≥ μ, we could add the point y to S without increas-

ing the NFA, contradicting the fact that S is maximal mean-

ingful. Thus, all neighboring points of S have a modulus of

the gradient lower than μ, and the statement of the proposi-

tion holds. �

Fig. 5 The maximal meaningful subsets of a level surface may not cor-

respond to physical features. Left: a level surface of an image colored

by the contrast. Middle: the (connected) maximal meaningful subset

of this surface. Right: the node of the Mumford-Shah hierarchy with

maximal significativity

Fig. 6 A hierarchy of partitions whose depth is indexed by a scale

parameter λ. The leaves of the tree represent the points of the discrete

surface, and the root of the tree represents the whole surface. Notice

that the total number of nodes, being a binary tree, is proportional to

the number of leaves (exactly the double minus one)

Proposition 4 suggests an strategy for computing the

maximal meaningful subsets of S . We can find one of them

on the collection of upper level sets of |∇u| restricted to S ,

and then searching recursively into its complementary.

But it turns out that the maximal meaningful subset of a

level surface tends to be topologically very complex, with

many holes and a complicated boundary. This happens be-

cause there is no restriction on the form of a maximal mean-

ingful subset, besides being connected. See Fig. 5.

The proposed approximation, suggested by the observa-

tion above, is to restrict ourselves to a reduced class of well-

behaved subsets. A reasonable way to produce such a class

of connected subsets of all sizes is a hierarchy of partitions

(Fig. 6).

Definition 5 A hierarchy of partitions over a set M is a fam-

ily H of subsets of M such that

– M ∈ H .

– There is a subclass L ⊂ H , whose elements are disjoint

and cover M . They are called the leaves of the hierarchy.

– Any element of H which is not a leaf can be represented

as a disjoint union of leaves.

– Any pair of elements of H are either disjoint or nested.
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Fig. 7 Each node of the tree in Fig. 6 represents a connected patch of

surface. Once we have selected the most meaningful node (in this fig-

ure, the enlarged one), we can remove all the nodes that are not disjoint

with this one. They are all the ancestors and descendants, marked by

the dotted line in this figure. Then we are left with the rest of the nodes

in the tree

Restricting the family of connected subsets of level sur-

faces S to a hierarchy of partitions we define F(μ, l) as in 2,

with N equal to the sum of all nodes of the hierarchies asso-

ciated to all S .

Once we have a hierarchy of partitions for a given level

surface, it is easy to select the maximal meaningful objects

of this partition in a greedy way (see Fig. 7). We first com-

pute the meaningfulness of each object, which can be done

in linear time in the case f = min. Then we pick the object

which is most meaningful. This clears from the search all

the descendants and ancestors of this object within the tree

of subsets, because we want a set of disjoint patches. Then

we pick the most meaningful object in the remaining part

of the tree, and we keep doing that iteratively until no more

patches can be picked.

4.2 Mumford-Shah Surface Partition Hierarchy

In the previous paragraph, we have proposed to restrict the

search of well-contrasted subsets of a level surface to a hier-

archy of partitions over it. Our purpose now is to construct

a particular hierarchy based on a family of nested segmenta-

tions computed using the simplified Mumford-Shah energy

functional [37, 47] applied to the contrast function g = |∇u|

on a level surface.

Let M be a surface and suppose we want to approximate

a real-valued function g : M → R using piecewise constant

functions. If a partition of M into regions is given, the best

piecewise constant approximation to g is obtained by select-

ing the mean value of g as the value over each region. The

piecewise constant Mumford-Shah functional assigns an en-

ergy to such a partition of M , depending on a non-negative

parameter λ:

E(Partition Ω1, . . . ,Ωn) =
∑

i

∫

Ωi

|g − mi |
2 + λ

∑

i,j

lij ,

where mi is the mean value of g on the region Ωi , and lij
is the length of the common boundary of the regions Ωi

and Ωj . Notice that the first term is the variance of the ap-

proximation (that decreases for finer partitions) and the sec-

ond therm is the length of all the boundaries (that decreases

for coarser partitions). The Mumford-Shah segmentation of

g at scale λ is defined as the partition of M that minimizes

the energy above. The parameter λ acts as a scale of the ap-

proximation. For λ = 0, the optimal partition is given by the

connected regions of M where g is constant. As λ grows,

we get coarser and coarser partitions until we find the triv-

ial partition that has M as a single patch. These partitions

do not necessarily form a hierarchy, that is, the finer can

not necessarily be obtained as refinements of the coarser.

