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Abstract

3D face modeling from 2D face images is of significant

importance for face analysis, animation and recognition.

Previous research on this topic mainly focused on 3D face

modeling from a single 2D face image; however, a single

face image can only provide a limited description of a 3D

face. In many applications, for example, law enforcement,

multi-view face images are usually captured for a subject

during enrollment, which makes it desirable to build a 3D

face texture model, given a pair of frontal and profile face

images. We first determine the correspondence between un-

calibrated frontal and profile face images through facial

landmark alignment. An initial 3D face shape is then re-

constructed from the frontal face image, followed by shape

refinement utilizing the depth information provided by the

profile image. Finally, face texture is extracted by mapping

the frontal face image on the recovered 3D face shape. The

proposed method is utilized for 2D face recognition in two

scenarios: (i) normalization of probe image, and (ii) en-

hancing the representation capability of gallery set. Ex-

perimental results comparing the proposed method with a

state-of-the-art commercial face matcher and densely sam-

pled LBP on a subset of the FERET database show the ef-

fectiveness of the proposed 3D face texture model.

1. Introduction

Automatic face recognition is a challenging task that has

gained substantial attention during the last three decades

[22]. Face Recognition Vendor Test (FRVT) [27, 29] eval-

uated state-of-the-art face recognition systems through a

series of large scale independent evaluations in both con-

strained and semi-constrained environments. The results in-

dicated that many 2D face recognition systems can achieve

acceptable performance in constrained environments (e.g.

frontal pose, indoor illumination and natural expression).

However, FRVT evaluations also revealed that face recog-

nition in unconstrained environments (e.g. large facial ap-

pearance variations due to head pose, non-uniform light-

ing conditions, occlusion, and facial expressions) is still far

from satisfactory. One of the main reasons for this limited

performance in unconstrained situations is that face image

is only a 2D projection of a 3D human face, which is very

sensitive to the facial appearance variations. This motivates

the use of 3D facial shape and texture in face recognition.

The most direct method to perform 3D face recogni-

tion is to capture 3D face images (shape and texture) using

3D sensors both in constructing the probe and galley sets

[21, 24]. However, 3D sensing is still relatively quite ex-

pensive and the acquisition time can be slow. These factors

make it infeasible to utilize 3D scanners in many practical

applications. This means that most deployed face recogni-

tion systems can only perform recognition based on 2D face

images. To resolve this conflict between the unavailability

of 3D face data and the requirement of improving recogni-

tion performance in unconstrained environments, two dif-

ferent strategies have been proposed: (i) normalization of

2D face images, and (ii) 3D face modeling from 2D images.

The first approach above normalizes facial appearance

variations by performing a number of different transforma-

tions in 2D image space. For example, illumination nor-

malization methods [30, 38, 13, 15, 34, 19, 33, 31, 14] are

applied to eliminate uneven lighting variations, and pose

normalization methods [7, 10, 11, 37, 36] are applied to

generate a virtual frontal view from an arbitrary non-frontal

view. However, each normalization method can only handle

a specific kind of facial appearance variation. Thus, normal-

ization of 2D face images can improve the face recognition

performance when there is only one major facial appear-

ance variation. Moreover, some normalization methods for

2D face images assume that lighting directions or face poses

are known. These constraints limit the application of nor-

malization methods for 2D face images in practice, as the

factors (pose, illumination and expression) leading to facial

appearance variation are usually not known a priori.

The feasibility of building a 3D face model from one

or more 2D face images makes it possible to address var-

ious challenges due to unknown facial appearance varia-

tions. Directly applying Shape-from-Shading (SFS) [17]
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Figure 1. Examples of mug shot face images in frontal and profile

views acquired at the booking time by police and law enforcement

agencies. (a) Mug shots of a suspect who was arrested in 1971

in Miami, and charged with grand larceny 1. (b) Mug shots of a

suspect who was arrested for a murder in December 1980 2.

