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Abstract
3D face reconstruction is the most captivating topic in biometrics with the advent of deep learning and readily available 
graphical processing units. This paper explores the various aspects of 3D face reconstruction techniques. Five techniques 
have been discussed, namely, deep learning, epipolar geometry, one-shot learning, 3D morphable model, and shape from 
shading methods. This paper provides an in-depth analysis of 3D face reconstruction using deep learning techniques. The 
performance analysis of different face reconstruction techniques has been discussed in terms of software, hardware, pros and 
cons. The challenges and future scope of 3d face reconstruction techniques have also been discussed.

1 Introduction

3D face reconstruction is a problem in biometrics, which 
has been expedited due to deep learning models. Several 
3D face recognition research contributors have improved in 
the last five years (see Fig. 1). Various applications such 
as reenactment and speech-driven animation, facial pup-
petry, video dubbing, virtual makeup, projection mapping, 
face aging, and face replacement are developed [1]. 3D face 
reconstruction faces various challenges such as occlusion 
removal, makeup removal, expression transfer, and age pre-
diction. Occlusion can be internal or external. Some of the 
well-known internal occlusions are hair, beard, moustache, 
and side pose. External occlusion occurs when some other 
object/person is hiding the portion of the face, viz. glasses, 
hand, bottle, paper, and face mask [2].The primary reason 
behind the growth of research in 3D face reconstruction is 
the availability of multicore central processing units (CPUs), 
smartphones, graphical processing unit (GPU) and cloud 
applications such as Google Cloud Platform (GCP), Amazon 
Web Services (AWS), and Microsoft Azure [3–5]. 3D data is 
represented in voxels, point cloud, or a 3D mesh that GPUs 

can process (see Fig. 2). Recently, researchers have started 
working on 4D face recognition [6, 7]. Figure 3 depicts the 
taxonomy of 3D face reconstruction.

1.1  General Framework of 3D‑Face Reconstruction 
Problem

3D reconstruction-based face recognition framework 
involves pre-processing, deep learning, and prediction. 
Figure 4 shows the phases involved in the 3D face restora-
tion technique. There are various forms of 3D images that 
can be acquired. All of them have different pre-processing 
steps based on the need. Face alignment may or may not 
be done for sending it to the reconstruction phase. Sharma 
and Kumar [2, 8, 9] have not used face alignment for their 
reconstruction techniques.

The face reconstruction can be done using a variety of 
techniques, viz. 3D morphable model-based reconstruction, 
epipolar geometry-based reconstruction, one-shot learning-
based reconstruction, deep learning-based reconstruction, 
and shape from the shading-based reconstruction. Further, 
the prediction phase is required as the outcome of the recon-
struction of the face. The prediction may be based on appli-
cations of face recognition, emotion recognition, gender 
recognition, or age estimate.

1.2  Word Cloud

The word cloud represents the top 100 keywords of 3D face 
reconstruction (see Fig. 5). From this word cloud, the key-
words related to face reconstruction algorithm such as "3D 
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face", "pixel", "image", and "reconstruction" are widely 
used. The keyword "3D face reconstruction" has fascinated 
the researchers as a problem domain of face recognition 
techniques.

Face reconstruction involves completing the occluded 
face image. Most 3D face reconstruction techniques use 2D 
images during the reconstruction process [10–12]. Recently, 
researchers have started working on mesh and voxel images 
[2, 8]. Generative adversarial networks (GANs) are used for 
face swap and facial features modification [13] in 2D faces. 
These are yet to be explored using deep learning techniques.

Fig. 1  Number of research papers published in 3D face reconstruc-
tion from 2016–2021

Fig. 2  3D face images: a RGB Image, b Depth Image, c Mesh Image, d Point Cloud Image, e voxel Image

Fig. 3  Taxonomy of 3D face reconstruction
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The presented work's motivation lies in the detailed 
research surveys with deep learning of 3d point clouds [14] 
and person re-identification [15]. As seen in Fig. 1, in the 
last five years, 3d face research has grown with every pass-
ing year. Most of the reconstruction research has preferred 
using GAN-based deep learning techniques. This paper 
aims to study 3D face reconstruction using deep learning 
techniques and their applications in a real-life scenario. The 
contribution of this paper is four-fold.

1. Various 3D face reconstruction techniques are discussed 
with pros and cons.

2. The hardware and software requirements of 3D face 
reconstruction techniques are presented.

3. The datasets, performance measures, and applicability 
of 3D face reconstruction are investigated.

4. The current and future challenges of 3D face reconstruc-
tion techniques have also been explored.

The remainder of this paper is organised as follows: 
Sect. 2 covers variants of the 3D face reconstruction tech-
nique. Section 3 discusses the performance evaluation meas-
ures followed by datasets used in reconstruction techniques 
in Sect. 4. Section 5 discusses the reconstruction process' 
tools and techniques. Section 6 discusses 3D face recon-
struction's potential applications. Section 7 summarises 
current research challenges and future research directions. 
Section 8 holds the concluding remarks.

2  3D Face Reconstruction Techniques

3D face reconstruction techniques are broadly catego-
rised into five main classes such as 3D morphable model 
(3DMM), deep learning (DL), epipolar geometry (EG), 
one-shot learning (OSL), and shape from shading. Figure 6 
shows the 3D face reconstruction techniques. Most of the 
researchers are working on hybrid face reconstruction tech-
niques and are considered as sixth class.

2.1  3D Morphable Model‑based Reconstruction

A 3D Morphable Model (3DMM) is a generative model for 
facial appearance and shape [16]. All the faces to be gener-
ated are in a dense point-to-point correspondence, which 
can be achieved through the face registration process. The 
morphological faces (morphs) are generated through dense 

Fig. 4  General Framework of 3D Face Reconstruction Problem [9]

Fig. 5  Word cloud of 3D face reconstruction literature
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correspondence. This technique focuses on disentangling 
the facial colour and shape from the other factors, such as 
illumination, brightness, contrast, etc. [17]. 3DMM was 
introduced by Blanz and Vetter [18]. Variants of 3DMM 
are available in the literature [19–23]. These models use 
low-dimensional representations for facial expressions, 
texture, and identity. Basel Face Model (BFM) is one of 
the publicly available 3DMM models. The model is con-
structed by registering the template mesh corresponding 
to the scanned face obtained from Iterative Closest Point 
(ICP) and Principal Component Analysis (PCA) [24].

Figure 7 shows the progressive improvement in 3DMM 
during the last twenty years [18, 25–28]. The results from 
the original paper of Blanz and Vetter 1999 [18], the first 
publicly available Morphable Model in 2009 [25], and 
state-of-the-art facial re-enactment results [28] and GAN-
based models [27] have been presented in the figure.

Maninchedda et al. [29] proposed an automatic recon-
struction of the human face and 3D epipolar geometry for 
eye-glass-based occlusion. A variational segmentation 
model was proposed, which can represent a wide variety of 
glasses. Zhang et al. [30] proposed reconstructing a dense 
3D face point cloud from a single data frame captured from 
an RGB-D sensor. The face region's initial point cloud was 
captured using the K-Mean Clustering algorithm. An artifi-
cial neural network (ANN) estimates the neighbourhood of 
the point cloud.