In [37], Koepfler, López and Morel proposed to act as if

these partitions were, in fact, hierarchical. Then, it is pos-

sible to start from the finest possible partition, compute its

Mumford-Shah energy, and coarsen the partition by merging

the pair of regions that make the energy decrease as much as

possible.

From the previous expression of the functional, we can

compute how does the value of E change when we merge

two contiguous regions of the partition. After some alge-

braic manipulation, we find that when we merge the regions

Ωi and Ωj to obtain a new region Ωij the increment of E is

E(after) − E(before) =
|Ωi ||Ωj |

|Ωi | + |Ωj |
|mi − mj |

2 − λlij

When this increment is negative it means that the approxi-

mation has improved after the merging, so that it is worth

to merge. Therefore, to justify merging regions i and j they

must fulfill the condition

|Ωi ||Ωj |

|Ωi | + |Ωj |

|mi − mj |
2

lij
≤ λ (3)

The left-hand side of this inequality is a number independent

from λ, which can be stored for each edge of the region-

adjacency graph. Doing so iteratively, starting from the dis-

crete partition, one can store the whole history of the merg-

ings in a tree structure. This results in a hierarchy (see Fig. 6)

which is a good approximation of the set of all Mumford-

Shah optimal segmentations varying λ.

We have used the setting above to segment the contrast

over each level surface M of the image. The level surfaces

are constructed, to sub-pixel accuracy, using a slightly modi-

fied version of the Marching Cubes [39] algorithm, designed
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Fig. 8 Adaptation of the Marching Cubes table to the topology of up-

per semi-continuous interpolation. This table is used to compute the

boundaries of shapes at a high resolution. To obtain sub-voxel preci-

sion, as customary, the vertices are not located at the midpoints of the

cube edges, as shown in the figure, but at a linearly interpolated places

between the corresponding gray-values. The triangulated surfaces ob-

tained by this method have the same topology as the Shapes of the tree

defined on Sect. 2, and this is not true for other versions of the table

to be consistent with our upper-semi-continuous interpreta-

tion of the discrete image. See Fig. 8 for the details. The

lengths of curves over M are defined (as in [5, 43]) using

the edges of the dual graph of the triangulation, given by

barycentric subdivision. The function g is the contrast inter-

polated trilinearly at the vertices of the triangulation from

its values on the image rectangular grid. We could also have

used a vector-valued image g, for example involving second

derivatives, but its usefulness is yet a subject of further study.

See [30] for a related work on the selection of good vector-

valued image descriptors in the context of surface evolution.

As far as we know, this is the first time that the Mumford-

Shah functional is used to segment data defined on surfaces.

4.3 3D Edge Detection Algorithm

On Sect. 3 we have explained how to detect when a set of

points within a given family is significantly well-contrasted.

On Sect. 4 we have explained how to produce a large but

manageable family of subsets to apply this test to. The sets

of this family are patches of level surfaces, of all sizes,

where the image contrast is as homogeneous as possible.

Putting these two ingredients together we obtain the pro-

posed edge detector:

Input:

– Original gray scale image, u

– Sensitivity parameter, ε > 0, (ε = 1 by default)

Output:

– A set of patches of surface, Γ

Fig. 9 Combination of our method with Canny’s. We can use the out-

put of Canny detector as the contrast for our method, thus enhancing

the localization of the detected features. In this figure we show the de-

tected curves of a synthetic 2D smooth edge in both cases

Algorithm:

1. Compute the image of contrast g = |∇u|.

2. Let N be twice the sum of the surface areas of all the

level surfaces. This will be the total number of tests to be

done.

3. For each connected component S of each level surface of

the gray scale image:

(a) Generate a mesh of triangles to represent S

(b) Interpolate the contrast at the vertices of the triangu-

lated surface S

(c) Compute the Mumford-Shah tree, T , of the contrast

function on S

(d) Perform the statistical test with f = min to all the

nodes of T

(e) While there are still nodes in T :

(i) Pick the node q of T that passes the statistical

test with highest score

(ii) Output the patch of surface corresponding to q

(iii) Remove from T the node q and all its ancestors

and descendants.