to a single 2D image for face analysis is found to be very

difficult, since the concave-convex ambiguity may lead to

inversion of facial components [9]. To address this prob-

lem, one common approach is to impose domain specific

constraints or use a face-specific shape model. By exploit-

ing the approximate bilateral symmetry of faces, symmetric

SFS [42, 43] was proposed to recover both shape and albedo

information from a single face image. A constraint on 3D

face shape was incorporated in SFS [5] by deriving a low di-

mensional parameterization of face shape space. Based on

principal component analysis (PCA) of 3D head shapes and

texture captured with 3D scanners, a 3D morphable model

[8] was proposed to simultaneously estimate 3D face shape,

texture, and pose as well as lighting and camera properties

from one single face image. By replacing the texture fitting

in the original 3D morphable model with 2D image map-

ping, an efficient method was proposed for 3D face recon-

struction from one frontal face image [20]. 3D morphable

model was combined with spherical harmonics model [6]

to recover the face shape, texture, and lighting information

from a single image [39].

The above approaches focus on 3D face modeling from

a single 2D face image, which is desirable for face recog-

nition tasks when only one face image is available for each

individual. However, with the rapid development of digital

cameras, multi-view face images and even video sequences

of a subject can be captured in order to achieve more ac-

curate recognition performance. For example, mug shot

databases managed by law enforcement agencies generally

include two mug shots; one for frontal face and the other

for profile face (see Fig. 1). The reason for using these two

face images lies in the fact that the information provided

by a profile image is complementary to that provided by a

frontal image. As shown in Fig. 2, the frontal face image

provides the most descriptive information of a 3D face in

the X − Y plane, while the profile face image provides the

most descriptive information of a 3D face in the Y − Z

plane. In these applications, 3D face modeling methods

should utilize information provided by both the frontal and

1http://cobbloviate.com/2010/03/is-a-mug-shot-worth-more-than-a-

thousand-words.html
2http://strangecosmos.com/content/item/102888.html
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Figure 2. Different types of information provided by frontal and

profile face images. (a) A three dimensional coordinate system

defined for a 3D human face. (b) A frontal face image mainly

provides description of a 3D face within the X − Y plane. (c) A

profile face image mainly provides description of a 3D face within

the Y − Z plane (depth information).

profile face images. However, compared to 3D face model-

ing from a single face image, 3D face modeling from frontal

and profile face images has not received wide attention.

In this paper, we present a method for 3D face texture

modeling from frontal and profile face images. Since the

frontal and profile face images are usually captured without

calibration, we first align the shapes in frontal and profile

face images through landmark alignment. An initial 3D face

shape is reconstructed from the frontal face image, followed

by 3D shape refinement utilizing the profile face image. Fi-

nally, facial texture is extracted by mapping the frontal face

image to the recovered 3D face shape. The effectiveness

of the proposed approach is verified by face images synthe-

sized for novel views as well as face recognition across pose

on a multi-view subset of the FERET [28] database.

2. Related Work

Compared to 3D face modeling from a single face im-

age, only a limited amount of research is available in the lit-

erature on 3D face modeling from uncalibrated frontal and

profile face images. Ip and Yin [18] developed a scheme for

automatically constructing a 3D individualized head model

from two orthogonal views (actually a side view and the

frontal view of the face). In their approach, facial landmarks

on a 2D face image were used to deform the corresponding

vertices in a generic model; the remaining vertices in the

generic model were calculated via interpolation. The two

input facial images were then blended and texture-mapped

onto the 3D head model to get the face texture. Ansari and

Mottaleb [4] also built a 3D shape model through interpo-

lation based on the 3D coordinates of 15 vertices that are

calculated from two calibrated face images in orthogonal

views. As pointed out by the authors, their method could

not be applied to uncalibrated frontal and profile face im-

ages in public face databases. Heo and Savvides [16] first

estimated a sparse 3D face shape by aligning a frontal and

a profile face image. The final 3D face shape was also cal-

culated using an interpolation scheme (cubic spline inter-

polation). The face texture was extracted by mapping the

frontal face image to the calculated 3D face shape. The

effectiveness of these approaches was shown by present-
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Figure 3. Overview of the proposed 3D face texture modeling method from uncalibrated frontal and profile face images.

ing visually appealing 2D face images synthesized for novel

views. However, no face recognition experiments were per-

formed on public face databases containing multi-view face

images. Thus, the effectiveness of their approaches is un-

known for face recognition. Zhang et al. [40] generated

the 3D face shape by proposing a multilevel variation min-

imization approach and extracted the face texture by taking

diffuse and specular reflections of face surface into account.

