
3D Field D*: Improved Path Planning and

Replanning in Three Dimensions

Joseph Carsten∗, Dave Ferguson, and Anthony Stentz

Carnegie Mellon University

Pittsburgh, PA

{jcarsten@alumni.cmu.edu, dif@cmu.edu, tony@cmu.edu}

Abstract— We present an interpolation-based planning and
replanning algorithm that is able to produce direct, low-
cost paths through three-dimensional environments. Our al-
gorithm builds upon recent advances in 2D grid-based path
planning and extends these techniques to 3D grids. It is
often the case for robots navigating in full three-dimensional
environments that moving in some directions is significantly
more difficult than others (e.g. moving upwards is more
expensive for most aerial vehicles). Thus, we also provide a
facility to incorporate such characteristics into the planning
process. Along with the derivation of the 3D interpolation
function used by our planner, we present a number of results
demonstrating its advantages and real-time capabilities.

I. INTRODUCTION

Basic path planning consists of finding a sequence of

state transitions that lead an agent from a given start state

to a given goal state. The optimal path is the sequence of

state transitions with the lowest combined cost of traversal.

Path planning for a mobile robot is complicated by the

fact that a robot usually starts with little or no knowledge

about the terrain it will traverse. Instead, it is equipped

with sensors that are able to perceive the nature of the

environment in its vicinity. This information can be used

to update its representation of the environment as it moves.

Unfortunately, these updates may cause its current path to

become invalid or suboptimal. It is therefore necessary to

replan or repair its path in light of this new information.

If the original information concerning the environment

is grossly inaccurate or incomplete, this updating and

replanning step must be completed at almost every stage

of the robot’s traverse. Therefore, it is important that this

can be performed efficiently.

A variety of algorithms have been developed to accom-

plish this replanning (e.g. [1], [2], [3], [4], [5], [6], [7]). In

particular, the D* family of algorithms have been widely-

used for ground based mobile robot navigation [4], [5], [6].

These algorithms are graph-based searches that extend A*

to efficiently repair solutions when changes are made to

the graph. As such, they have been shown to be orders of

magnitude more efficient than planning from scratch each

time new environmental information is received [4].

Although these algorithms were initially designed to

operate over arbitrary graph representations of the environ-

ment, they have typically been used to plan over uniform 8-

∗Joseph Carsten is now at the Jet Propulsion Laboratory in Pasadena,
CA.

connected 2D grid representations for ground vehicles. The

use of such representations has a number of limitations,

most notably suboptimal solution paths and significant

memory requirements. In an attempt to improve upon these

limitations, interpolation-based replanning algorithms have

recently been developed [7], [8], [9]. These algorithms

produce much better solutions through both uniform grids

(thus addressing the path quality limitation of standard 8-

connected 2D grid-based planners) and non-uniform 2D

grids (thus allowing for much less memory-intensive rep-

resentations to be used).

In this paper, we build on this work and present an

interpolation-based planning and replanning algorithm for

generating low cost paths through three dimensional grids

for aerial and underwater vehicles. Because such vehicles

often find it much more difficult to move in some directions

than others (e.g. moving upwards can be very expensive for

aerial vehicles), we also provide a method for incorporating

directional cost biases into the planning process. We begin

by introducing the general D* and D* Lite algorithms.

Next, we describe Field D*, an extension of these algo-

rithms that uses interpolation to produce less costly paths

through 2D grids. We go on to describe current research

on 3D planning and then present a 3D version of Field D*.

Finally, we provide example paths and a series of results

demonstrating the advantages of our algorithm and its real-

time capability.

II. THE D* LITE ALGORITHM

D* and D* Lite are graph-based planning algorithms

that are able to efficiently handle changes to the costs of

arcs in the graph [4], [5]. We restrict our discussion to D*

Lite because this algorithm is somewhat simpler than the

original D* algorithm.