In addition, Radial Basis Function (RBF) interpolation 
is used to achieve the final approximation of the 3D face 
centred on the point cloud. Jiang et al. [31] proposed a 3D 
face restoration algorithm (PIFR) based on 3DMM. The 
input image was normalised to get more information about 
the visibility of facial landmarks. The pros of the work are 
pose-invariant face reconstruction. However, the reconstruc-
tion needs improvement over large poses. Wu et al. [32] 

Fig. 6  3D Face Reconstruction Techniques

Fig. 7  Progressive improvement in 3DMM over last twenty years [17]
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presented a 3D face expression reconstruction technique 
using a single image. A cascaded regression framework was 
used to calculate the parameters for 3DMMs. The histogram 
of oriented gradients (HOG) and landmark displacement was 
used for the feature extraction phase. Kollias et al. [33] pro-
posed a novel technique for synthesising facial expressions 
and the degree of positive/ negative emotion. Based on the 
valence-arousal (VA) technique, 600 K frames were anno-
tated from the 4DFAB dataset [34]. This technique works 
for in-the-wild face datasets. However, 4DFAB is not pub-
licly available. Lyu et al. [35] proposed a Pixel-Face dataset 
consisting of high-resolution images by using 2D images. 
Pixel-3DM was proposed for 3D facial reconstruction. How-
ever, the external occlusions are not considered in this study.

2.2  Deep Learning‑based Reconstruction

3D generative adversarial networks (3DGANs) and 3D con-
volutional neural networks (3DCNN) are the deep learn-
ing techniques of 3D face reconstruction [27]. The main 
advantages of these methods are high fidelity and better 
performance in terms of accuracy and mean absolute error 
(MAE). However, it takes a lot of time to train GANs. The 
face reconstruction in canonical view can be done through 
the face-identity preserving (FIP) method [36]. Tang et al. 
[37] introduced a multi-layer generative deep learning model 
for image generation under new lighting situations. In face 
recognition, the training corpus was responsible for provid-
ing the labels to the multi-view perceptron-based approach. 
Synthetic data were augmented from a single image using 
facial geometry [38]. Richardson et al. [39] proposed the 
unsupervised version of the reconstruction mentioned above. 
Supervised CNNs were used to implement facial animation 
tasks [40]. 3D texture and shape were restored using deep 
convolutional neural networks (DCNNs). In [41], facial tex-
ture restoration provided better fine details than the 3DMM 
[42]. Figure 8 shows the different phases of 3D face recogni-
tion using the restoration of the occluded region.

Kim et al. [26] proposed a deep convolutional neural net-
work-based 3D face recognition algorithm. 3D face augmen-
tation technique synthesised a variety of facial expressions 
using a single scan of the 3D face. Transfer learning-based 
model is faster to train. However, 3D data is lost when the 
3D point cloud image is converted to a 2.5D image. Gilani 
et al. [43] proposed a technique for developing a huge corpus 
for labelled 3D faces. They trained a face recognition 3D 
convolutional neural network (FR3DNet) to recognise 3D 
faces over 3.1 million faces of 100 K people. The testing 
was done on 31,860 images of 1853 people. Thies et al. [44] 
presented a neural voice puppetry technique for generating 
photo-realistic output video from the source input audio. 
This was based on DeepSpeech recurrent neural networks 
using the latent 3D model space. Audio2ExpressionNet was 

responsible for converting the input audio to a particular 
facial expression.

Li et al. [45] proposed SymmFCNet, a symmetry consist-
ent convolutional neural network for reconstructing missing 
pixels on the one-half face using the other half. SymmFCNet 
consisted of illumination-reweighted warping and generative 
reconstruction subnet. The dependency on multiple networks 
is a significant drawback. Han et al. [46] proposed a sketch-
ing system that creates 3D caricature photos by modifying 
the facial features. An unconventional deep learning method 
was designed to get the vertex wise exaggeration map. They 
used the FaceWarehouse dataset [20] for training and test-
ing. The advantage was the conversion of a 2D image into a 
3D face caricature model. However, the caricatured quality 
is affected in the presence of eyeglasses. Besides this, the 
reconstruction is affected by the varying light conditions. 
Moschoglou et al. [47] implemented an autoencoder such 
as 3DFaceGAN for modelling 3D facial surface distribution. 
Reconstruction loss and adversarial loss were used for gen-
erator and discriminator. On the downside, GANs are hard 
to train and cannot be applied to real-time 3D face solutions.

2.3  Epipolar Geometry based reconstruction

The epipolar geometry-based facial reconstruction 
approach uses various non-synthesising perspective 
images of one subject to generate a single 3D image [48]. 
Good geometric fidelity is the main advantage of these 
techniques. The calibrated camera and the orthogonal 
images are two main challenges associated with these 
techniques. Figure 9 shows the horizontal and vertical 

Fig. 8  Phases of 3D face recognition using restoration [9]
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Epipolar Plane Images (EPIs) obtained from the central 
view and sub-aperture images [48].

Anbarjafari et al. [49] proposed a novel technique for 
generating 3D faces captured by phone cameras. A total 
of 68 facial landmarks were used to divide the face into 
four regions. Different phases were used during texture 
creation, weighted region creation, model morphing, and 
composing. The main advantage of this technique is the 
good generalisation obtained from the feature points. 
However, it is dependent on the dataset having good head 
shapes, which affects the overall quality.

2.4  One‑Shot Learning‑based Reconstruction

The one-shot learning-based reconstruction method uses 
a single image of an individual to recreate a 3D recogni-
tion model [50]. This technique utilises a single image per 
subject to train the model. Therefore, these techniques are 
quicker to train and also generates promising results [51]. 
However, this approach cannot be generalised to videos. 
Nowadays, One-shot learning-based 3D reconstruction is 
an active research area.

Fig. 9  a Epipolar Plane Images 
corresponding to 3D face 
curves, b horizontal EPI, and c 
vertical EPI [48]

Fig. 10  General framework of one-shot learning-based 3D face reconstruction
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The ground truth 3D models are needed to train the model 
for mapping from the 2D-to-3D image. Some researchers 
used depth prediction for reconstructing 3D structures [52, 
53]. While other techniques directly predict 3D shapes [54, 
55]. Few works have been done on 3D face reconstruction 
by utilising one 2D image [38, 39]. The optimum parameter 
values for the 3D face are obtained by using deep neural net-
works and model parameter vectors. The major enhancement 
has been achieved over [56, 57]. However, this approach fails 
to handle pose variation adequately. The major drawbacks 
of this technique are the creation of multi-view 3D faces 
and reconstruction degradation. Figure 10 shows the gen-
eral framework of the one shot-based face reconstruction 
technique.

Xing et al. [58] presented a 3D face reconstruction tech-
nique using a single image without considering the ground-
truth 3D shape. The face model rendering was used in the 
reconstruction process. The fine-tuning bootstrap method 
was used to send feedback for further improvement in the 
quality of rendering. This technique provides the reconstruc-
tion of 3D shape from 2D image. However, the con is that 
rigid-body transformation is used for pre-processing.

2.5  Shape from shading based reconstruction

Shape from shading (SFS) method is based on the recov-
ery of 3D shape from shading and lighting cues [59, 60]. It 
uses an image that produces a good shape model. However, 
the occlusion cannot be dealt with when shape estimates 
have interfered with a target's shadow. It operates well under 
lightening from the non-frontal face view (see Fig. 11). Jiang 
et al. [61] method was inspired by the face animation using 
RGB-D and monocular video. The computation of coarse 
estimation was done for the target 3D face by using a para-
metric model fitting to the input image. The reconstruction 
of a 3D image from a single 2D image is the main draw-
back of this technique. On the contrary, the SFS technique 

depends upon pre-defined knowledge about facial geometry, 
such as facial symmetry.

2.6  Hybrid Learning‑based Reconstruction

Richardson et al. [38] proposed a technique for generating 
the database with photo-realistic face images using geom-
etries. ResNet model [62] was used for building the pro-
posed network. This technique was unable to restore the 
images having different facial attributes. It failed to gener-
alise the training process for new face generations. Liu et al. 
[63] proposed a 3D face reconstruction technique using the 
mixture of 3DMM and shape-from-shading method. Mean 
absolute error (MAE) was plotted for the convergence of 
reconstruction error. Richardson et al. [39] proposed a single 
shot learning model for extracting the coarse-to-fine facial 
shape. CoarseNet and FineNet were used for the recovery 
of coarse facial features. The high detail face reconstruction 
includes wrinkles from a single image. However, it fails to 
generalise the facial features that are available in the training 
data. The dependence on synthetic data is another drawback. 
Jackson et al. [51] proposed a CNN-based model for recon-
structing 3D face geometry using a single 2D facial image. 
This method did not require any kind of facial alignment. It 
works on various types of expressions and poses.