Notice that this modular design allows us to try some

variations of the algorithm. For instance, we can use a dif-

ferent statistical test (as described on Sect. 5), or a different

set of surface patches (for example, the shapes of the tree).

Another variation that gives specially good results consists

in setting the contrast g equal to the output of Canny oper-

ator, instead of the norm of the gradient. See Fig. 9 for an

example where this makes a difference.

5 Pre and Post-processing Steps

The proposed method can be readily implemented as de-

scribed. But in that case we observe that it is fairly slow and

the output it gives is redundant (the detected edges are repli-

cated in slightly different positions). To improve these two

practical aspects we suggest filtering out the level surfaces

of the tree that will not produce edges, and applying an ex-

clusion criterion that forces that any voxel of the image only

“belongs” to one output edge.



10 J Math Imaging Vis (2009) 34: 1–16

Fig. 10 Three thresholds of the

same image. The first two

thresholds show some image

content. The third one shows

mainly background noise. The

level surface on the third image

has one large and very

convoluted component and

many small and almost spherical

components

5.1 Pruning the Original Tree of Level Surfaces

Let us study the cost of our algorithm. An image of m voxels

has O(m) level surfaces (in fact, it has exactly m when all

the values are different). A typical level surface has O(m
2
3 )

points (this is the area of one side of a cube of volume m).

This is a very rough estimate, which happens to underes-

timate the complexity of the algorithm for real images, for

further empirical analysis on this topic see [11] and for a

mathematical justification see [2]. Thus, the cost of travers-

ing all the points of all level surfaces is about O(m
5
3 ), which

is very large, and therefore too slow to scan the surfaces. Re-

call that a typical size for medical images is m = 1283. We

can make the algorithm much faster by discarding from the

beginning those level surfaces which we know beforehand

that will not produce any useful patches.

Here we discuss three ways to prune the input tree to re-

duce the number of processed surfaces: pruning very small

surfaces, filtering the tree using robust statistics, and pruning

the tree using the gray-level values. These are independent

steps. The first one does not require any a priori information,

but can incorporate it. The other two steps may be applied

or not whether we have the required a priori information.

The first pre-processing step we propose is pruning the

smallest shapes of the tree. When working with the tree of

shapes of real images, one notices that usually most of the

shapes in the tree have a small volume and belong to the

noise that appears inside homogeneous regions (see Fig. 10,

right). We can realize this behavior by plotting the number

of shapes of each volume, as done in Fig. 11. A good model

for the number of small shapes in a textured region of vol-

ume M is a power law of the form p(v) = M

6v3/2 , meaning

that there are about p(v) shapes of volume v (see also [2]).

This model seems to be independent of the kind of noise

and is quite accurate (for the purpose of realizing that most

shapes in the tree are rather small) for v < 20. On Fig. 11 the

number of small shapes for some images is plotted as dots,

and the estimated power-law is plotted as a continuous line.

The only differences that we observe are due to images with

large saturated regions, where there is no texture.

Fig. 11 Number of shapes of each size, for some images. The interest-

ing pattern is that all the curves start decreasing more or less linearly

with slope − 3
2

(on the log–log scale shown here). This means that the

number of shapes of each size decreases very fast, as there are ∝v−1.5

shapes of volume v, for small v, and these small shapes belong to the

texture of noise. This also means that most of the shapes on the tree

are small: in a typical tree of shapes, about half of the shapes enclose a

single voxel

All of these surfaces (say, of volume less than 10 vox-

els) are too small to pass the statistical test, so they can be

discarded from the beginning. This will effectively discard

most level surfaces of the image. While there is no study

of the computational cost after this optimization, in prac-

tice this pruning helps to make the algorithm more tractable:

for relatively small images of size 603 our implementation

on a PC takes between one and five minutes, and we could

process images of up to 1283 voxels in less than one hour.

The number “10” in the previous paragraph is only an

example. An appropriate bound can be computed from

the image data. For instance, when f = min and ε = 1,

a set of size l and minimum contrast μ is meaningful

when NH(μ)l < 1, or equivalently when l > − log(N)/

log(H(μ)). Thus, if μ1 is the last-to minimum contrast of

the whole discrete image, then − log(N)/ log(H(μ1)) is a

lower bound for the size of a meaningful subset. This lower

bound is not trivial when NH(μ1) > 1, which is usually the

case. When f is another robust statistic, this bound is not
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easy to compute analytically, but it can nevertheless be ob-

tained by a pre-computed table lookup to find the inverse

of Fl(μ). These bounds on the area of meaningful level

surfaces provide equivalent bounds for the minimal volume

of a meaningful level surface, because for a discrete image

the perimeter of a surface is bounded by its volume (each

boundarying voxel is also part of the interior).