A. Generic Algorithm

Given a set of nodes S, a successor function Succ(s)
that specifies, for each node s, the set of nodes that are

adjacent to s, and a cost function c, where c(s, s′) specifies

the cost of transitioning from s to an adjacent node s′, D*

Lite plans a least-cost path from an initial node sstart to a

desired goal node sgoal. In practice, it is useful to also have

a function Pred(s) that specifies the nodes to which s is

adjacent. In addition, there may be several acceptable goal

1-4244-0259-X/06/$20.00 ©2006 IEEE
3381

Proceedings of the 2006 IEEE/RSJ

International Conference on Intelligent Robots and Systems

October 9 - 15, 2006, Beijing, China

nodes, in which case the plan returned will be the overall

least-cost path to any of the goals.

D* Lite maintains an estimate of the cost, g(s), of the

optimal path from each state s to the goal, along with a

one-step look ahead cost, rhs(s), which is computed as

rhs(s) =

{

0 if s = sgoal

mins′∈Succ(s)(g(s′) + c(s, s′)) otherwise.

Nodes s for which g(s) = rhs(s) are called consistent

nodes. If a node s is inconsistent, i.e., g(s) �= rhs(s),
the current value of g(s) may not represent the optimal

cost to the goal. Search is performed from the goal node

towards the start node. As in A*, a heuristic, h(s, s′), is

used to guide the search. The heuristic estimates the cost

of moving from s to s′ and should satisfy

h(s, s′) ≤ coptimal(s, s
′)

h(s, s′′) ≤ h(s, s′) + h(s′, s′′).

A priority queue stores all inconsistent nodes. These

nodes are sorted according to their key values k1(s) and

k2(s):

k1(s) = min(g(s), rhs(s)) + h(sstart, s)

k2(s) = min(g(s), rhs(s)).

Node s appears before node s′ in the queue if k1(s) <

k1(s
′) or both k1(s) = k1(s

′) and k2(s) < k2(s
′). During

the search, nodes are processed according to their ordering

in the queue. If g(s) > rhs(s) for the current node s at the

top of the queue, then s is an overconsistent node. In this

case, s is made consistent by setting g(s) equal to rhs(s).
Then, the rhs values for all predecessor nodes of s are

re-computed. If, on the other hand, g(s) < rhs(s), then s

is underconsistent. In this case, the value of g(s) is set to

∞ and s is placed back on the queue as an overconsistent

node (assuming rhs(s) �= ∞). Once again, rhs values for

the predecessors of s are re-computed. Any nodes that have

been made inconsistent are added to the priority queue to

be processed. Once the start node is consistent and there

are no nodes left on the priority queue with a priority less

than that of the start node, we are guaranteed to have found

the optimal path.

Within this framework, coping with changes to arc

costs is straightforward. If c(s, s′) changes, rhs(s) is re-

computed. If this causes s to become inconsistent, it is

inserted into the priority queue. Once again, nodes on the

queue are processed until the start node is consistent and

there are no nodes left on the queue with priorities less

than that of the start node. This incremental repair can be

much more efficient than planning from scratch, especially

if cost changes occur near the start position, as is often the

case with sensor-equipped mobile robots.

B. Typical Implementation

In order to use D* or D* Lite for an actual path planning

problem, we need to define the set of nodes S, the functions

Succ and Pred, and the cost function c. A simple way

to define these elements is to partition the n-dimensional

planning space into a uniform n-dimensional grid. The

Fig. 1. Path planning in a uniform cost 2D environment from the lower-
left corner to the upper-right corner. The optimal D* path is shown in
green/above and the true optimal path is shown in blue/below.

set of nodes S can then naturally be defined as the set

of vertices of the grid, and Succ(s) = Pred(s) can be

defined to be the 3n − 1 closest vertices to node s. Each

grid cell can be given a cost of traversal based on the cost

of the corresponding area of the planning space, which can

then be used to calculate the cost function c. Given these

constructs, D*/D* Lite can then be used to plan paths.

Although the paths found using D*/D* Lite are optimal

given the graph used for planning, in most cases they do

not represent optimal paths given the original problem. Fig.

1 illustrates a typical situation encountered when using 2D

uniform grids. In this case, the D* path is eight percent

longer than a true optimal path. This is a direct result

of how the problem has been defined. Using a uniform

2D grid to discretize the space, each node is adjacent to

its eight neighbors. Therefore there are only eight distinct

directions that can be used when planning paths and so,

unless by chance some optimal path only requires these

eight directions, the resulting paths will be suboptimal.