Tewari et al. [64] proposed a generative model based on 
a convolutional autoencoder network for face reconstruc-
tion. They used AlexNet [65] and VGGFace [66] models. 
However, it fails under occlusion such as beard or exter-
nal object. Dou et al. [67] proposed a deep neural network 
(DNN) based technique for end-to-end 3D face reconstruc-
tion using a single 2D image. Multitask loss function and 
fusion CNN were hybridised for face recognition. The main 
advantage of this method is the simplified framework with 
the end-to-end model. However, the proposed approach suf-
fers from the dependency of synthetic data. Han et al. [68] 
proposed a sketching system for 3D faces and caricatured 

Fig. 11  3D face shape recovery a 2D image, b 3D depth image, c Texture projection, and d Albedo histogram[59]
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modelling using CNN-based deep learning. Generally, the 
rich facial expressions were generated through MAYA and 
ZBrush. However, it includes the gesture-based interaction 
with the user. The shape level input was appended with a 
fully connected layer's output to generate the bilinear output.

Hsu et al. [69] proposed two different approaches for 
cross-pose face recognition. One technique is based on 3D 
reconstruction, and the other method is built using deep 
CNN. The components of the face were built out of the gal-
lery of 2D faces. The 3D surface was reconstructed using 2D 
face components. CNN based model can easily handle in-
the-wild characteristics. 3D component-based approach does 
not generalise well. Feng et al. [48] developed a FaceLFnet 
to restore 3D face using Epipolar Plane Images (EPI). They 
used CNN for the recovery of vertical and horizontal 3D 
face curves. The photo-realistic light field images were syn-
thesised using 3D faces. A total of 14 K facial scans of 80 
different people were used during the training process, mak-
ing up to 11 million facial curves/EPIs. The model is a supe-
rior choice for medical applications. However, this technique 
requires a huge amount of epipolar plane image curves.

Zhang et al. [70] proposed a 3D face reconstruction tech-
nique using the combination of morphable faces and sparse 
photometric stereo. An optimisation technique was used for 
per-pixel lighting direction along with the illumination at 
high precision. The semantic segmentation was performed 
on input images and geometry proxy to reconstruct details 
such as wrinkles, eyebrows, whelks, and pores. The aver-
age geometric error was used for verifying the quality of 
reconstruction. This technique is dependent on light falling 
on the face. Tran et al. [71] proposed a bump map based 3D 
face reconstruction technique. The convolutional encoder-
decoder method was used for estimating the bump maps. 
Max-pooling and rectified linear unit (ReLU) were used 
along with the convolutional layers. The main disadvan-
tage of the technique is that the unoptimised soft symmetry 
implementation is slow. Feng et al. [72] presented the bench-
mark dataset consisting of 2 K faces for 135 people. Five 
different 3D face reconstruction approaches were evaluated 
on the proposed dataset.

Feng et al. [73] proposed a 3D face reconstruction tech-
nique called a Position map Regression Network (PRN) 
based on the texture coordinates UV position maps. CNN 
regressed 3D shape from a one-shot 2D image. The weighted 
loss function used different weights in the form of a weight 
mask during the convolution process. The UV position map 
can generalise as well. However, it is difficult to be applied 
in real-world scenarios. Liu et al. [74] proposed an encoder-
decoder based network for regressing 3D face shape from 
2D images. The joint loss was computed based on 3D face 
reconstruction as well as identification error. However, the 
joint loss function affects the quality of face shapes. Chi-
naev et al. [75] developed a CNN based model for 3D face 

reconstruction using mobile devices. MobileFace CNN was 
used for the testing phase. This method was fast training 
on mobile devices and real-time application. However, the 
annotation of 3D faces using a morphable model is costly 
at the pre-processing stage. Gecer et al. [27] proposed a 3D 
face reconstruction based on DCNNs and GANs. In UV 
space, GAN was used to train the generator for facial tex-
tures. An unconventional 3DMM fitting strategy was for-
mulated on differentiable renderer and GAN. Deng et al. 
[76] presented a CNN based single-shot face reconstruc-
tion method for weakly supervised learning. The perception 
level and image-level losses were combined. The pros of this 
technique are large pose and occlusion invariant. However, 
the confidence of the model is low on occlusion during the 
prediction phase.

Yuan et al. [77] proposed a 3D face restoration technique 
for occluded faces using 3DMM and GAN. Local discrimi-
nator and global discriminator were used for verifying the 
quality of 3D face. The semantic mapping of facial land-
marks led to the generation of synthetic faces under occlu-
sion. Contrasting to that, multiple discriminators increase 
the time complexity. Luo et al. [78] implemented a Siamese 
CNN method for 3D face restoration. They utilised the 
weighted parameter distance cost (WPDC) and contrastive 
cost function to validate the quality of the reconstruction 
method. However, the face recognition has not been tested in 
the wild, and the number of training images are low. Gecer 
et al. [79] proposed a GAN based method for synthesising 
the high-quality 3D faces. Conditional GAN was used for 
expression augmentation. 10 K new individual identities 
were randomly synthesised from 300 W-LP dataset. This 
technique generates high-quality 3D faces with fine details. 
However, GANs are hard to train and yet cannot be applied 
in real-time solutions. Chen et al. [80] proposed a 3D face 
reconstruction technique using a self-supervised 3DMM 
trainable VGG encoder. A two-stage framework was used 
to regress 3DMM parameters for reconstructing the facial 
details. Faces are generated with good quality under nor-
mal occlusion. The details of the face are captured using 
UV space. However, the model fails on extreme occlusion, 
expression, and large pose. CelebA [81] dataset was used for 
training, and LFW [82] dataset was used along with CelebA 
for the testing process. Ren et al. [83] developed an encoder-
decoder framework for video deblurring of 3D face points. 
The identity knowledge and facial structure were predicted 
by the rendering branch and 3D face reconstruction. Face 
deblurring is done over the video handling challenge of pose 
variation. High computational cost is the major drawback of 
this technique.

Tu et al. [10] developed a 2D assisted self-supervised 
learning (2DASL) technique for 2D face images. The noisy 
information of landmarks was used to improve the quality 
of 3D face models. Self-critic learning was developed for 
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improving the 3D face model. The two datasets, namely 
AFLW-LFPA [84] and AFLW2000-3D [85], were used for 
3D face restoration and face alignment. This method works 
for in-the-wild 2D faces along with noisy landmarks. How-
ever, it has a dependency on 2D-to-3D landmarks annota-
tion. Liu et al. [86] proposed an automatic method for gener-
ating pose-and-expression-normalised (PEN) 3D faces. The 
advantages of this technique are the reconstruction from a 
single 2D image and the 3D face recognition invariant of 
pose and expression. However, it is not occlusion invari-
ant. Lin et al. [24] implemented a 3D face reconstruction 
technique based on single-shot image in-the-wild. Graph 
convolutional networks were used for generating the high-
density facial texture. FaceWarehouse [20] along with Cel-
ebA [81] database were used for training purposes. Ye et al. 
[87] presented a big dataset of 3D caricatures. They gener-
ated a PCA based linear 3D morphable model for caricature 
shapes. 6.1 K portrait caricature images were collected from 
pinterest.com as well as WebCaricature dataset [88]. High-
quality 3D caricatures have been synthesised. However, the 
quality of the caricature is not good for occluded input face 
images. Lattas et al. [89] proposed a technique for producing 
high-quality 3D face reconstruction using arbitrary images. 
The large scale database was collected using 200 different 
subjects based on their geometry and reflectance. The image 
translation networks were trained to estimate specular and 
diffuse albedo. This technique generated high-resolution 
avatars using GANs. However, it fails to generate avatars of 
dark skin subjects.