They evaluated their approach by both virtual view synthe-

sis and face recognition experiments. However, face recog-

nition was performed on a small-scale database (CMU-PIE

[32]), which contains only 68 subjects. Moreover, only

eigenfaces [35] and local binary patterns (LBP) [25] were

utilized in the face matching algorithms. The effectiveness

of their 3D modeling approach in conjunction with state-of-

the-art face matchers is not known.

Besides 3D face modeling from two face images, 3D

face modeling has also been extended to multiple 2D face

images. Zhao et al. [41] estimated the 3D face shape by

using frontal and profile 2D morphable shape models. The

face texture was calculated as a weighted combination of

multiple input face images. Again, only face images syn-

thesized for novel views were shown. Faggian et al. [12]

presented a mathematical derivation for 3D face modeling

algorithm from one single face image and made it possi-

ble to be directly applied to multiple 2D face images. The

accuracy of the reconstructed 3D face shape was verified

through cross-validation on USF Human ID 3D database

[3]. Again, no experiments were performed to verify the

effectiveness of their 3D face modeling method for face

recognition. Moreover, in both the above methods, there is

no comparison showing that the 3D face model built from

multiple face images is more accurate than that built from

only frontal and profile face images.

3. 3D Face Texture Modeling

Considering that a pair of frontal and profile face images

should be able to provide the most essential description of

a 3D human face, we propose to build a 3D face texture

model for each subject from uncalibrated frontal and profile

face images. To recover the 3D face shape, we employ a

statistical model considering its robustness, instead of the

commonly used vertex interpolation based on 3D face ver-

tices. To achieve efficient 3D modeling, the face texture is

extracted by directly mapping the frontal face image to the

recovered 3D face shape. As illustrated in Fig. 3, the pro-

posed 3D face texture model consists of the following steps:

1) Landmark localization for face images.

2) Shape alignment between frontal and profile face im-

ages.

3) Initial 3D shape reconstruction from frontal image.

4) 3D shape optimization based on profile face image.

5) Texture extraction by mapping frontal face image ac-

cording to the recovered 3D face shape.

3.1. Landmark Localization

Since the frontal and profile face images are uncali-

brated, we need to establish the correspondence between

them. For the proposed approach, a sparse correspondence

between the frontal and profile face images is sufficient.

Thus, we determine the correspondence by localizing pre-

defined feature points on both frontal and profile face im-

ages. For frontal face images, an Active Shape Model

(ASM) [10] is utilized to detect a set of facial landmarks.

Specifically, the open source software Stasm [23] is utilized

as the ASM detector. To further improve the robustness of

Stasm, we initialize Stasm by providing the eye locations

detected by PittPatt Face Recognition SDK [2]. For the pro-

file face images in the gallery set, we manually mark several

facial landmarks. Since the main goal of 3D face texture

modeling from frontal and profile face images is to achieve

higher recognition performance in unconstrained environ-

ments of value to law enforcement agencies, it is reasonable
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Figure 4. Facial landmark localization. (a) Automatically detected

facial landmarks for a frontal face image. (b) Manually marked

facial landmarks for a profile face image.

to allow manual landmark annotation in order to build more

accurate 3D face texture model. For example, to determine

the identity of a suspect in a criminal investigation, it is ac-

ceptable to manually mark the facial landmarks, particularly

in low quality video frames. Fig. 4 illustrates the localized

facial landmarks for a pair of frontal and profile face im-

ages. Fig. 4 (a) shows the 68 automatically detected facial

landmarks using ASM, and Fig. 4 (b) shows the 7 manually

annotated landmarks on a profile face image.

3.2. Correspondence Determination

Once we have the facial landmarks on both frontal and

profile face images, the correspondence between the two

uncalibrated face images can be determined through land-

mark alignment. We denote the landmarks on a frontal face

image as (xf
i , y

f
i ), i = 1, 2, · · ·, t (here t = 68) and those

on a profile face image as (xp
j , y

p
j ), j = 1, 2, · · ·, t′ (here

t′ = 7). Note that although the landmarks on frontal and

profile face images are of the same form, they have differ-

ent physical meaning. The coordinates x
p
j and y

p
j in pro-

file face image correspond to the Z and Y axes, respec-

tively in the 3D face model. This suggests that landmark

alignment should be conducted based on the Y coordinates.