III. FIELD D*

The Field D* algorithm was devised to help alleviate

problems created by using 2D grids to discretize the

environment [7]. With Field D*, each node s is able to

transition to any point on an adjacent grid cell edge, rather

than just the endpoint nodes of these edges. This removes

the heading constraints placed upon the path, allowing for

a continuous range of headings and more direct, less-costly

solutions.

If we knew the value g(se) of every point se along

these edges, then we could compute the true optimal

value of node s simply by minimizing c(s, se) + g(se),
where c(s, se) is the cost associated with an optimal local

path from s to se. Unfortunately, there are an infinite

number of such points se, and therefore computing g(se)
for each of them is not possible. Instead, Field D* uses

linear interpolation to approximate g(se). Given a point se

residing on the edge between two grid nodes s1 and s2, its

cost is assumed to be a linear combination of g(s1) and

g(s2):
g(se) = y ∗ g(s2) + (1 − y)g(s1), (1)

where y is the distance from s1 to se (assuming unit

cells). See Fig. 2(right) for an illustration. Given this

approximation, the optimal path from node s through the

edge between nodes s1 and s2 can be computed in closed

form – both the best node se on the edge and the best

3382

Fig. 2. (left) The adjacent edges (in bold) of a given 2D grid node (node
in center). (right) Interpolation can be used to plan paths from a node s

to any point se on an adjacent edge (here the edge between nodes s1 and
s2 is being considered), rather than just the endpoints of these edges.

path to that node from s can be solved for concurrently

[7]. The look ahead path cost rhs(s) for node s can then

be calculated as the cost associated with the least-cost path

through any of the eight adjacent edges to s. In other words,

the Succ function used by Field D* comprises not a set of

adjacent nodes to s, but rather a set of adjacent edges (see

Fig. 2(left)).

This approach provides paths that are able to enter and

exit cells at arbitrary positions, rather than just at the

corners, and leads to much better paths through 2D grids.

Further, this interpolation-based path cost calculation can

be used to compute a path from any position within the

grid, not just from the grid corners. See [7] for more details

on Field D* and its application to 2D path planning.

IV. PLANNING IN THREE DIMENSIONS

In three dimensions, the path planning problem is even

more computationally expensive [10]. A number of ap-

proximation algorithms have been developed for generating

suboptimal paths through continuous 3D space [11], [12],

[13], [14], [15], but these algorithms typically do not

incorporate regions of non-uniform cost in the environment.

The existence of such areas, which are common in robotic

path planning, makes the planning problem even more chal-

lenging. Thus, in robotics the problem is often simplified

by using a (non-uniform cost) 3D grid to represent the

environment and then extracting from this grid a graph to

plan over, exactly as is done for the 2D case [16], [17].

Such an approach is fast and can encode the variations in

traversal cost for different areas of the environment.

However, 3D grid-based adjacency graphs suffer the

same limitations as their 2D counterparts. In particular,

paths produced using these graphs will be suboptimal and

will involve unnecessary turning. Ideally, we would like

a way to produce more direct, less-costly paths through

3D grids without sacrificing the efficiency of standard 3D

grid-based planning. To do this, we extend the Field D*

algorithm to use interpolation in 3D. As we will see, this

involves a more complex minimization problem that we

tackle in the next section.

V. FIELD D* IN THREE DIMENSIONS

To more accurately approximate true optimal paths

through three dimensional grids, we need to overcome the

discretization effects of standard 3D grid-based planning

and instead allow for a continuous range of headings. As

in the 2D case, this can be done by using interpolation to

Fig. 3. (left) The adjacent faces (shaded) for a given node s – shown
are the 12 adjacent faces for the four voxels that s resides on and that are
into the page; a symmetric case exists for the four voxels coming out of
the page. (right) Interpolation can be used to approximate the path cost
of an arbitrary face point sf .

provide path cost estimates for points not residing on the

corners of the grid. However, rather than computing the

path cost of a node s by looking at its adjacent edges and

using interpolation to provide paths through arbitrary points

on these edges, we look at the adjacent faces of s and plan

paths through these faces. In the two-dimensional case each

node had eight adjacent edges; in the three-dimensional

case each node has twenty four adjacent faces (see Fig.