Zhang et al. [90] proposed an automatic landmark detec-
tion and 3D face restoration for caricatures. 2D image of 
caricature was used for regressing the orientation and shape 
of 3D caricature. ResNet model was used for encoding the 
input image to a latent space. The decoder was used along 
with the fully connected layer to generate 3D landmarks 
on the caricature. Deng et al. [91] presented DISentangled 
precisely-COntrollable (DiscoFaceGAN) latent embedding 
for representing fake people with various poses, expressions, 
and illumination. Contrastive learning was employed to pro-
mote disentanglement by comparing rendered faces with the 
real ones. The face generation is precise over expressions, 
poses, and illumination. The low quality of the model is 
generated under low lighting and extreme poses. Li et al. 
[92] proposed a 3D face reconstruction technique to esti-
mate the pose of a 3D face using coarse-to-fine estimation. 
They used an adaptive reweighting method to generate the 
3D model. The pro of this technique was the robustness to 
partial occlusions and extreme poses. However, the model 
fails when 2D and 3D landmarks are wrongly estimated for 
occlusion. Chaudhuri et al. [93] proposed a deep learning 
method to train personalised dynamic albedo maps and the 
expression blendshapes. 3D face restoration was gener-
ated in a photo-realistic manner. The face parsing loss and 

blendshape gradient loss captured the semantic meaning 
of reconstructed blend shapes. This technique was trained 
in-the-wild videos, and it generated high-quality 3D face 
and facial motion transfer from one person to other. It did 
not work well under external occlusion. Shang et al. [94] 
proposed a self-supervised learning technique for occlu-
sion aware view synthesis. Three different loss functions, 
namely, depth consistency loss, pixel consistency loss, and 
landmark-based epipolar loss, were used for multi-dimen-
sional consistency. The reconstruction is done through the 
occlusion-aware method. It does not work well under exter-
nal occlusion such as hands, glasses, etc.

Cai et  al. [95] proposed an Attention Guided GAN 
(AGGAN), which is capable of 3D facial reconstruction 
using 2.5D images. AGGAN generated a 3D voxel image 
from the depth image using the autoencoder technique. 2.5D 
to 3D face mapping was done using attention-based GAN. 
This technique handles a wide range of head poses and 
expressions. However, it is unable to fully reconstruct the 
facial expression in case of a big open mouth. Xu et al. [96] 
proposed training the head geometry model without using 
3D ground-truth data. The deep synthetic image with head 
geometry was trained using CNN without optimisation. The 
head pose manipulation was done using GANs and 3D warp-
ing. Table 1 presents the comparative analysis of 3D facial 
reconstruction techniques. Table 2 summarises the pros and 
cons of 3D face reconstruction techniques.

3  Performance Evaluation Measures

Evaluation measures are important to know the quality of 
the trained model. There are various evaluation metrics, 
namely, mean absolute error (MAE), mean squared error 
(MSE), normalised mean error (NME), root mean squared 
error (RMSE), cross-entropy loss (CE), area under the curve 
(AUC), intersection over union (IoU), peak signal to noise 
ratio (PSNR), receiver operator characteristic (ROC), and 
structural similarity index (SSIM). Table 3 presents the 
evaluation of 3D face reconstruction techniques in terms 
of performance measures. During the face reconstruction, 
the most important performance measures are MAE, MSE, 
NME, RMSE, and adversarial loss. These are the five widely 
used performance measures. Adversarial loss is being used 
since 2019 with the advent of GANs in 3D images.

4  Datasets Used for Face Recognition

Table 4 depicts the detailed description of datasets used in 
3D face reconstruction techniques. The analysis of different 
datasets highlights the fact that most of the 3D face data-
sets are publicly available datasets. They do not have a high 
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Table 1  Comparative analysis of 3D facial reconstruction techniques

Reference Year Approaches/Models used Is Face 
Alignment 
Done?

Convergence factor Is Deep 
Learning 
Done?

Synthetic 
Data 
used?

[38] 2016 SFS with landmarks and deep learning No MSE Yes Yes
[63] 2017 3DMM and SFS, learning cascaded 

regression
Yes Mean Absolute Error (MAE) No Yes

[39] 2017 CNN and Coarse-to-fine details No MSE Yes Yes
[51] 2017 Volumetric regression networks (Multi-

task and Guided)
Yes Normalized Mean Error (NME) Yes No

[64] 2017 Auto encoder-based CNN Yes Geometric, Photometric, and Landmark 
error

Yes No

[67] 2017 DNN architecture No Root Mean Square Error (RMSE) Yes No
[68] 2017 CNN based deep regression network No Mean error Yes Yes
[29] 2017 Automatic reconstruction of a human 

face and 3D epipolar geometry
Yes Mean and Standard Deviation No No

[26] 2018 3D deep feature vector and 3D augmen-
tation of faces

Yes Cumulative Matching Characteristic 
(CMC) and Receiver Operator Charac-
teristic (ROC) curve

Yes Yes

[61] 2018 Coarse face modeling, Medium face 
modeling, and Fine face modeling

Yes RMSE No No

[30] 2018 Clustering and interpolation-based 
reconstruction

No Error distribution No No

[69] 2018 Faster Region-based CNN (RCNN) and 
reduced tree structure model

No Moving Least Squares (MLS) Yes Yes

[43] 2018 FR3DNet, CNN, Data augmentation. 
Main objective of the paper is to close 
the gap between size of 2D and 3D 
datasets for effective 3DFR

Yes ROC curve Yes Yes

[48] 2018 FaceLFNet. 3DMM with facial geometry. 
EPIs and CNN

No RMSE Yes No

[70] 2018 Leverages sparse photometric stereo (PS) No Average geometric error for reconstruc-
tion

No Yes

[71] 2018 Deep convolution encoder-decoder No ROC curve No No
[72] 2018 3D dense face reconstruction algorithm. 

3DMM-CNN
No RMSE Yes No

[73] 2018 UV position maps Yes NME Yes No
[74] 2018 Encoder-decoder network No RMSE Yes No
[31] 2018 PIFR based 3DMM Yes Mean euclidean metric (MEM) No No
[32] 2019 3DMM. Cascaded regression No RMSE and MAE No No
[49] 2019 Blended model Yes Structural Similarity Index Metric 

(SSIM)
No No

[75] 2019 MobileNet CNN No Area Under the Curve (AUC) Yes No
[58] 2019 Deep learning model Yes NME Yes Yes
[27] 2019 3DMM fitting based on GANs and a dif-

ferentiable renderer
No Mean and Standard Deviation Yes No

[76] 2019 CNNs Yes RMSE Yes No
[77] 2019 Inverse 3DMM GAN model Yes Peak Signal to Noise Ratio (PSNR) and 

SSIM
Yes Yes

[78] 2019 Siamese network-based CNN model Yes ROC curve Yes No
[79] 2019 GAN No Wasserstein GAN (W-GAN) adversarial 

loss
Yes Yes

[80] 2019 Self-supervised 3DMM encoder Yes RMSE No No
[83] 2019 Encoder-decoder framework Yes PSNR and SSIM Yes Yes
[44] 2019 Neural rendering No RMSE Yes Yes
[33] 2020 Blended model No Pearson correlation and MSE Yes Yes
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number of images to train the model compared to 2D face 
publicly datasets. This makes the research in 3D faces more 
interesting because the scalability factor has not been tested 
and has become an active area of research. It is worth men-
tioning that only three datasets, namely, Bosphorus, Kinect-
FaceDB, and UMBDB datasets, have occluded images for 
occlusion removal.

