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Abstract

The creation of facial range models by 3D imaging sys-

tems has led to extensive work on 3D face recognition [19].

However, little work has been done to study the usefulness

of such data for recognizing and understanding facial ex-

pressions. Psychological research shows that the shape of a

human face, a highly mobile facial surface, is critical to fa-

cial expression perception. In this paper, we investigate the

importance and usefulness of 3D facial geometric shapes to

represent and recognize facial expressions using 3D facial

expression range data. We propose a novel approach to ex-

tract primitive 3D facial expression features, and then apply

the feature distribution to classify the prototypic facial ex-

pressions. In order to validate our proposed approach, we

have conducted experiments for person-independent facial

expression recognition using our newly created 3D facial

expression database. We also demonstrate the advantages

of our 3D geometric based approach over 2D texture based

approaches in terms of various head poses.

1. Introduction

There is a long history of interest in the problem of rec-

ognizing human emotion from facial expressions, as well

as extensive studies on face perception over the last three

decades [8, 17]. Analyzing the emotional expression of a

human face requires a number of preprocessing steps which

attempt to detect and locate characteristic facial regions, ex-

tract facial expression features, and model facial gestures

using anatomic information about the face. Although all

these steps are equally important, current research mostly

concentrates on the facial expression feature detection and

description, which is also the focus of this paper.

Facial expression features are mainly represented by

three categories: (1) static versus dynamic (or temporal);

(2) global versus local (or analytic); and (3) 2D versus

3D. Most research over the past thirty years has been di-

rected towards static/dynamic, analytic, 2D feature extrac-

tion [9], focusing primarily on two types of features: 2D

geometric features and appearance features from 2D static

images [16, 18] or video sequences [4, 3, 31]. Geomet-

ric features are described by a set of facial feature points

used to derive facial organs’ shapes or expressive regions.

Appearance features refer to the features exhibited on the

skin (e.g., frowns or wrinkles) [22] or action units [8, 6].

Over the past decade, a number of techniques have been

successfully developed for facial expression recognition, in-

cluding optical flow [28, 10] and Gabor wavelets [16], and

FACS-feature based techniques [22, 1, 6, 31]. The excel-

lent review of recent advances in this field can be found in

[5, 12, 17, 32]. All recent advances have been based on

2D images or videos, and most were primarily concerned

with extracting prototypic expressions from frontal or near-

frontal views of a face.

Recently, additional work has been done to improve the

performance of facial expression recognition under vari-

ous imaging conditions (e.g., pose, lighting, etc). Some

researchers have successfully explored partial 3D informa-

tion for facial expression recognition, such as multiple-view

based [18] and 3D model-based techniques [2, 13, 27, 30].

These methods are still based on 2D data. Because the facial

expression actuated by the facial muscle movement results

in the facial skin shape variation, it is ideal to model the

facial expressions explicitly in a 3D space.

Due to the limitations in describing facial surface defor-

mation when 3D features are evaluated in 2D space, 2D

images with a group of feature units may not accurately

reflect complex and authentic facial expressions. More im-

portantly, head pose and posture, which are precious cues in

conjunction with facial action, reflect a person’s real emo-

tion. Since people rarely express emotions without head

motion or posture spontaneity, the assumption of frontal

images of faces under good illumination is to be unreal-

istic. Therefore, there is a high demand to represent and

recognize facial expressions in 3D space. In this paper, we

address the issue regarding 3D global features on the 3D fa-

cial surface in order to mitigate the problems posted by 2D

based facial expression analysis.



The 3D surface features, reflecting the facial skin

“wave”, represent the intrinsic facial surface structure as-

sociated with the specific facial expressions. Motivated by

this fact, we propose a novel geometric feature based facial

expression descriptor in the 3-dimensional Euclidean space.

Based on the principal curvature information estimated on

the 3D triangle mesh model, we apply a surface labeling

approach to classify the 3D primitive surface features into

twelve basic categories. In order to classify the specific ex-

pression, we partition the face surface into a number of ex-

pressive regions, and conduct the statistics of the surface

primitive label distribution on each region separately. The

statistic histograms of the surface labels of all these regions

are combined to construct the specific facial expression fea-

ture.