3(left)).

A. Using Interpolation in 3D

In order to calculate the least-cost path from a node s

through an adjacent face f , we can use interpolation to

approximate the cost of any point sf on the face. Fig. 3

illustrates the planning scenario. Given the path costs of the

nodes on the four corners of the face, g(s0), g(s1), g(s2),
and g(s3), the path cost of any point sf on the face can

be approximated using linear interpolation by

g(sf) = [(g(s1) + (g(s0) − g(s1)) · t] · (1 − u)

+ [g(s2) + (g(s3) − g(s2)) · t] · u, (2)

where t and u represent the position of point sf in face

coordinates (see Fig. 3(right) for an example). Given this

approximation for the path cost of any point on face f and

assuming a traversal cost of C for the voxel on which both

f and s reside, we can compute the cost of a path from s

through sf , denoted rhssf
(s):

rhssf
(s) = C ·

√

1 + t2 + u2

+ [(g(s1) + (g(s0) − g(s1)) · t] · (1 − u)

+ [g(s2) + (g(s3) − g(s2)) · t] · u. (3)

B. Path Cost Minimization

To compute the approximate least-cost path from s

through an adjacent face f we need to minimize (3) with

respect to both t and u. Unfortunately, this has no closed

form solution. Of course it is possible to use numerical

optimization to obtain a solution, but this is too slow

to be of use for a real-time planning algorithm: this

minimization needs to be performed tens to hundreds of

millions of times for a moderately-sized planning problem.

In order to achieve real-time performance, a result must be

returned extremely efficiently. To accomplish this, we trade

3383

(a) Planning Problem (b) Cost Surface (c) Approximate Solution

Fig. 4. A simple planning problem through two voxels of unit cost. (a) The start node s is in the upper right and the goal node sgoal is in the lower
left. The cost surface is shown in (b) and a top-down view with the edge minima and our approximate solution (the intersection of the two lines) is
shown in (c).

optimality for speed and use an approximate solution that

is easily computed.

Fig. 4(a) shows a simple planning problem involving

two voxels that can be used to illustrate our approximation

technique. Fig 4(b) shows the cost of moving from node s

through any point on the center face to the goal, assuming

linearly-interpolated path costs for all points sf on the face.

Our goal is to find where the minimum of this surface

resides: this represents the best point sf on the face through

which to transition.

In any minimization problem it is possible that the

minimum lies on a boundary of the domain. During the

minimization process, the boundaries must be checked for

this condition. In our case, the boundaries are each of the

four edges along the face. Finding the minimum along

each edge is straightforward. In fact, it is nearly identical

to the interpolation-based edge calculation for the two

dimensional case discussed in Section III.

Once we have found the location of the minima along

the edges, we use this information to help us find a

possible minimum on the interior of the face. Connecting

the minima along both pairs of opposite edges gives us

two intersecting lines. We then test the point where these

lines intersect to determine if it is of lower cost than any of

the edge minima. Fig. 4(c) illustrates the situation for our

example. The values of tint and uint at this intersection

point can be calculated using (4) and (5) where t0, t1, u0,

and u1 are each of the edge minima as shown in Fig. 4(c).

tint =
(t1 − t0) · u0 + t0

1 − (t1 − t0) · (u1 − u0)
(4)

uint = (u1 − u0) · tint + u0 (5)

This method produces good approximations of the least-

cost path given our linear interpolation assumption, and

can be computed very efficiently. Given this technique, we

can compute approximate least-cost paths from a node s

through each of its adjacent faces f . From these paths, the

one with minimum cost can be used as the approximate

least-cost path from s, and its cost can be used to update

rhs(s). This new update can then be inserted into the D*

Lite algorithm to provide an extension of Field D* to three-

dimensional grids.