5  Tool and Techniques in 3D Face 
Reconstruction Techniques

Table 5 presents the techniques along with hardware used in 
terms of a graphical processing unit (GPU), size of random-
access memory (RAM), central processing unit (CPU), and 

brief applications. The comparison highlights the impor-
tance of deep learning in 3D face reconstruction. GPUs 
play a vital role in the deep learning-based model. With the 
advent of Google Collaboratory, GPUs are freely accessible.

6  Applications

Based on the artificial intelligence-based AI + X technique 
[128], where X is domain expertise in face recognition, a 
plethora of applications are affected by 3D face reconstruc-
tion. Facial puppetry, speech-driven animation and enact-
ment, video dubbing, virtual makeup, projection mapping, 
face replacement, face aging, and 3D printing in medicine 

Table 1  (continued)

Reference Year Approaches/Models used Is Face 
Alignment 
Done?

Convergence factor Is Deep 
Learning 
Done?

Synthetic 
Data 
used?

[45] 2020 SymmFCNet Yes PSNR, SSIM, Identity Distance, and 
Perceptual Similarity

Yes No

[46] 2020 Deep learning-based technique Yes MSE Yes Yes
[10] 2020 2D-Assisted Self Supervised Learning 

(2DASL)
Yes NME Yes Yes

[47] 2020 VAE-GAN Yes Normalized dense vector error Yes No
[86] 2020 Summation model and cascaded regres-

sion
Yes MAE and NME No No

[24] 2020 Graph convolutional networks No W-GAN adversarial loss Yes No
[87] 2020 PCA model No Adversarial loss, Bidirectional cycle-con-

sistency loss, Cross-domain character 
loss, and User control loss

Yes Yes

[89] 2020 Generation of per-pixel diffuse and 
specular components

No PSNR Yes Yes

[90] 2020 Parametric model based on vertex defor-
mation space

Yes Cumulative error distribution Yes Yes

[91] 2020 DiscoFaceGAN Yes Adversarial loss, Imitative loss, and 
Contrastive loss

Yes Yes

[92] 2020 Joint 2D and 3D metaheuristic method Yes 3D Root Mean Square Error (3DRMSE) No No
[93] 2020 End-to-end deep learning framework Yes NME and AUC Yes No
[94] 2020 MGCNet Yes RMSE No No
[35] 2020 3D morphable model-based Pixel-3DM Yes NME and RMSE No Yes
[95] 2020 Attention Guided Generative Adversarial 

Networks (AGGAN)
Yes Intersection-over-Union (IoU) and Cross-

Entropy Loss (CE)
Yes No

[96] 2020 GAN Yes Adversarial loss Yes Yes
[2] 2020 Variational autoencoder, bi-LSTM, and 

triplet loss training
No MAE Yes No

[8] 2020 Deep learning process, game-theory 
based generator and discriminator

No MAE Yes No

[9] 2021 Variational autoencoders and triplet loss 
training

No MAE Yes No

[97] 2021 Single shot learning based weakly 
supervised multi-face reconstruction 
technique

Yes NME Yes No
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are some of the well-known applications. These are dis-
cussed in succeeding subsections.

6.1  Facial Puppetry

The games and movie industry use facial cloning or puppetry 
in video-based facial animation. The expressions and emo-
tions are transferred from user to target character through 
video streaming. When artists dub for animated characters 
for a movie, 3D face reconstruction can help the expressions 
transfer from the artist to the character. Figure 12 illustrates 
the puppetry demonstration in real-time by digital avatars 
[129, 130].

6.2  Speech‑driven Animation and Reenactment

Zollhofer et al. [1] discussed various video-based face reen-
actment works. Most of the methods depend on the recon-
struction of source and target face using a parametric facial 
model. Figure 13 presents the pipeline architecture of neu-
ral voice puppetry [44]. The audio input is passed through 
deep speech based on a recurrent neural network for feature 
extraction. Furthermore, the autoencoder-based expression 
features with the 3D model are transferred to the neural ren-
derer to receive the speech-driven animation.

6.3  Video Dubbing

Dubbing is an important part of filmmaking where an audio 
track is added or replaced in the original scene. The original 
actor's voice is to be replaced with the dubbed actor. This 
process requires ample training for dubbed actors to match 
their audio with the original actor's lip-sync [131]. To mini-
mise the discrepancies in visual dubbing, the reconstruc-
tion of mouth in motion complements the dialogues spoken 
by the dubbed actor. It involves the mapping of dubber's 
mouth movements with the actor's mouth [132]. Hence, the 
technique of image swapping or transferring parameters is 
used. Figure 14 presents the visual dubbing by VDub [131] 
and Face2Face with live enabled dubbing [132]. Figure 14 
shows DeepFake example in 6.S191 [133], showing the 
course instructor dubbing his voice to famous personalities 
using deep learning.

6.4  Virtual Makeup

Virtual makeup is excessively used in online platforms for 
meetings and video chats where a presentable appearance 
is indispensable. It includes digital image changes such as 
applying suitable colour lipstick, face masks, etc. It can be 
useful for beauty product companies as they can advertise 
digitally, and consumers can experience the real-time effect Ta
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Table 3  Evaluation of 3D face restoration techniques in terms of performance measures

References Year Adversar-
ial Loss

AUC CE IoU MAE MEM MSE NME PSNR RMSE ROC SSIM Other

[38] 2016 × × × × × × ✓ × × × × × ×
[63] 2017 × × × × ✓ × × × × × × × ×
[39] 2017 × × × × × × ✓ × × × × × ×
[51] 2017 × × × × × × × ✓ × × × × ×
[64] 2017 × × × × × × × × × × × × ✓
[67] 2017 × × × × × × × × × ✓ × × ×
[68] 2017 × × × × × × × × × × × × ✓
[29] 2017 × × × × × × × × × × × × ✓
[26] 2018 × × × × × × × × × × ✓ × ✓
[61] 2018 × × × × × × × × × ✓ × × ×
[30] 2018 × × × × × × × × × × × × ✓
[69] 2018 × × × × × × × × × × × × ✓
[43] 2018 × × × × × × × × × × ✓ × ×
[48] 2018 × × × × × × × × × ✓ × × ×
[70] 2018 × × × × × × × × × × × × ✓
[71] 2018 × × × × × × × × × × ✓ × ×
[72] 2018 × × × × × × × × × ✓ × × ×
[73] 2018 × × × × × × × ✓ × × × × ×
[74] 2018 × × × × × × × × × ✓ × × ×
[31] 2018 × × × × × ✓ × × × × × × ×
[32] 2019 × × × × ✓ × × × × ✓ × × ×
[49] 2019 × × × × × × × × × × × ✓ ×
[75] 2019 × ✓ × × × × × × × × × × ×
[58] 2019 × × × × × × × ✓ × × × × ×
[27] 2019 × × × × × × × × × × × × ✓
[76] 2019 × × × × × × × × × ✓ × × ×
[77] 2019 × × × × × × × × ✓ × × ✓ ×
[78] 2019 × × × × × × × × × × ✓ × ×
[79] 2019 ✓ × × × × × × × × × × × ×
[80] 2019 × × × × × × × × × ✓ × × ×
[83] 2019 × × × × × × × × ✓ × × ✓ ×
[44] 2019 × × × × ✓ × × × × × × × ✓
[33] 2020 × × × × × × ✓ × × × × × ×
[45] 2020 × × × × × × × × ✓ × × ✓ ×
[46] 2020 × × × × × × ✓ × × × × × ×
[10] 2020 × × × × × × × ✓ × × × × ×
[47] 2020 × ✓ × × × × × × × × × × ✓
[86] 2020 × × × × ✓ × × ✓ × × × × ×
[24] 2020 ✓ × × × × × × × × × × × ×
[87] 2020 ✓ × × × × × × × × × × × ×
[89] 2020 × × × × × × × × ✓ × × × ×
[90] 2020 × × × × × × × ✓ × × × × ×
[91] 2020 ✓ × × × × × × × × × × × ×
[92] 2020 × × × × × × × × × ✓ × × ×
[93] 2020 × ✓ × × × × × ✓ × × × × ×
[94] 2020 × × × × × × × × × ✓ × × ×
[35] 2020 × × × × × × × ✓ × ✓ × × ×
[95] 2020 × × ✓ ✓ × × × × × × × × ×
[96] 2020 ✓ × × × × × × × × × × × ×
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of their products on their images. It is implemented by using 
different reconstruction algorithms.