A second pre-processing step that can be applied consists

in pruning out low contrasted shapes. As in [20], the sta-

tistical tests of Sect. 3 can be applied to the set of all level

surfaces (without breaking those into pieces). The purpose

of this pre-processing is to reduce the number of level sur-

faces that will be analyzed by the Mumford-Shah hierarchy,

hence reducing the computational time. This may be a risk

when the discarded surfaces have well-contrasted parts. But

it could be justified if we have the a priori information that

this is not the case.

The third pre-processing step, which is only useful in

some common special cases, is pruning the tree of shapes

using a-priori information. This data structure allows to use

easily some a-priori information about the intensity ranges

of the desired objects that may drastically reduce computa-

tional burden. For example, if we know that all gray values

in some interval belong to noise, or to structures we are not

interested in, we can immediately discard the level surfaces

of those values. In X-ray computed tomography images,

where the gray values have physical meaning, this means

that we can discard most bones and background structures

from the beginning and significantly reduce computation

time and increase the quality of the output.

5.2 Filtering the Output Using the Exclusion Principle

The output of our edge detector (and that of DMM) is usu-

ally highly redundant in the following sense: edges appear

represented as bundles of surfaces (or curves). Here we in-

troduce an exclusion principle to reduce the redundancy of

the output, by picking the best representative of each bundle.

It is based on a similar principle used in a segment detec-

tor [22] to reduce output redundancy. As this method works

exactly in the same way in 2D and 3D, we only describe

here the 2D case where we can support the explanation with

figures. For the 3D case, it suffices to replace “curve” by

“surface” and “square” by “cube”.

The proposed “exclusion principle” works by dividing

the image domain into small square regions (e.g. of pixel

size, but not necessarily so), and imposing these two require-

ments on the final set of curves:

(i) Each square belongs to at most one curve

(ii) Each curve passes the statistical test

Note that we say that a square P belongs to a curve C

when C crosses through P . Of course, the first requirement

Fig. 12 The two synthetic cases that we are going to consider below

Fig. 13 Marking the squares according to which curves cross each one

Fig. 14 Assignment of at most one curve to each square, thus fulfilling

the first requirement

Fig. 15 Performing the statistical test for the remaining pieces of

curve, thus fulfilling the second requirement

is not usually fulfilled by the original set of curves. The ex-

clusion method works by removing parts of curves until the

first requirement is fulfilled. Then, it removes the remaining

pieces of curves that do not pass the test. See Figs. 12, 13,

14 and 15 for a graphical explanation.

There are in general non-unique ways to reduce the orig-

inal set of curves so that the first requirement is true. We

propose the following greedy strategy to force uniqueness:

1. Start with the set of all curves

2. While there are still curves that pass the test:

(a) Pick the curve C that passes the test with highest

score

(b) The curve C owns all the squares that it crosses

(c) Delete the parts of all the other curves that cross

through squares owned by C

(d) Output C and remove it from the set

3. Delete the remaining curves
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Remark 2 In the previous algorithm, the “curves” we speak

about are not necessarily connected. For example, when we

remove a piece in the middle of a curve, the remaining two

pieces are still considered “one curve”. This can be seen on

the upper curve at Fig. 15(b).

Remark 3 The proposed exclusion principle has a scale pa-

rameter, namely the size of the grid. We make the natural

proposal to set it to the same size as the voxels of the origi-

nal image.

5.3 Merging the Patches (or Edge Linking)

Our edge detector does not produce a segmentation of the

image domain into parts, but a set of boundaries. This may

be enough for some applications like visualization or detec-

tion of structures, but it does not correspond to a segmenta-

tion. Let us discuss here a procedure to paste together a set of

patches of level surfaces to produce a closed output surface

(or a set of them). The method is based on a reconstruction

algorithm introduced in [56].