Finally, we validate our approach by the recognition ex-

periments on our newly constructed 3D facial expression

database. We conduct the experiments in the following

several aspects: the performance investigation of our 3D

approach; the comparison study with 2D appearance fea-

ture based methods (Gabor-Wavelet method and our Topo-

graphic Context method), including the front view case and

the angle-view case. The experiments are executed in a

person-independent manner, which means that the subject

being tested has never appeared in the training set. We have

selected four classifiers for the classification experiments.

Since the paper focuses on 3D facial expression descrip-

tion, the classification algorithm design is not expatiated on

in this paper.

The remainder of this paper is organized as follows: In

Section 2, we introduce the surface primitive feature anal-

ysis based on the computational geometry method. In Sec-

tion 3, we describe the facial expression feature extraction

from the primitive surface features distribution. Section 4

reports the experimental results of the 3D facial expression

recognition, followed by a comparison with the 2D appear-

ance feature based approaches in Section 5. Finally, con-

cluding remarks and discussion are given in Section 6.

2. 3D Primitive Feature Analysis

The surface feature analysis is based on the triangle

meshes of faces, which are created by a 3D imaging system

[15]. The system captures a three dimensional point cloud

and generates a meshed surface that models the face as 3D

triangle mesh geometry. The 3D surface data points are less

than 300 microns apart, providing the capability of distin-

guishing between small differences regardless of lighting

or orientation during the original scan. Figure 1 shows an

example of 3D facial expression range models with six pro-

totypic facial expressions. In the following sub-sections, we

will give a detailed description of the primitive facial feature

estimation and labeling of the range models.

Figure 1. An example of 3D facial range mod-
els showing six prototypic expressions, from
left to right: Anger, Disgust, Fear, Happiness, Sad-

ness, and Surprise. The textured models are
shown in the upper row, and the correspond-
ing shaded models are in the lower row.

2.1. Principal Curvature Analysis by Local
Surface Fitting

The shape information of a surface is “encoded” in its

primitive geometric features (such as ridge, ravine, peak,

pit, saddle, concave hill, convex hill, etc.), which may be

viewed as a digital signature of a facial expression. These

features are determined by the surface curvatures and their

principal directions. Curvature estimation techniques for

triangle meshes could be based on the mesh itself or al-

ternatively on a local smooth approximation. In general,

there are broadly two categories: discrete and continuous

[11]. The first refers to approximating curvatures by formu-

lating a closed form for differential geometry operators that

work directly on the discrete representation of the underly-

ing surface. The latter involves fitting a surface locally, then

computing the curvatures by interrogating the fitted surface.

Our experiment shows that curvature estimates derived by

locally approximating the surface with a smooth polynomial

function give better results than the discrete versions.

In order to derive the geometry features of facial sur-

face, we give an analytic form of the regression function

for smoothly fitting the triangle mesh surface. Note that

although the triangle meshes are defined in a global coordi-

nate system, for easy computation, the fitting procedure is

performed in a local coordinate system, which is centered

at the vertex to be examined. The local coordinate system

for the surface fitting is defined as follows: let p be a vertex

on a 3D model M, and np = (a, b, c)T be the unit nor-

mal at vertex p. A set of vertices that are adjacent to p is

{qi = (xi, yi, zi)
T }, i = 1, 2...,m. A local coordinate sys-

tem is defined by taking the vertex p as an origin and (nx,

ny , np) as the three axes. nx and ny are two orthogonal

axes, which are arbitrarily selected to form a tangent plane

perpendicular to the normal vector np at crossing point p
(see Figure 2 for an example). The normal vector can be

simply estimated by the mean normal, which is obtained by
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Figure 2. An example of a local coordinate
system (nx,ny,np) defined on a nose surface
patch. v1,v2 are the principal directions at
point p.

the average of normal values of the polygons sharing the

common vertex p.