The synthesised virtual tattoos have been shown adjusting 
to the facial expression [134] (see Fig. 15a). Viswanathan 
et al. [135] gave a system in which two face images are given 
as input, one with eyes-open and the other with eyes-closed. 
An augmented reality-based face is proposed to add one or 
more makeup shapes, layers, colours, and textures to the 
face. Nam et al. [136] proposed an augmented reality-based 
lip makeup method, which used pixel-unit makeup compared 
to polygon unit makeup on lips, as seen in Fig. 15b.

6.5  Projection‑Mapping

Projection mapping uses projectors to amend the features 
or expressions of real-world images. This technique is used 
to bring life to static images and give them a visual display. 
Different methods are used for projection mapping in 2D 
and 3D images to alter the person's appearance. Figure 16 
presents the live projection mapping system called Face-
Forge [137].

Lin et al. [24] presented a technique of 3D face projection 
to the input image by passing the input image through CNN 
and combining the information with 3DMM to get the fine 
texture of the face (see Fig. 17).

6.6  Face Replacement

Face Replacement is commonly used in the entertainment 
industry, where the source face is replaced with the target 
face. This technique is based on parameters such as the track 
of identity, facial properties, and expressions of both faces 
(source and target). The source face is to be rendered so that 
it matches the conditions of the target face. Adobe After 
Effects is a famous tool used in the movie and animation 
industry and can help face replacement [138] (see Fig. 18).

6.7  Face Aging

Face ageing is an effective technique to convert 3D face 
images into 4D. If a single 3D image can be synthesised 
using aging GAN, it would be useful to create 4D datasets. 
Face aging is also called age progression or age synthesis 

as it revives the face by changing the facial features. Vari-
ous techniques are used to enhance the features of the face 
so that the original image is preserved. Figure 19 shows 
the transformation of the face using age-conditional GAN 
(ACGAN) [139].

Shi et al. [140] used GANs for face aging because differ-
ent face parts have different ageing speeds over time. Hence, 
they used attention based conditional GAN using normalisa-
tion for handling the segmented face aging. Fang et al. [141] 
proposed a progressive face aging using the triple loss func-
tion at the generator level of GAN. The complex translation 
loss helped them in handling face age effectively. Huang 
et al. [142] worked on face aging using the progressive GAN 
for handling three aspects such as identity preservation, high 
fidelity, and aging accuracy. Liu et al. [143] proposed a con-
trollable GAN for manipulating the latent space of the input 
face image to control the face aging. Yadav et al. [144] pro-
posed face recognition over various age gap using two differ-
ent images of the same person. Sharma et al. [145] worked 
on fusion-based GAN using a pipeline of CycleGAN for 
aging progression and enhanced super-resolution GAN for 
high fidelity. Liu et al. [146] proposed a face aging method 
for young faces modeling the transformation over appear-
ance and geometry of the face.

As shown in Table 6, facial reconstruction can be used 
in three different types of settings. Facial puppetry, speech-
driven animation, and face enactment are all examples of 
animation-based face reconstruction. Face replacement and 
video dubbing are two examples of video-based applica-
tions. Face ageing, virtual makeup, and projection mapping 
are some of the most common 3D face applications.

7  Challenges And Future Research 
Directions

This section discusses the main challenges faced during 3D 
face reconstruction, followed by future research directions.

7.1  Current Challenges

The current challenges in 3D face reconstruction are occlu-
sion removal, makeup removal, expression transfer, and 

Table 3  (continued)

References Year Adversar-
ial Loss

AUC CE IoU MAE MEM MSE NME PSNR RMSE ROC SSIM Other

[2] 2020 × × × × ✓ × × × × × × × ✓
[8] 2020 ✓ × × × ✓ × × × × × × × ×
[9] 2021 × × × × ✓ × × × × × × × ✓
[97] 2021 × × × × × × × ✓ × × × × ×
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Table 4  Detail description of datasets used

Dataset Name Modalities Total Images Total Subjects Emotion 
Label 
Availability

Occlusion  
Label Avail-
ability

Publicly 
Avail-
able

Techniques using the 
dataset

Annotated faces-in-
the-wild (AFW) 
[98]

2D + Landmarks 468 – No No Yes [63, 31]

Annotated facial 
landmarks in the 
wild (AFLW) [99]

2D + Landmarks 25993 – No No Yes [31]

AFLW2000-3D [85] 2D + Landmarks 2000 – No No Yes [73, 58, 77, 100, 86, 
92, 94]

AFLW-LFPA [84] 2D + Landmarks 1299 – No No Yes [100]
Age Database 

(AgeDB) [101]
2D + Age 16488 568 No No Yes [79]

Basel Face Model 
(BFM2009) [102]

3D 200 – No No Yes [63, 61]

Bosphorus [103] 2D, 3D 4666 105 Yes Yes Yes [38, 39, 26, 43, 32]
Binghamton 

University 3D 
Facial Expression 
(BU3DFE) [104]

3D 2500 100 Yes No Yes [63, 43, 48, 74, 86]

Binghamton 
University 4D 
Facial Expression 
(BU4DFE) [104]

3D + Time 606 101 Yes No Yes [43, 48, 75]

Chinese Academy 
of Sciences Insti-
tute of Automa-
tion (CASIA–3D) 
[105]

3D 4624 123 Yes No Yes [26, 43]

CASIA-WebFace 
[106]

2D 494414 10575 No No Yes [45]

CelebFaces 
Attributes Dataset 
(CelebA) [81]

2D 202599 10177 Yes Yes Yes [24, 64],[76, 77, 80, 
96]

Celebrities in 
Frontal-Profile in 
the Wild (CFP) 
[107]

2D 7000 500 No No Yes [79]

FaceScape [108] 3D 18760 938 Yes No Yes –
Facewarehouse 

[109]
3D – 150 Yes No Yes [64, 61, 76, 46, 24]

Face Recognition 
Grand Challenge 
(FRGC-v2.0) 
[110]

3D 4950 466 Yes No Yes [38, 67, 43, 86, 94]

GavabDB [111] 3D 549 61 Yes No Yes [43]
Helen Facial 

Feature Dataset 
(Helen) [112]

2D + Landmarks 2330 – No No Yes [95]

Hi-Lo [47] 3D 6000 – No No Yes [47]
IARPA Janus 

Benchmark A 
(IJB–A) [113]

2D + Landmarks 5712 500 No No Yes [76]

KinectFaceDB 
[114]

2D, 2.5D, 3D 936 52 Yes Yes Yes [2, 8]

Labeled Faces in the 
Wild (LFW) [82]

2D + Landmarks 13233 5749 No No Yes [64, 74, 76, 80, 96]
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Table 4  (continued)

Dataset Name Modalities Total Images Total Subjects Emotion 
Label 
Availability

Occlusion  
Label Avail-
ability

Publicly 
Avail-
able

Techniques using the 
dataset

Labeled Face 
Parts in the Wild 
(LFPW) [115]

2D + Landmarks 3000 – No No Yes [31]

Large Scale 3D 
Faces in the Wild 
(LS3D-W) [11]

2D + Landmarks 230000 – No No Yes [58, 76]

Media Integration 
and Communi-
cation Center 
Florence (MICC-
Florence)[116]

2D, 3D 53 53 No No Yes [74, 58, 76, 92, 94, 
97]

Notre Dame (ND-
2006) [117]

3D 13450 888 Yes No Yes [43]

Texas 3D Face Rec-
ognition Database 
(TexasFRD) [118]