Let S ⊆ Ω be a set of edges and let dS : Ω → R be the

distance function to S. Suppose that S covers part of the

boundary of an object. A common approach to recover the

whole boundary of the object is to search for closed sur-

faces Γ that are local minima of the following functional

E0(Γ ) =

∫

Γ

dS(x)dA

where dA denotes the area element. These minima can

be found by starting from an initial guess, a user-supplied

closed surface which approximately contours the object, and

then letting it evolve by gradient descent of E0. The Gâteaux

derivative of E0 is

∇dS(x) · N + dS(x)κ

where N is the outwards unit normal to Γ and κ its mean

curvature. In an implicit formulation, where Γ is the zero

level set of a function φ, the gradient descent of E0 can be

described by the evolution of the following PDE:

∂φ

∂t
=

(

∇dS ·
∇φ

|∇φ|
+ dSdiv

(

∇φ

|∇φ|

))

|∇φ|

Further regularization (mainly for display purposes) can

be added to the model if we replace the functional above by

adding the term λ
∫

S
dA to the above functional, λ > 0. For

large values of λ the functional approaches the area times λ,

and its optima approach minimal surfaces. For small values

of λ, only sharp edges are smoothed out.

Remark 4 This reconstruction method is not definitive (it

will fail at junctions where more than three regions meet),

but it usually improves the quality of the visualization by

smoothing out the ragged appearance of the surface patches.

It has two important problems to be used in full generality

for this application. The first problem is the choice of the

initial surface. Examples of reasonable initial surfaces are

the boundary of the image or the most meaningful shape of

the tree, but either method can fail when there are multiple

objects to be detected, specially when they are nested. The

second problem is that the functional E0 has a global min-

imum of zero (attained at the empty surface). In practice,

this means that the minimization can collapse if the surface

“misses” the objects that we want to reconstruct. We are cur-

rently working on a modification of the functional to am-

mend this problem, in order to achieve an almost-automatic

reconstructor.

6 Experiments and Discussion

We display and comment the results of our method when ap-

plied to four sample images, two synthetic images, a mag-

netic resonance and an X-ray computed tomography. In the

synthetic images the task is to find the boundaries that gener-

ated them. In both medical images the task is to find the bor-

der of a vessel that contains a cerebral aneurysm. We com-

pare the results with those obtained by simple thresholding

and by Canny’s filter.

The first example is a synthetic image built in the follow-

ing way. A sphere of radius 15 has been drawn at the cen-

ter of a 403 black image, and the interior of the sphere has

been colored in three different homogeneous regions. Then,

a Gaussian noise of variance 10 has been added to the image,

to add some texture. Figure 16 shows a slice of this image,

and the output of the proposed edge detector. Notice that the

output is a set of three smooth level surfaces, corresponding

to the boundaries of the four large homogeneous regions on

the image. This first example is a best case for our method,

and serves as a check that the algorithm is working well. No-

tice that no global threshold can produce all the boundaries

of the image, and that Canny’s detector misses the junctions.

Fig. 16 Best case for our algorithm. Segmentation of a piecewise con-

stant image with added texture. From left to right: slice of the image,

output of the proposed edge detector, output of Canny’s edge detector.

The 3D images are clipped to show the interior of the object
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Fig. 17 Worst case for our algorithm. Segmentation of a piecewise

constant image with an added ramp function. From left to right: slice

of the image, output of the proposed edge detector, two isosurfaces of

the image

Fig. 18 Effect of the post-processing pipeline on the synthetic

worst-case image (Fig. 17). Left: before exclusion principle, 207

patches. Middle: after exclusion principle, 9 patches. Right: after edge

linking, one single surface patch. In this figure, the edge linking is per-

formed using a higher resolution than the input image and without any

smoothing. When using the same resolution as the input image, an al-

most perfectly spherical surface is obtained

The second example is a synthetic image built in the fol-

lowing way. A black sphere of radius 19 has been drawn at

the center of a 503 white image, and then we added to it

a ramp function of slope 1. This means that the contrast of

both the background and the inside of the sphere are constant

(equal to 1) and the borders have a much higher contrast.

Then the image has been made more textured by adding a

Gaussian noise of variance 5 and blurring it with a Gaussian

of width 3. Two level surfaces of this image are shown in

the right part of Fig. 17. Notice that no level surface can

surround the whole sphere, but that many surfaces contain

a band touching the sphere. This image is an example of a

worst case for our algorithm (and a best case for Canny’s).