To fit a smooth polynomial patch onto the local surface

and estimate the principal curvatures, we transform the ver-

tices of the local region to the local coordinate system. The

resulting vertices q̃i and the corresponding normal vectors

ñq̃i
are expressed as:

q̃i = RT · (qi − p)

ñq̃i
= RT · nqi

(1)

where the rotation matrix is obtained by R = [nx ny np].
The vertex p and its normal np are transformed to the origin

p̃ = (0, 0, 0)T and the unit vector ñp = (0, 0, 1)T along the

positive z axis, respectively.

The approximating polynomial surface is at least sec-

ond order. Considering the fitting accuracy and the compu-

tation complexity, we choose a cubic-order approximation

method. Similar to the method in [14], we define the fitting

function in the form of

z(x̃, ỹ) = U · X (2)

where the variable U and the coefficient X are defined as:

U = (
1

2
x̃2 x̃ỹ

1

2
ỹ2 x̃3 x̃2ỹ x̃ỹ2 ỹ3)

X = (A B C D E F G)T (3)

Given a set of neighbor vertices {q̃i = (x̃i, ỹi, z̃i)
T },

(i = 1, 2, ..., m) and their corresponding normals {ñq̃i
=

(ai, bi, ci)
T }, we can establish 3m equations to solve the

seven parameters of X. When the vertex p has more than

three neighbor vertices, the parameters X can be approx-

imated using the least-square fitting method. With the re-

gressed local fitting function z(x̃, ỹ), the Weingarten matrix

for the surface patch becomes:

W =

[

∂2z(x̃,ỹ)
∂x̃2

∂2z(x̃,ỹ)
∂x̃∂ỹ

∂2z(x̃,ỹ)
∂x̃∂ỹ

∂2z(x̃,ỹ)
∂ỹ2

]

=

[

A B
B C

]

(4)

After the eigenvalue decomposition, the principal direc-

tions in the local coordinates ṽ1 and ṽ2 can be estimated.

W = (ṽ1 ṽ2) · diag(λ1 λ2) · (ṽ1 ṽ2)
T (5)

where λ1 and λ2 are the eigenvalues and ṽ1 and ṽ2 are the

orthogonal eigenvectors. If |λ1| > |λ2|, ṽ1 and ṽ2 are in the

directions with the maximum curvature and the minimum

curvature, respectively. Figure 3(a)(b) shows an example of

the principal direction estimation on a facial range model.

Since the principal directions are represented in the local

coordinate system, to obtain a global view of the principal

directions, ṽ1 and ṽ2 must be rotated back to the global

coordinate system, as formulated by

v1 = R · ṽ1 , v2 = R · ṽ2 (6)

It is worth noting that our surface labeling criteria rely

on the surface principal curvatures, the principal directions

as well as the surface gradient. After the transformation

from the local coordinate system to the original global co-

ordinate system, we can derive the gradient using the nor-

mal direction of each surface point. Let z(x, y) be the fit-

ting function of a surface patch centered at p, the normal

direction np = (a, b, c)T can be written in the form of

(−
∂z(x,y)

∂x
,−

∂z(x,y)
∂y

,−1)T . The gradient magnitude ‖∇z(x,y)‖

at p is then calculated as:

‖∇z(x,y)‖=
√

[ ∂z(x,y)
∂x ]

2
+[ ∂z(x,y)

∂x ]
2
=
√

[− a
c ]

2
+[− b

c ]
2 (7)

The principal curvature analysis produced a set of at-

tributes {‖∇z‖ ,v1,v2, λ1, λ2}, which describes the sur-

face property at each vertex. Every vertex can be classified

according to a primitive feature classification rule, which

will be explained in the next sub-section.

2.2. Primitive 3D Surface Feature Labeling

The principal curvatures λ1, λ2 represent the maximum

and the minimum degrees of bending of a surface, v1 and

v2 indicate the surface principal directions, and ‖∇z‖ re-

flects the steepness of the surface. Using these geometric

attributes, we are able to classify every vertex into one of

the primitive categories. In other words, we can symbolize
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Figure 3. From left to right: minimum curva-

ture direction map, maximum curvature di-

rection map and primitive label map.

the geometric surface by classifying and labeling the primi-

tive features. This symbolization process can be realized by

mapping the primitive surface features from a 3D geometric

space to a discrete label space, which is formulated as:

Q : {‖∇z‖ ,v1,v2, λ1, λ2} =⇒ {Lm},m = 1, 2, ..., M
(8)

where Q is a pre-defined classification rule and {Lm} is

a set of surface categories with a total of M types to be

identified.