2D + Landmarks, 
2.5D

1149 105 No No Yes [43]

University of 
Houston Database 
(UHDB31) [119]

3D 25872 77 No No Yes [67]

University of 
Milano Bicocca 
3D Face Database 
(UMBDB) [120]

2D, 3D 1473 143 Yes Yes Yes [43]

Visual Geometric 
Group Face Data-
set (VGG-Face) 
[121]

2D + Time 2.6M 2622 No No Yes [64]

VGGFace2 [66] 2D 3.31M 9131 No No Yes [45]
VidTIMIT [122] Video + Audio – 43 No No Yes [83]
VoxCeleb2 [123] 2D + Audio 1.12M Audios 6112 No No Yes [93]
WebCaricature [88] 2D 6042 Carica-

tures + 5974 
Images

252 No No Yes [87]

YouTube Faces 
Database (YTF) 
[124]

2D + Time 3425 Videos 1595 No No Yes [74]

300 Videos in the 
Wild (300 VW) 
[125]

2D+Time 218595 300 No No Yes [64, 83]

300 Faces in-the-
wild Challenge 
(300W-3D) [126]

2D + Landmarks 600 300 No No Yes [75, 58, 77]

300 Faces in-the-
wild with Large 
Poses (300W-LP) 
[85]

2D, 3D 61225 – No No Yes [79, 76, 96, 95, 51, 
78]

3D Twins Expres-
sion Challenge 
(3D-TEC) [127]

3D 428 214 Yes No Yes [26]

4D Facial Behav-
iour Analysis for 
Security (4DFAB) 
[34]

3D+Time 1.8M 180 Yes No No [33, 47]
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Table 5  Comparative analysis of 3D face reconstruction in terms of technique, hardware, and applications

References Year Technique Hardware RAM (GB) Applications

[38] 2016 CNN on synthetic data GPU 8 Real Images
[63] 2017 Cascaded regression Intel Core i7 8 Real Images
[39] 2017 CNN on synthetic data Intel Core i7 8 Facial Reenactment
[51] 2017 Direct volumetric CNN regression GPU 8 Real Images
[64] 2017 Unsupervised deep convolutional autoencoder GPU 8 Real Images
[67] 2017 End-to-end Deep Neural Network GPU 8 Real Images
[68] 2017 Deep learning-based sketching GPU 8 Avatar, Cartoon characters
[29] 2017 Glass-based explicit modelling Mobile Phone 4 Real Images
[26] 2018 Deep CNN and 3D augmentation GPU 8 Captured 3D face reconstruction
[61] 2018 Coarse to fine optimization strategy Intel Core i7 8 Real Images
[30] 2018 RBF interpolation Intel Core i7 8 3D films and virtual reality
[69] 2018 Landmark localization and deep CNN Intel Core i7 8 Real Images
[43] 2018 Deep CNN GPU 8 Real Images
[48] 2018 Epipolar plane images and CNN GPU 8 Real Images
[70] 2018 Sparse photometric stereo Intel Core i7 8 Semantic labeling of face into fine region
[71] 2018 Bump map estimation with deep convolution 

autoencoder
GPU 12 Real Images

[72] 2018 Morphable model, Basel face model, and Cas-
caded regression

Intel Core i7 8 Real Images

[73] 2018 Position map regression network GPU 8 Real Images
[74] 2018 Encoder decoder based GPU 32 Real Images
[31] 2018 3DMM Intel Core i7 8 Real Images
[32] 2019 Cascaded regression Intel Core i7 8 Estimation of high-quality 3D face shape from 

single 2D image
[49] 2019 Best fit blending Intel Core i7 16 Virtual reality
[75] 2019 CNN regression GPU 8 Real time application
[58] 2019 Unguided volumetric regression network Intel Core i7 8 Real Images
[27] 2019 GANs and Deep CNNs GPU 11 Image augmentation
[76] 2019 Weakly supervised CNN GPU 8 Real Images
[77] 2019 GANs GPU 11 De-occluded face generation
[78] 2019 Siamese CNN Intel Core i7 8 Real Images
[79] 2019 GANs GPU 4 Image augmentation
[80] 2019 3DMM Intel Core i7 8 Easy combination of multiple face views
[83] 2019 Encoder decoder based GPU 8 Video quality enhancement
[44] 2019 RNN and autoencoder GPU 11 Video avatars, facial reenactment, video dub-

bing
[33] 2020 Deep neural networks Intel Core i7 8 Facial affect synthesis of basic expressions
[45] 2020 Symmetry consistent CNN GPU 11 Natural Images
[46] 2020 Deep CNN GPU 11 Expression modeling on caricature
[10] 2020 2D assisted self-supervised learning Intel Core i7 8 Real Images
[47] 2020 GANs GPU 32 3D face augmentation
[86] 2020 Cascaded coupled regression GPU 8 Real Images
[24] 2020 Graph convolutional networks GPU 11 Generate high fidelity 3D face texture
[87] 2020 GANs GPU 11 Animation, 3D printing, virtual reality
[89] 2020 3DMM and GAN algorithm Intel Core i7 16 Generation of 4Kx6K 3D face from single 2D 

face image
[90] 2020 ANN GPU 16 Expression modeling on caricature
[91] 2020 GANs and VAEs GPU 8 Vision and graphics
[92] 2020 Adaptive reweighing based optimization Intel Core i7 8 Real Images
[93] 2020 3DMM and blendshapes GPU 8 Personalized reconstruction
[94] 2020 Multiview geometry consistency Intel Core i7 8 Real Images
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age prediction. These are discussed in the succeeding 
subsections.

7.1.1  Occlusion Removal

The occlusion removal is a challenging task for 3D face 
reconstruction. Researchers are working to handle 3D face 
occlusion using voxels and 3D landmarks [2, 8, 9]. Sharma 
and Kumar [2] developed a voxel-based face reconstruc-
tion technique. After the reconstruction process, they used 
a pipeline of variational autoencoders, bidirectional LSTM, 
and triplet loss training to implement 3D face recognition.

Sharma and Kumar [20] proposed voxel-based face 
reconstruction and recognition method. They used a genera-
tor and discriminator based on game theory for the genera-
tion of triplets. The occlusion was removed after the miss-
ing information was reconstructed. Sharma and Kumar [22] 
used 3D face landmarks to build a one-shot learning 3D face 
reconstruction technique (see Fig. 20).

7.1.2  Applying Make‑up and its Removal

Applying the facial makeup and its removal is challeng-
ing in virtual meetings during the COVID-19 pandemic 
[154–156]. makeup bag [154] presented an automatic 

Table 5  (continued)

References Year Technique Hardware RAM (GB) Applications

[35] 2020 3DMM Intel Core i7 8 Expression modeling
[95] 2020 Attention guided GAN Intel Core i7 8 2.5D to 3D face generation
[96] 2020 GANs GPU 12 Face animation and reenactment
[2] 2020 Clustering, VAE, BiLSTM, SVM GPU 32 Real Images
[8] 2020 End-to-end deep learning GPU 32 Real Images
[9] 2021 VAE and Triplet Loss GPU 32 Real Images
[97] 2021 Encoder decoder GPU 32 Multiface reconstruction

Fig. 12  Face puppetry in real-time [129]

Fig. 13  Neural Voice Puppetry [44]
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makeup style transfer technique by solving the makeup 
disentanglement and facial makeup application. The main 
advantage of MakeupBag is that it considers the skin tone 
and colour while doing the makeup transfer (Fig. 21).