From Fig. 2, we can also notice that Y -axis is the common

axis between the frontal and profile face images.

Based on the analysis above, two control points, C1 and

C2, are utilized for landmark alignment. As illustrated in

Fig. 5 (a), C1 is the midpoint between the two eyes and C2

is the landmark on the chin (landmark #8). Based on con-

trol points C1 and C2, the frontal and profile face images

are, respectively, rotated and scaled such that the direction

of the line connecting C1 and C2 is vertical and the length

of the line equals that in the average 3D face shape. More-

over, we convert the coordinates of both vertices in 3D face

shape and landmarks in 2D face image by using point O

(landmark #42 in Fig. 5 (a)) as the origin. This conversion

makes the coordinate system independent of the face image

size.

After the above landmark alignment, the correspondence

between the uncalibrated frontal and profile faces is deter-

mined. Another benefit of landmark alignment is that it sim-

Rotation

Scaling

Rotation

Scaling

C1

C1

C2

C2

C1

C1

C2

C2

(a)

(b)

(c)

142

133

124

151

115
106

22 16

3328

9
8

7

30

1723

3532
31

37
36

29 34
2127

49

26 20

55

46

40 44

38

1925
24 18

45

4341

39

626758

47 48

52

42

68

C1

C2

h

O

Figure 5. Landmark alignment for frontal and profile face images.

(a) Two control points, C1 and C2, used for landmark alignment

are illustrated on an average 3D face shape 1. A frontal face image

in (b) and a profile face image in (c) are rotated and scaled such

that the direction of the line connecting C1 and C2 is vertical and

the length of the line equals that in the average 3D face shape.

plifies the procedure for fitting the average 3D face shape to

a 2D face image, which will be discussed in the following.

3.3. Initial 3D Shape Reconstruction

As discussed in Section 2, an interpolation based algo-

rithm is used to recover the 3D face shape, after the cor-

respondence between the frontal and profile face images is

determined. Different from previous work, we employ a

statistical model to reconstruct the 3D face shape, because

of its robustness.

Specifically, we use a simplified 3D morphable model

[8] without the texture fitting. We derive our 3D shape

model from the USF Human ID 3-D Database [3], which

includes 3D face shape and texture of 100 (denoted by m)

subjects captured with a 3D scanner. Each 3D face in-

cludes 75,972 vertices which are interactively reduced to

n (here, n = t = 68) for efficient performance [26]. We

then represent each 3D shape with a shape vector S =
(x1, y1, z1;x2, y2, z2; · · ·;xn, yn, zn)

T , which is a concate-

nation of the X , Y , Z coordinates of the n vertices. PCA

is then applied to all m shape vectors (m is the number of

subjects) to get a statistical model of 3D face shape

S
′

= S+

K∑

k=1

αkWk (1)

where S
′

is a new 3D face shape; S is the average 3D face

shape; Wk is the eigenvector of all m 3D face shapes that

corresponds to the k-th largest eigenvalue; αk is the set of

coefficients for the k-th shape eigenvector. Given a set of

facial landmarks P2D = (x1, y1;x2, y2; · · ·;xt, yt)
T for

1Average 3D face shape is calculated by averaging 100 3D shapes in

the USF Human ID 3D database [3].



a frontal 2D face image, the 3D shape for this image can

be efficiently estimated by minimizing the following cost

function using an iterative algorithm proposed in [26]

e(P,R,T, s, {αk}
K
k=1

) = ‖P2D − s ·PRTS
′

‖L2
(2)

where T, R, s and P are the translation, rotation, and scal-

ing operations for the 3D face shape S
′

. P is an orthogonal

projection from 3D to 2D.

As mentioned in Section 3.2, the landmark alignment

also facilitates the process of fitting the generic 3D face

to 2D face images. The reason is threefold. First, since

P2D and S have the same coordinate origin, the translation

operation T, can be omitted. Secondly, P2D and S are al-

ready of the same scale after the landmark alignment, which

means parameter s = 1 and scaling operation can also be

omitted. Thirdly, unless there is a dramatic pitch rotation,

the rotation operation R for fitting a 3D shape model to a

frontal face image can be omitted and the rotation for fitting

a 3D shape model to a profile face image can be simplified

as a 90 degree yaw rotation. Therefore, we mainly need to

estimate the PCA coefficients {αk}
K
k=1

. With the above sta-

tistical model, we first reconstruct an initial 3D face shape

Sf from the frontal face image.