There are several existing rules for primitive surface fea-

ture classification. For example, (1) the shape index based

classification [7]; (2) Tanaka’s method [21], which catego-

rized eight distinct features to describe local shapes accord-

ing to the sign of two principal curvatures; (3) the topo-

graphic classification method [23, 26], which has been used

for analyzing the 3D topographic surfaces of gray level im-

ages. Depending on the classification fineness, the maximal

twelve distinct primitive features can be defined. They are

peak, pit, flat, ravine, ridge, saddle (including ridge saddle

and ravine saddle) and hill (including convex hill, concave

hill, concave saddle hill, convex saddle hill and slope hill).

In order to scrutinize the facial expression surface de-

tails, we use the twelve distinct primitive surface features to

represent the facial expressions. Similar to the classification

rule used in [23], we extend the method to the application

for the real 3D facial surface labeling. The labeling process

is based on the feature values of {‖∇z‖ ,v1,v2, λ1, λ2} in

the global coordinate system. To do so, two thresholds, TG

and Tλ, are defined. They are used to evaluate whether the

gradient magnitude and the principal curvatures are trivial

enough to be ignored as zero. The thresholds are calculated

based on the mixed error criteria [26]:

TG = max[ε, ε · z(x, y)]

Tλ = max[ε, ε · ‖W‖∞] (9)

where ‖W‖∞ = max[|A| + |B|, |B| + |C|] (see Equation

4) and ε is a user-specified parameter. In our method, we

use ε = 0.001 · s, where s is the average distance from each

vertex to the center of the individual 3D facial model.

The classification rule for twelve primitive surface labels

is expounded in Table 1. In general, if ‖∇z‖ < TG or there

is a zero crossing in the direction of the maximum curva-

ture, one of the non-hillside labels is assigned; otherwise,

one of the hill-side labels is assigned using the rule defined

in the table. Figure 3(c) shows an example of the labeling

result from a 3D facial expression range model.

λ1 λ2 Hillside Label Non-Hillside Label

|λ1|<Tλ |λ2|<Tλ flat slope hill

λ1<−Tλ λ2<−Tλ peak convex hill

λ1<−Tλ |λ2|<Tλ ridge convex hill

λ1<−Tλ λ2>Tλ ridge saddle convex saddle hill

λ1>Tλ λ2<−Tλ ravine saddle concave hill

λ1>Tλ |λ2|<Tλ ravine convex hill

λ1>Tλ λ2>Tλ pit

λ1>Tλ λ2<−Tλ concave saddle hill

Table 1. Classification rule of primitive 3D
surface labels.

3. 3D Expression Description Based on Primi-

tive Label Distribution

After the labeling process, the facial expressions can be

described by the distribution of the labels over the local or

entire facial region. Intuitively, every facial expression is a

result of facial muscle actuation, reflecting the facial surface

variation. Such a variation results in the different distribu-

tions of primitive surface labels. This fact suggests that the

primitive label distribution could directly link to a distinct

facial expression. In other words, the same type of facial

expression is expected to share the similar primitive label

distribution with a certain robustness, given a sufficient res-

olution of the range model.

To find an explicit representation of the fundamental

structure of facial surface details, we investigate the statisti-

cal distributions of the primitive surface labels in seven ex-

pressive facial regions, which are defined according to the

neuro-anatomy knowledge of configuration of facial mus-

cles and their dynamics [20]. As shown in Figure 4, sixty-

four fiducial points are defined on the facial surface, and ac-

cordingly, the seven expressive local regions are constructed

based on these key points. Note that the interiors of mouth

and eyes are currently not included in the seven local re-

gions. The reasons are twofold: (1) the interiors of mouth

and eyes are isolated from the facial skin. They can be
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Figure 4. 64 facial fiducial points and 7 se-
lected facial regions.

treated as three separated objects. These “holes” are com-

plementary areas of the facial skin area. The change of their

shapes is directly reflected on the change of the surrounding

skins which have been included in the seven expressive re-

gions; (2) although tongues and eye-balls can be viewed as

the signatures of facial expressions, their appearances may

not be as stable as the facial skin due to the dark hole effect

existing in the current 3D imaging systems.