C. Incorporating Directional Transition Costs

In a variety of planning problems, traveling in one

direction may be more costly than traveling in another. For

example, it is generally more costly in terms of time and

fuel for an aerial vehicle to travel upward than to move

horizontally. It would be useful to be able to incorporate

this information into the planning process.

One way to accomplish this would be to store multiple

costs for each voxel. For example, one cost for upward

travel through the voxel, one for downward, and one cost

for everything else. The problem with this approach is that

it requires three times the memory to store the cost field.

This can be significant even in the case of a moderately-

sized map. In addition, to support the most general case,

six costs would need to be stored for every voxel.

Another option is to use global scale factors. For ex-

ample, upward motion could be assigned to be twice as

expensive as other directions of travel. If the base cost of

moving through a voxel is ten, then a cost of twenty would

be used for upward motion. Using global scale factors

has several advantages over storing multiple costs for each

voxel. Only six numbers need to be stored, one scale factor

for each direction, regardless of map size. In addition,

because the scale factors are global, they remain constant

in every calculation that is done. This makes it easy to

precompute some frequently used quantities involving these

scale factors. Being able to precompute these values allows

for better optimization and less overall computation time.

One disadvantage to the global scale factor approach is

that it is less general than the first approach, in that it does

not allow for arbitrary local cost variations. In the first

approach, directional costs can be varied on a voxel by

voxel basis. With global scale factors, the directional costs

are fixed over the entire map. In most cases, the increased

efficiency in terms of both memory usage and computation

time is well worth the small loss in generality.

3384

(a) Regular 3D Voxel Planner (b) 3D Field D* Planner

Fig. 5. Planning a path through an open environment from an initial location (large white sphere) to a goal location (small shaded cube). Shown are
the paths produced by (a) a standard 3D grid-based planner, and (b) 3D Field D*. Also shown are the voxels the paths travel through. Notice that the
path returned by the standard 3D grid-based planner is unable to travel in a straight line to the goal. In contrast, the Field D* path is able to produce
almost the optimal straight line path, with only minor deviations due to its interpolation-based cost approximation.

In order to use global scale factors, the path cost calcu-

lation corresponding to Fig. 3 changes from that shown in

(3) to

rhssf
(s) = C ·

√

c2
z + (cx · t)2 + (cy · u)2

+ [(g(s1) + (g(s0) − g(s1)) · t] · (1 − u)

+ [g(s2) + (g(s3) − g(s2)) · t] · u. (6)

The parameters cx, cy , and cz correspond to scale

factors for moving left, out of the page, and downward,

respectively, in relation to the coordinates shown in Fig.

3. Substituting this equation for (3) allows for directional

scaling to be taken into account during planning.

VI. RESULTS

Using the methods described, a three-dimensional ver-

sion of Field D* Lite was implemented. We have found this

algorithm to produce nice, straight paths that require much

less unnecessary turning than regular 3D grid-based paths.

Fig. 5 shows an example path produced using a regular 3D

grid-based planner and our implementation of 3D Field

D*. While the regular planner returns a path consisting of

three line segments with sharp 45 degree turns connecting

each segment, Field D* returns roughly a direct path to

the goal location, with very minor deviations due to its

interpolation-based approximation.

We also ran several experiments to provide an indication

of the computation required by Field D*. All experiments

were performed on a 1.9 GHz Pentium P4 PC with 512

MB of RAM and involved 3D grids of dimensions 150 ×
150 × 150. Table I shows results for expanding the entire

cost field. In these tests, the goal was placed on the center

of one side of the map and every reachable node was

expanded. Voxel costs were stored as integer values ranging

from free (255) to obstacle (65535). Beginning with a map

consisting only of free cost voxels, maps were constructed

by randomly changing the cost of a specified fraction of

the voxels. This fraction is given in the first column of

the tables as the ‘Density’ value. For entries marked ‘Bin’,

non-free voxel costs were changed to obstacle cost, thus

Density rhssf
rhssf

Time (s) Total Time (s)

(×10
6) No SF SF No SF SF Regular

1 48.8 18.95 23.77 59.46 70.45 36.92

.5 64.1 26.91 31.47 66.37 76.71 31.04

Bin .5 53.1 23.79 26.86 60.01 69.05 26.54

.2 85.7 37.16 42.47 76.36 87.34 27.81

Bin .2 82.4 36.56 41.19 75.11 85.74 27.35

TABLE I

COMPLETE COST FIELD EXPANSION FOR 150X150X150 GRID.