3.4. 3D Shape Refinement

As illustrated in Fig. 2, the frontal face image provides a

detailed description for a 3D face in the X − Y plane; thus

the X − Y coordinates of the semantic feature points in the

initial 3D face shape should be accurately estimated. How-

ever, the Z coordinates of the initial 3D face shape Sf are

mainly derived from the average 3D face shape S. There-

fore, the initial 3D face shape Sf should be refined by im-

proving the accuracy of the Z coordinates.

To calculate the Z coordinates of 3D face shape from a

profile face image, we further reduce 3D face shape model

in Section 3.3 from n vertices to n′ (here, n′ = t′ = 7)

vertices, and fit it to the 2D facial landmarks on a profile

face image. This way, we get another 3D face shape S
′

p and

the coefficients α′

k, k = 1, 2, · · ·,K ′ corresponding to the

eigenvectors. We should notice that S
′

p has fewer vertices

than the initial 3D face shape Sf . Thus, we calculate a “high

resolution” 3D face shape Sp based on α′

k

Sp = S+

K′∑

k=1

α′

kWk (3)

Now, Sp has the same number of vertices as Sf .

Given the landmark alignment in Section 3.2, the recon-

structed 3D face shape Sp is in the same coordinate system

and of the same scale as Sf . Next, we refine the initial 3D

face shape Sf with a displacement of its Z coordinates by

the Z coordinates of Sp. Fig. 6 illustrates the initial and

Initial 3D face shape

Refined 3D face shape

Figure 6. 3D face shape refinement based on a profile face image.

refined 3D face shapes by respectively plotting them on a

profile face image using red and blue rectangles. For the fa-

cial component with large depth variations (e.g. nose), the

refined 3D face shape is more accurate than the initial 3D

face shape.

3.5. Texture Extraction

To extract the face texture, we directly map the frontal

face image to a novel pose based on Delaunay triangulation

of the 2D facial landmarks. With this direct mapping, we

retain detailed and realistic features in face image, which

helps in face recognition.

4. Experimental Results

In this section, we study the performance of the proposed

3D face texture model through face recognition across pose.

The proposed 3D face texture model is used to improve 2D

face recognition accuracy in two ways: (i) face normaliza-

tion, and (ii) representation capability enhancement. The

first application of the model is appropriate for the real-

world scenario where law enforcement agencies find its

mate in a large scale mug shot database. In this scenario,

the proposed 3D face texture model is utilized to synthesize

a frontal face image for the probe, which is then matched

to the gallery set to determine the identity of the probe im-

age. The second application of our model is suitable in situ-

ations where multi-view face images (typically including a

pair of frontal and profile face images) are captured for each

subject during enrollment for the purpose of highly accu-

rate authentication. In this scenario, the proposed 3D face

texture model is used to synthesize various face images for

each subject in the gallery set in order to enhance the repre-

sentation capability of each class (subject). The above two

scenarios also represent two different tasks in face recogni-

tion: identification and verification.

The experiments are conducted on a subset of the

FERET [28] database, which contains face images with

multiple pose variations (see Fig. 7). In order to build the

3D face texture model, a frontal face image (fa) and a profile

face image (pl) of each subject are used as the gallery set.

To reduce the laborious cost of manual annotation of face

images, the facial landmarks for frontal face images are lo-
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Figure 7. Pose variations in the multi-view subset of the FERET

[28] database.

Table 1. Datasets used for the face identification experiment. The

proposed method is utilized to normalize the pose of probe images.

Subset # Subjects # Images

Gallery set
FERET 505 1,010

PCSO 10,000 10,000

Probe set FERET 280 403

calized automatically using ASM and only seven landmarks

are manually annotated for the profile face images. Among

face images of the remaining five poses (ql, qr, hl, hr, pr),

those for which facial landmarks can be automatically de-

tected using ASM are used as the probe set.

To evaluate the effectiveness of the proposed model, we

use densely sampled LBP and a state-of-the-art commercial

face matcher FaceVACS [1] for face recognition. The pro-

posed 3D face modeling method can be claimed to be of

value if it can be shown to improve the performance of a

state-of-the-art face recognition system.