In short, the selected seven local regions cover the most

expressive areas on a human face. In each selected region,

we identify the expression signature by calculating the his-

togram distribution of primitive labels. Such a distribution

is described as follows:

ri =

[

ni1

ni

, · · · ,
nim

ni

, · · · ,
niM

ni

]

(10)

where nim is the number of vertices which are labeled

by the label type Lm, and ni is the total number of vertices

in the ith local region (ni=
M
∑

m=1
nim). M = 12 is the number

of the primitive label categories.

The combination of seven histogram distributions of the

selected entire regions generates a unique expression de-

scriptor for a specific expression. As a result, the expres-

sion is described by the primitive surface feature distribu-

tion (PSFD), which is expressed by

E = [r1, · · · , ri, · · · , rK ] (11)

where K is the number of expressive regions (K=7 in our

experiment).

4. Recognition Experiments

4.1. Database

We constructed a 3D facial expression database for our

experiment. The 3D range data is scanned by a 3DMD static

digitizer [15], which uses a random light pattern projection

in the speckle projection flash environment . The model

resolution is in the range of 20,000 polygons to 35,000

polygons, depending on the size of the face being scanned.

The facial expressions with six universal emotional states,

Anger, Disgust, Fear, Happiness, Sadness and Surprise, are

sampled in four different levels of intensity (e.g., from less

pronounced to more pronounced). In our experiment, we

used the data captured from 60 subjects with two high-

intensity models for each expression. The test is based on

the six prototypic expressions.

Each range facial model consists of a meshed surface

model and an associated texture image. The head pose

can be estimated by a triangle plane determined by the in-

ner corners of two eyes and a nose tip. Given the head

pose, the original scan is processed by rotating the model

to the frontal view. This pre-processing results in a work-

ing model, on which we manually labeled 64 fidicual ver-

tices for the expression recognition experiments. Table 2

gives a summary of the data set that we used for our exper-

iments. A detail description of the database construction,

post-processing, and organization can be found in [29].

# of subjects # of expres-

sion types

# of samples for each

subject of each ex-

pression

total # of sam-

ples

60 6 2 720

Table 2. Summary of the 3D facial expression
data set used in our experiment.

4.2. Recognition Results

Our facial expression recognition experiments are car-

ried out in a person-independent manner, which is believed

to be more challenging than a person-dependent approach

[17]. We randomly partitioned the 60 subjects into two sub-

sets: one with 54 subjects for training and the other with

6 subjects for test. The experimental paradigm guarantees

that any subject used for testing does not appear in the train-

ing set because the random partition is based on the subjects

rather than the individual expression. Four popular clas-

sifiers: Quadratic Discriminant Classifier (QDC), Linear

Discriminant Analysis (LDA), Naive Bayesian Classifier

(NBC), and Support Vector Classifier (SVC) with RBF ker-

nel are used in the experiments. The tests are executed 20
times on each classifier with different partitions to achieve

a stable generalization recognition rate. The entire process

guarantees that every subject is tested at least once for each

classifier. For each round of the test, all the classifiers are

reset and re-trained from the initial state.



Classifier QDC LDA NBC SVC

Recognition rate 74.5% 83.6% 71.7% 77.8%

Table 3. Results of person-independent ex-
pression classification using the 3D-PSFD
method.