Density % Incorrect Nodes Expanded Total Time (s)

Initial Replan Initial Replan

0 50 894000 62400 20.04 1.56

0 20 894000 25200 20.01 0.83

.5 50 836000 173000 15.29 4.51

.5 20 836000 27800 15.27 0.64

TABLE II

ROBOT NAVIGATION SIMULATION FOR 150X150X150 GRID.

yielding a binary map of only free and obstacle voxels.

For all other cases, selected voxel costs were changed to a

random value between free and obstacle.

Each entry in the table represents the average of twenty-

five different maps. The ‘rhssf
’ column shows the number

of times that an rhs update (Equation (6) when using scale

factors, Equation (3) otherwise) was performed. The ‘rhssf

Time’ column shows the time taken for these computations.

Most of the rest of the time is spent on insertions and

deletions from the priority queue, and determining which

faces to test in order to update the neighboring nodes of the

top element on the queue. The final three columns show

the total time taken for all computations. Testing was done

with and without using scale factors (the ‘SF’ and ‘No

SF’ entries, respectively), and the total time has also been

reported for Regular D* Lite. When using scale factors,

they were set to one for all directions. Therefore identical

cost field expansions were generated in both cases. Overall,

the algorithm is only slowed by about fifteen percent when

scale factors are enabled, and requires roughly two to three

times as much computation as regular D* Lite.

3385

It is interesting to note that the total computation time

required by Field D* increases when more of the map is

free space. This increase is a side effect of an optimization

in our implementation regarding how the rhs updates are

performed. It is possible to put a minimum bound on the

result of the rhssf
(s) update calculation for a particular

node s and face f . Moving the shortest possible distance

through the appropriate voxel (one unit), to the lowest

cost node on face f gives a lower bound on the value

of rhssf
(s). Therefore, if rhs(s) is already lower than

this bound, we do not need to do the computation. As the

voxel costs in the map become more and more uniform,

this minimum bound test eliminates less and less of the

faces. As a result, more time is spent on planning through

maps consisting mainly of free space.

Table II summarizes results for the simulation of a robot

navigation task. In this test, a simulated robot was placed

at the center of the environment and was equipped with

an omnidirectional sensor with a range of seven units. The

goal was placed at the center of the far right side of the

environment. In the first two sets of experiments, the map

was initially assumed to be completely free. In the second

two sets of experiments, half of the voxels were initially

assumed to be free and half were assumed to hold random

costs. To begin each simulation, a path from the robot to the

goal was planned using the robot’s initial map. However,

this initial map was erroneous: the actual environment had

some fraction of the voxels holding different random costs

from those stored in the robot’s map. The robot then moved

toward the goal and its map was updated when the true

costs of the voxels in the environment were detected. At

each update, the robot’s path was replanned based on its

new map information.

Results for both initial planning and all subsequent

replanning are shown. Again, the results are an average of

twenty-five different trials. The second column indicates

the fraction of voxel costs that were incorrect in the

initial map. Even when the robot begins with grossly

inaccurate maps where up to fifty percent of its information

is incorrect, it is still able to efficiently repair its paths

during its traverse. In each of these tests the robot moved a

minimum of 75 steps, which means the average replanning

time for each path repair phase was only 0.06 seconds for

the most complex set of experiments. This is fast enough

to provide real-time performance for underwater or aerial

vehicles operating at moderate speeds.

VII. CONCLUSION

We have presented a version of the Field D* algorithm

capable of generating three-dimensional paths that are

not restricted to a small set of headings. While a two-

dimensional version of this algorithm exists and is currently

employed by several robotic ground vehicles, until now no

extension had been made to provide direct, interpolation-

based paths for aerial or underwater vehicles. In this paper

we have presented a three-dimensional version of the

algorithm that uses an efficient approximation technique

to provide real-time performance. The resulting approach

produces less costly, more direct paths than classic 3D

grid-based planners. We have also provided the capability

to encode directional-dependent costs into the planning

process.