However, the algorithm manages to find the good parts of all

level surfaces, as shown on Figs. 17 and 18.

Remark 5 The two synthetic images above are intentionally

low-resolution to emphasize the sub-pixel accuracy of the

output.

The first real example we show is the computed tomog-

raphy image discussed in the introduction (see Fig. 1). Its

size is 180 × 84 × 72. It is a noisy image with several ar-

tifacts (e.g. dark shadows, radial anisotropic noise), due to

the reconstruction algorithm. The proposed edge detector

Fig. 19 A real CT image. From left to right: Maximum intensity pro-

jection, vertical slice, horizontal slice. The slices show several artifacts,

and the anisotropy of noise

Fig. 20 Edge detection on the CT image. Left: Output of the pro-

posed edge detector. Right: Output of Canny’s edge detector, using

hand-tuned parameters to obtain the best result for this image. The

main advantage of the proposed method, besides the lack of tunable

parameters, is the format of the output: instead of a large set of vox-

els we have a small set of triangulated surfaces, sampled at sub-voxel

precision

finds the correct boundaries at several difficult places, but

still misses some small arteries. See Fig. 19 for a discussion

on the image, and Fig. 20 for the output of the proposed

edge detector, and a comparison with Canny’s. After linking

the patches via the functional described on Sect. 5, we find

a single surface which is better than the best manually-set

global threshold, see Fig. 21.

The second real image is an anatomic MRI image of

size 111 × 65 × 57. While this image is not as noisy as the

previous one, it has an artifact which produces a problem

like that of the second synthetic example. Namely, the image

domain is partitioned into three bands, where the gray lev-

els have a different starting point (so that the histograms are

displaced). Even if this is an artifact easily tractable in a pre-

processing stage, the proposed edge detector produces good

results when applied directly on the raw data. See Fig. 22

for slices and projections, and Fig. 23 for the result of the

proposed edge detection, compared to a manually selected

isosurface.

7 Conclusion and Future Work

We have proposed a new edge detector that selects the well-

contrasted patches of all level surfaces of a 3D image. The
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Fig. 21 Output of the experiment on Fig. 20, after joining the edges

via Osher-Zhao functional. The result is a clean set of five disjoint sur-

face patches

Fig. 22 A real MRI image. Left: Maximum intensity projection. Right:

Average projection (notice the different averages over three bands).

The results of our edge detector on this image appear on Fig. 23

proposed method is free of parameters and is based on the a-

contrario methods developed by Desolneux et al. [20]. The

edges obtained are robust and can be used for later purposes

such as segmentation, registration, or visualization of the

main structures of the image. We have also discussed an al-

gorithm for edge linking to produce a closed surface passing

nearby a given set of edges. We have illustrated the results

with a series of experiments on synthetic and real data.

The proposed method raises a series of questions that

need to be further studied. First, we are currently working

on an improvement of the interpolation method proposed

by [56], in order to avoid its dependence on the initializa-

tion and its local minima. Second, a systematic testing on

sets of real and synthetic images, evaluating the results us-

ing different quantitative criteria, is also the object of further

research.

A third line of future research concerns the efficiency of

the presented algorithms. Medical images tend to be very

large, e.g., a floating-point image of size 2563 needs 64 MB

to be stored. Even if our algorithms have been implemented

to be as fast as possible, they are too slow to be used on regu-

lar computers for processing images of that size. We believe

that any significant speed improvement needs to rely on a

multi-scale representation of the data. For that, we would

like to interleave the tree of shapes with a scale-space rep-

resentation. This would lead to an efficient scheme to obtain

finer and finer results starting from an initial coarse guess of

the edges. Even if the finest scale was to be achieved at the

Fig. 23 Processing of the real MRI image from Fig. 22. Top: manu-

ally selected isosurface that segments well the upper part of the image.

Middle: output of the proposed edge detector, 14 surface patches. No-

tice that the two structures which are not vessels (they are parts of

bones) can be easily removed manually. Bottom: result of edge linking

via Osher’s functional

end, this order of computation would be much faster than

the current method, because large volumes of low contrast

would be discarded at the coarser scales. In the current im-

plementation, most of the running time is spent in discard-

ing the extremely complicated high-resolution level surfaces

that lie in the large and low contrasted parts of the image.

To achieve interactive running times this is the problem that

needs to be solved.
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