Table 3 shows the average correct recognition rates of

the four classifiers. The LDA classifier achieves the high-

est correct recognition rate with an accuracy of 83.6%. The

confusion matrix of the average case for the LDA classi-

fier is shown in Table 4. The expressions of Happiness

and Surprise are well identified with accuracies of 95.0%
and 90.8%, respectively. Anger, Sadness, Fear and Disgust

have comparatively lower recognition rates. The misclassi-

fication rate between Anger and Sadness is around 19.6%
(= 8.3%+11.3%), while that between Fear with Happiness

is around 16.3%.

Input\Output Anger Disgust Fear Happiness Sadness Surprise

Anger 80.0% 1.7% 6.3% 0.0% 11.3% 0.8%

Disgust 4.6% 80.4% 4.2% 3.8% 6.7% 0.4%

Fear 0.0% 2.5% 75.0% 12.5% 7.9% 2.1%

Happiness 0.0% 0.8% 3.8% 95.0% 0.4% 0.0%

Sadness 8.3% 2.5% 2.9% 0.0% 80.4% 5.8%

Surprise 1.7% 0.8% 1.2% 0.0% 5.4% 90.8%

Table 4. Confusion Matrix of the average case
of LDA classifier for person-independent ex-
pression recognition.

5. Comparison Study

In this section, we compare the proposed 3D primitive

feature distribution method (3D-PSFD) with two 2D ap-

pearance feature based methods. One is the well-known

Gabor-wavelet (GW) approach [16] and the other is our re-

cently developed Topographic Context (TC) approach [24].

(1) In the Gabor-wavelet (GW) based approach, a set of

multi-scale and multi-orientation coefficients are calculated

to describe the appearance variations in the facial region.

We applied 6×3 complex Gabor-wavelet (6 orientations and

3 spatial resolutions) on 34 fiducial points. The coefficients

of the real and imaginary parts can be computed as:

G+(x,y;ω,θ) = ω2

σ2 ·e
−

ω2(x2+y2)

2σ2 ·{cos[ω(x cos θ+y sin θ)]−e
− σ2

2 }

G−(x,y;ω,θ) = ω2

σ2 ·e
−

ω2(x2+y2)

2σ2 ·sin[ω(x cos θ+y sin θ)] (12)

where we let σ = π. The three selected spatial scales

are {π/4, π/8, π/16} and the 6 orientations selected are

{0, π/6, π/3, π/2, 2π/3, 5π/6}. The feature extracted at

pixel (x, y) by a certain Gabor-wavelet kernel with parame-

ters {ω, θ} is the amplitude of the real and imaginary coef-

ficients G =
√

G2
+ + G2

−. Therefore in total, we extracted

18 × 34 = 612 wavelet features for each image.

(2) In our existing work, we developed a Topographic

Context (TC) based approach for facial expression recog-

nition based on 2D static images. The TC expression fea-

tures are the topographic primal sketch features inherent in

the 2D facial images. We use such appearance features to

describe the distinct facial expressions. Similar to our 3D

based approach, we used the feature statistics to represent

the 2D facial expressions. It has proved to be robust to fa-

cial landmark detection as a result of its intrinsic statistics

property (see details in [24]).

The comparison study with the above two methods is

conducted under various head pose conditions, including

two cases: frontal view and non-frontal views.

5.1. Case 1: Frontal View

Our frontal-view images are generated from the texture-

mapped working models. All these images are normalized

to 256 × 256 pixels. Several examples are shown in the

top row of Figure 1. There are 60 subjects with a total of

720 frontal-view facial images used for the test. The experi-

ments are executed in a person-independent manner similar

to the strategy used in Section 4.2.

Table 5 reports the correct recognition rates using these

two methods. We found the Gabor-wavelet approach per-

forms poorly when using the SVC classifier, which is not

comparable to the results from the other three classifiers.

Method \ Classifier QDC LDA NBC

Topographic context method 73.8% 79.2% 70.9%

Gabor-wavelets method 72.3% 74.1% 62.1%

Table 5. Results of person-independent ex-
pression classification using GW and TC.

Comparing to the performance shown in Table 3, the

3D-PSFD method is superior to the 2D appearance feature

based methods when classifying the six prototypic facial ex-

pressions.