VIII. ACKNOWLEDGEMENTS

This work was sponsored by the U.S. Army Research

Laboratory, under contract ”Robotics Collaborative Tech-

nology Alliance” (contract number DAAD19-01-2-0012).

The views and conclusions contained in this document

are those of the authors and should not be interpreted as

representing the official policies or endorsements of the

U.S. Government. Dave Ferguson is supported in part by

a National Science Foundation Graduate Research Fellow-

ship.

REFERENCES

[1] A. Barto, S. Bradtke, and S. Singh, “Learning to Act Using Real-
Time Dynamic Programming,” Artificial Intelligence, vol. 72, pp.
81–138, 1995.

[2] T. Ersson and X. Hu, “Path planning and navigation of mobile robots
in unknown environments,” in Proceedings of the IEEE International

Conference on Intelligent Robots and Systems (IROS), 2001.
[3] G. Ramalingam and T. Reps, “An incremental algorithm for a

generalization of the shortest-path problem,” Journal of Algorithms,
vol. 21, pp. 267–305, 1996.

[4] A. Stentz, “The Focussed D* Algorithm for Real-Time Replanning,”
in Proceedings of the International Joint Conference on Artificial

Intelligence (IJCAI), 1995.
[5] S. Koenig and M. Likhachev, “Improved fast replanning for robot

navigation in unknown terrain,” in Proceedings of the IEEE Inter-

national Conference on Robotics and Automation (ICRA), 2002.
[6] D. Ferguson and A. Stentz, “The Delayed D* Algorithm for Effi-

cient Path Replanning,” in Proceedings of the IEEE International

Conference on Robotics and Automation (ICRA), 2005.
[7] ——, “Field D*: An Interpolation-based Path Planner and Replan-

ner,” in Proceedings of the International Symposium on Robotics

Research (ISRR), 2005.
[8] R. Philippsen and R. Siegwart, “An Interpolated Dynamic Naviga-

tion Function,” in Proceedings of the IEEE International Conference

on Robotics and Automation (ICRA), 2005.
[9] D. Ferguson and A. Stentz, “Multi-resolution Field D*,” in Pro-

ceedings of the International Conference on Intelligent Autonomous

Systems (IAS), 2006.
[10] J. Canny and J. Reif, “New lower bound techniques for robot

motion planning problems,” in Proceedings of the 28th Annual IEEE

Symposium on the Foundations of Computer Science, 1987, pp. 49–
60.

[11] C. Papadimitriou, “An algorithm for shortest-path motion in three
dimensions,” Information Processing Letters, vol. 20, pp. 259–263,
1985.

[12] J. Choi, J. Sellen, and C. Yap, “Precision-sensitive Euclidean shortest
path in 3-space,” in Proceedings of the Annual ACM Symposium on

Computational Geometry, 1995, pp. 350–359.
[13] ——, “Approximate euclidean shortest paths in 3-space,” Interna-

tional Journal of Computational Geometry Applications, vol. 7,
no. 4, pp. 271–295, August 1997.

[14] S. Har-Peled, “Constructing approximate shortest path maps in three
dimensions,” in Proceedings of the 14th Annual ACM Symposium

on Computational Geometry, 1998.
[15] J. Mitchell, Handbook of Computational Geometry. Elsevier Sci-

ence, 2000, ch. Geometric Shortest Paths and Network Optimization,
pp. 633–701.

[16] Y. Kitamura, T. Tanaka, F. Kishino, and M. Yachida, “3-D path
planning in a dynamic environment using an octree and an artificial
potential field,” in Proceedings of the IEEE International Conference

on Intelligent Robots and Systems (IROS), 1995.
[17] P. Payeur, C. Gosselin, and D. Laurendeau, “Application of 3-D

probabilistic occupancy models for potential field based collision
free path planning,” in Proceedings of the IEEE Image and Multi-

dimensional Digital Signal Processing Workshop, 1998.

3386