4.1. Face Normalization

In the first scenario, the proposed 3D face texture model

is used to normalize the probe face images. To replicate

real-world applications in law enforcement agencies, the

gallery is enlarged by 10,000 mug shot photographs (one

image per subject) from the Pinellas County Sheriff’s Of-

fice (PCSO) database. The dataset configuration for this ex-

periment is shown in Table 1. In this identification task, 403

probe face image with arbitrary pose variation are matched

against 11,010 background face images.

Figure 8 shows the the original probe images (the first

row) and the normalized probe images (the second row) by

the proposed 3D texture model. We can notice that detailed

facial features, e.g. mole, are well preserved in the normal-

ized images.

The normalized probe face images are matched to the

gallery set by using the commercial matcher FaceVACS

and densely sampled LBP. Figure 9 shows the performance

of FaceVACS and LBP. FaceVACS and LBP achieve, re-

spectively, 91.6% and 82.1% rank-1 recognition rates after

probe face images are normalized using the proposed 3D

face texture model, which are much better than the per-

formance before face normalization (83.6% and 72.5%).

These results demonstrate the effectiveness of the proposed

3D face texture model for 2D face identification.

Figure 8. Normalized probe face images (bottom row) after ap-

plying the proposed 3D face texture model to a single input face

image (top row).

4.2. Representation Capability Enhancement

In the second scenario, for improving the face authenti-

cation accuracy, we utilize the frontal and profile face im-

ages that are usually captured for each subject during book-

ing time (enrollment). Compared with a single frontal face

image, a pair of frontal and profile images provides better

representation capability for a subject’s face. In this exper-

iment, we propose to enhance the representation capability

of each subject with the proposed 3D face texture model.

Specifically, a 3D face model is first recovered from a pair

of frontal and profile face images, and then the 3D model is

used to synthesize face images in novel views. Since there

is only one face image for each subject in the PCSO back-

ground set (see Table 1), only the face images of 505 sub-

jects from the FERET database are used as the target set.

Figure 11 shows multi-view face images synthesized for

several subjects in the target set by using the proposed

method. Face images generated for novel views using the

proposed 3D face texture model appear to be visually real-

istic. Face verification using FaceVACS and densely sam-

pled LBP is then performed with the enhanced gallery set

with 8 synthesized views added to each subjects. As shown

in Fig. 10, FaceVACS and LBP achieve significantly higher

performance by using the enhanced gallery set. The verifi-

cation rates of FaceVACS and LBP on the original gallery

set at a False Alarm Rate (FAR) of 0.1% are merely 13.2%

and 0.1%, respectively. However, after representation capa-

bility enhancement with the proposed method, FaceVACS

and LBP, respectively, achieve impressive 98.0% and 65.5%

verification rates at a FAR of 0.1%. These results further

demonstrate the effectiveness of the proposed 3D texture

model for improving 2D face recognition accuracy.

5. Conclusions and Future Work

Compared with a single 2D face image, a pair of frontal

and profile face images provide more description of a sub-

ject’s face. However, 3D face modeling from a pair of

frontal and profile face images, captured at the booking time

by law enforcement agencies, has received only limited at-

tention. We have proposed a method for 3D face modeling
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densely sampled LBP with and without using the proposed 3D

face texture model to normalize the probe face images.

from uncalibrated frontal and profile face images. The cor-

respondence between two uncalibrated face images is de-

termined through landmark alignment. An initial 3D face

shape is then reconstructed from the frontal face image fol-

lowed by shape refinement based on the profile image. Face

texture is extracted by mapping the frontal face image to the

recovered 3D face shape. Although our method is proposed

for building 3D face texture model from a pair of frontal

and profile face images, it also works well with only a sin-

gle input face image by bypassing the 3D shape refinement

step in Section 3.4. Results of 2D face recognition exper-

iments performed in two different scenarios shows that the

proposed 3D face texture model is effective in improving

the performance of a state-of-the-art commercial matcher.

Future work includes automatic landmark detection for pro-

file face images as well as texture extraction and fusion for

the two input face images. We are also in the process of

obtaining an operational database of profile and frontal face

images acquired at the booking time.
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