5.2. Case 2: Non-frontal View

In this section, we compare the performance of our 3D

geometric based approach (PSFD) with the 2D appearance



feature based approaches under different head pose condi-

tions. We obtained the head pose information from the orig-

inal face scans by estimating the triangle face-plane formed

by the inner corners of two eyes and the tip of nose. Know-

ing the 3D head pose, we are able to rotate the 3D model to a

frontal view position or arbitrary pose positions without los-

ing any geometric feature information. However, if viewed

in the 2D projection plane, the appearance of 2D facial im-

ages varies dramatically when the head pose is arbitrarily

changed. The difficulty to recover the missing appearance

information from 2D images makes 2D based facial expres-

sion recognition sensitive to head pose variations.

Using our face range models, we have generated facial

expression images under different views, corresponding to

different head poses. This is done by rotating the models to

a certain degree and generating the face images in that view

by texture-mapping. We generated the face images under

views of ±10◦, ±20◦, ±30◦, and ±40◦ for each orienta-

tion (pitch and yaw rotation), resulting in 720 images for

each view. Figure 5 shows the examples of different facial

appearances under different views.

Figure 5. Facial expression images with dif-
ferent head rotation. Top row is yaw rotation
and bottom row is pitch rotation. From left to

right, the rotation angle is −40◦, −30◦, −20◦,
20◦, 30◦ and 40◦.

We choose to use the LDA classifier to evaluate the

expression recognition performance under different head

poses because in most cases LDA outputs the best recog-

nition result. For all three algorithms (PSFD, GW, and TC),

the LDA classifier is trained using the front view face data.

The recognition results with respect to different poses

(e.g., pitch and yaw rotations) are shown in Figure 6. From

the figure, we can see that the average recognition rates

of the 2D appearance feature based methods degrade con-

siderably as head rotation increases, especially the Gabor-

wavelet method. The extraction of Gabor-wavelet coeffi-

cients is based on the selected fiducial points. The pose

change alters the distribution of these fiducial points, and re-

sults in significant distortion of Gabor-wavelet features. On

the contrary, the 3D-PSFD based approach makes the 3D

primitive feature distribution invariant to the pose variations

because the 3D geometric features are view-independent.

Figure 6. Comparison of the recognition per-
formance under different head orientations.

left: pitch; right: yaw.

6. Concluding Remarks

In this paper, we investigated the issue of 3D facial ex-

pression representation and recognition. To the best of our

knowledge, this is the first attempt to recognize facial ex-

pressions using range data in a complete 3D space. We

have proposed to extract and label the primitive 3D surface

features, and derive their statistical distributions to repre-

sent the distinct prototypic facial expressions. We used the

primitive surface feature distribution (PSFD) as the signa-

ture to distinguish facial expressions, and conducted expres-

sion recognition experiments using the person-independent

strategy. Compared to the existing 2D static image based

approaches (e.g., GW and TC methods), our 3D range data

based approach shows superior performance as a result of

the lighting and orientation invariance of 3D geometric fea-

tures. The experiments show encouraging results in recog-

nizing six prototypic facial expressions under various head-

pose conditions.

There are some limitations in the current work:

(1) Our current data set contains only static expression

models. A database including dynamic 3D facial expres-

sion sequences is needed in order to study the subtle skin

movement associated with facial expressions in 3D space.

With the emergence of dynamic 3D imaging systems [25],

it is possible to investigate the feasibility of tracking action

units in 3D space to further enhance the current FACS based

facial expression recognition technique. Because the dis-

criminability of 3D facial expressions is dependent on the

resolution of the 3D mesh, higher resolution models are re-

quired in order to improve the recognition performance.

(2) The current work involves the pre-processing of

range data which requires manual selection of the surface

fiducial points. In order to realize an automatic system for

3D facial expression analysis, algorithms for automatic de-

tection of 3D surface features must be developed. The exist-

ing approaches (e.g., free-form based [25], etc.) are promis-



ing for this purpose.

The above issues give rise to our future research direc-

tions in order to improve facial expression analysis in the

3D space. In addition, we will investigate integrating 3D

geometric shape and 2D texture information to improve our

current approach.
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