Li et  al. [155] proposed a makeup-invariant face 
verification system. They employed a semantic aware 
makeup cleaner (SAMC) to remove face makeup under 
various expressions and poses. The technique worked 

Fig. 14  DeepFake example in 
6.S191 [133]

Fig. 15  a Synthesised virtual tattoos [134] and b Augmented reality-based pixel-unit makeup on lips [136]
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unsupervised while locating the makeup region in the face 
and used an attention map ranging from 0 to 1, denoting 

the degree of makeup. Horita and Aizawa [156] proposed 
a style and latent-guided generative adversarial networks 

Fig. 16  FaceForge based live projection mapping [137]

Fig. 17  Projection mapping of a 2D face combined with 3DMM model [24]

Fig. 18  Expression invariant face replacement system [138]
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Fig. 19  Transformation of the face using ACGAN [139]

Table 6  Applications of 3D face 
reconstruction

Broad Area Target Problems Techniques / Tools References

Animation Facial Puppetry Displaced dynamic expression (DDE) 
model and dynamic expression model 
(DEM)

[129, 130]

Speech-driven Animation RNN and Autoencoders [44]
Face Enactment RNN, GAN, Attention-based CNN [132, 147–151]

Video Video Dubbing DeepFake, GANs [131–133]
Face Replacement CNN-based transfer learning, GANs, Adobe 

Premiere Elements, Apple Final Cut Pro, 
Filmora

[138, 152, 153]

3D Face Face Aging GANs [139–146]
Virtual Makeup GANs, Autoencoders, Augmented Reality [134–136]
Projection Mapping CNN [24, 137]

Fig. 20  3D Face reconstruction based on facial landmarks [9]
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(SLGAN). They used controllable GAN to enable the user 
with adjustment of makeup shading (see Fig. 22).

7.1.3  Expression Transfer

Expression transfer is an active problem, especially with the 
advent of GANs. Wu et al. [157] proposed ReenactGAN, a 

Fig. 21  MakeupBag based out-
put for applying makeup from 
reference to target face [154]

Fig. 22  GAN based makeup transfer and removal [156]

Fig. 23  Expression transfer using ReenactGAN [157]



34993D Face Reconstruction in Deep Learning Era: A Survey  

1 3

method capable of transferring the person's expressions from 
source video to target video. They employed the encoder-
decoder based model for doing the transformation of the 
face from source to target. The transformer used three loss 
functions for evaluation, viz. cycle-loss, adversarial loss, and 
shape constrain loss. Donald Trump images reenacting the 
expressions are depicted in Fig. 23.

Deep fakes are a matter of concern where the facial 
expression and context are different. Nirkin et al. [158] 
proposed a deep fake detection method to detect identity 
manipulations and face swaps. In deep fake images, the face 
regions are manipulated by targeting the face to change by 
variation in the context. Tolosana et al. [159] worked on a 
survey for four kinds of deep fake methods, including full 
face synthesis, identity swapping, face attribute manipula-
tion, and expression swapping.

7.1.4  Age Prediction

Due to deep fakes and generative adversarial networks [140, 
142], the faces can be deformed to other ages, as seen in 
Fig. 24. With this, the challenge of age prediction of a per-
son goes beyond imagination, especially in fake faces on 
identity cards or social networking platforms.

Fang et al. [141] proposed a GAN-based technique for 
face age simulation. The proposed Triple-GAN model used 
the triple translation loss for the modelling of age pattern 
interrelation. They employed an encoder-decoder based gen-
erator and discriminator for age classification. Kumar et al. 
[160] employed reinforcement learning over the latent space 
based on the GAN model [161]. They used Markov Decision 
Process (MDP) for doing semantic manipulation. Pham et al. 
[162] proposed a semi-supervised GAN technique to gener-
ate realistic face images. They synthesised the face images 
using the real data and the target age while training the net-
work. Zhu et al. [163] used the attention-based conditional 

GAN technique to target high-fidelity in the synthesised face 
images.

7.2  Future Challenges

Unsupervised learning in 3D face reconstruction is an open 
problem. Work has been presented lately by [164] to work 
around symmetric deformable objects in 3D. In this paper, 
some future possibilities for 3D face reconstruction such 
as lips reconstruction, teeth and tongue capturing, eyes and 
eyelids capturing, hairstyle, and full head reconstruction 
have been discussed in detail. These challenges have been 
laid out for the researchers working in the domain of 3D face 
reconstruction.

7.2.1  Lips Reconstruction

The lips are one of the most critical components of the 
mouth area. Various celebrities get surgeries on lips ranging 
from lip lift surgery, lip reduction surgery, and lip augmenta-
tion surgery [165, 166]. Heidekrueger et al. [165] surveyed 
the preferred lip ratio for females. It was concluded that gen-
der, age, profession, and country might affect the preferences 
of lower lip ratio.

Baudoin et al. [166] conducted a review on upper lip aes-
thetics. Various treatment options ranging from fillers to der-
mabrasion and surgical excision were examined. Zollhofer 
et al. [1] discussed lip reconstruction as one application for 
3D face reconstruction, as shown in Fig. 25. In [167], the 
lips' video reconstructed the rolling, stretching, and bend-
ing of lips.

7.2.2  Teeth and Tongue Capturing

In literature, few works have worked on capturing the inte-
rior of the mouth. Reconstructing teeth and tongue in GAN-
based 2D faces is a difficult task. A beard or moustache can 

Fig. 24  Results of progressive face aging GAN [142]
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make it difficult to capture the teeth and tongue. In [163] a 
statistical model was discussed.. There are different appli-
cations for reconstructing the teeth area, viz. production of 
content for digital avatars and dentistry for facial geometry-
based tooth restoration (see Fig. 26).

7.2.3  Eyes and Eyelids Capturing

Wang et al. [170] showed 3D eye gaze estimation and facial 
reconstruction from an RGB video. Wen et al. [169] pre-
sented a technique for tracking and reconstructing 3D eyelids 

Fig. 25  High-quality lip shapes 
for reconstruction [1]

Fig. 26  Teeth reconstruction with its applications [168]

Fig. 27  Eyelid tracking based on semantic edges [169]
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in real-time (see Fig. 27). This approach is combined with a 
face and eyeball tracking system to achieve a full face with 
detailed eye regions. In [171], Bi-directional LSTM was 
employed for eyelids tracking.

7.2.4  Hair Style Reconstruction

Hair style reconstruction is a challenging task on 3D faces. A 
volumetric variational autoencoder based 3D hair synthesis 
[172] is shown in Fig. 28. Ye et al. [173] proposed a hair 
strand reconstruction model based on the encoder-decoder 
technique. It generated a volumetric vector field using the 
hairstyle-based oriented map. They used a mixture of CNN 
layers, skip connections, fully connected layers, and the 
deconvolution layers while generating the architecture in 
encoder-decoder format. Structure and content loss was used 
as the evaluation metric during the training process.

7.2.5  Complete Head Reconstruction

The reconstruction of the 3D human head is an active area 
of research. He et al. [174] presented a full head data-driven 
3D face reconstruction. The input image and reconstructed 

result with a side-view texture were generated (see Fig. 29). 
They employed the albedo parameterised model for com-
plementing the head texture map. A convolution network 
was used for face and hair region segmentation. There are 
various applications of human head reconstruction in virtual 
reality as well as avatar generation.

Table 7 presents the challenges and future directions 
along with their target problems.

8  Conclusion

This paper presents a detailed survey with extensive study 
for 3D face reconstruction techniques. Initially, six types of 
reconstruction techniques have been discussed. The obser-
vation is that scalability is the biggest challenge for 3D face 
problems because 3D faces do not have sufficiently large 
datasets publicly available. Most of the researchers have 
worked on RGB-D images. With deep learning, working on 
a mesh image or the voxel image has hardware constraints. 
The current and future challenges related to 3D face recon-
struction in the real world have been discussed. This domain 
is an open area of research ranging with many challenges, 

Fig. 28  3D Hair Synthesis using volumetric VAE [172]
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especially with the capabilities of GANs and deep fakes. 
The study is unexplored in lips reconstruction, the interior 
of mouth reconstruction, eyelids reconstruction, hair styling 
for various hair, and complete head reconstruction.
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