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ABSTRACT

We present a finite-difference frequency-domain method for
3D visco-acoustic wave propagation modeling. In the frequency
domain, the underlying numerical problem is the resolution of a
large sparse system of linear equations whose right-hand side
term is the source. This system is solved with a massively parallel
direct solver. We first present an optimal 3D finite-difference
stencil for frequency-domain modeling. The method is based on
a parsimonious staggered-grid method. Differential operators
are discretized with second-order accurate staggered-grid sten-
cils on different rotated coordinate systems to mitigate numerical
anisotropy.An antilumped mass strategy is implemented to mini-
mize numerical dispersion. The stencil incorporates 27 grid
points and spans two grid intervals. Dispersion analysis shows

that four grid points per wavelength provide accurate simulations
in the 3D domain. To assess the feasibility of the method for fre-
quency-domain full-waveform inversion, we computed simula-
tions in the 3D SEG/EAGE overthrust model for frequencies 5, 7,
and 10 Hz. Results confirm the huge memory requirement of the
factorization �several hundred Figabytes� but also the CPU effi-
ciency of the resolution phase �few seconds per shot�. Heuristic
scalability analysis suggests that the memory complexity of the
factorization is O�35N4� for a N3 grid. Our method may provide
a suitable tool to perform frequency-domain full-waveform in-
version using a large distributed-memory platform. Further in-
vestigation is still necessary to assess more quantitatively the re-
spective merits and drawbacks of time- and frequency-domain
modeling of wave propagation to perform 3D full-waveform
inversion.

INTRODUCTION

Quantitative seismic imaging of 3D crustal structures is one of the
main challenges of geophysical exploration at different scales for
subsurface, oil exploration, crustal, and lithospheric investigations.
Frequency-domain full-waveform inversion has recently aroused
increasing interest following the pioneering work of R.G. Pratt and
collaborators �Pratt, 2004�. A few applications of frequency-domain
full-waveform inversion applied to 2D onshore and offshore wide-
aperture �global-offset� seismic data have recently been presented to
image complex structures such as a thrust belt or a subduction zone
�Operto et al., 2004, 2007; Ravaut et al., 2004�. The potential interest
of such approaches is to exploit the broad aperture range spanned by
global-offset geometries to image a broad and continuous range of
wavelengths in the velocity model. The frequency-domain approach

of full-waveform inversion has been shown to be efficient for several
reasons �e.g., Pratt et al., 1996, 1998; Pratt, 1999; Brenders and Pratt,
2006�. First, only a few discrete frequencies are necessary to develop
a reliable image of the medium, and second, proceeding sequentially
from low to high frequencies defines a multiresolution imaging
strategy that helps to mitigate the nonlinearity of the inverse prob-
lem.

In 2D, the few frequency components required to solve the in-
verse problem can be efficiently modeled in the frequency domain
using a finite-difference �FDFD� method �Marfurt, 1984; Jo et al.,
1996; Štekl and Pratt, 1998; Hustedt et al., 2004�. Modeling of one
frequency with a finite-difference method requires solving a large,
sparse system of linear equations. If one can use a direct solver to
solve the system, the solution for multiple right-hand side terms �i.e.,
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multiple sources� can be obtained very efficiently and this iscritical
for seismic imaging. Indeed, the matrix factorization is done once,
and then multiple solutions can be rapidly obtained by forward and
backward substitutions. Moreover, attenuation can be easily imple-
mented in the frequency domain using complex velocities �Toksöz
and Johnston, 1981�. Another advantage of direct solvers compared
to the iterative alternative is robustness in the sense that they will
give highly accurate answers to very general problems after a finite
number of steps �see Demmel, 1997, for a discussion on the respec-
tive merits of direct and iterative solvers�.

The drawback of the direct approach with respect to the iterative
counterpart or the time-domain formulation is that the LU factoriza-
tion of the matrix leads to fill-in and hence requires a huge amount of
RAM memory or disk space to store the LU factors. Today, modern
computers with shared or distributed memory allow us to tackle 2D
frequency-domain full-waveform modeling and inversion problems
for representative crustal-scale problems �i.e., typically, 2D velocity
models of dimension 100�25 km and frequency up to 15 Hz, �Op-
erto et al., 2007��. In 3D, the storage requirement and the complexity
of the FDFD problem may appear rather discouraging. Therefore,
most of the works on resolution of the 3D Helmholtz equation focus-
es on iterative solvers �Riyanti et al., 2006; Plessix, 2006�. However,
much recent effort has been dedicated to developing massively par-
allel direct solvers that allow solution of problems involving several
million unknowns �Amestoy et al., 2006�. Therefore, we believe that
it is worth investigating more quantitatively the categories of seis-
mic imaging problems, which can be addressed with FDFD wave
propagation methods based on massively parallel direct solvers. Fre-
quency-domain full-waveform inversion of the low-frequency part
of the source bandwidth may be one of these imaging problems. Di-
rect solvers can also be implemented within hybrid direct-iterative
solvers based on Schwarz-based domain decomposition method for
which factorizations are performed in subdomains of limited dimen-
sions in conjunction with a Krylov subspace method �Štekl and Pain,
2002�.

In this paper, we present an optimal stencil for 3D FDFD wave
propagation modeling. Our method is the 3D extension of the 2D
parsimonious mixed-grid FDFD method for acoustic wave propaga-
tion developed by Hustedt et al. �2004�. In the first part of the paper,
we review the first-order hyperbolic velocity stress and the second-
order Helmholtz-type formulations of the 3D acoustic wave equa-
tion, and we develop the discretization strategies applied to these
equations. This will lead to a 27-point stencil spanning two grid in-
tervals. In the second part, we perform a dispersion analysis to assess
the accuracy of the stencil in infinite homogeneous media. This dis-
persion analysis suggests that four grid points per wavelength will
provide accurate simulations. In the third part, we briefly review the
main functionalities of the massively parallel solver that we used for
the numerical resolution �Amestoy et al., 2006; MUMPS Team,
2007�. In the fourth part, we illustrate the accuracy of the method
with several numerical examples that confirm the conclusion of the
dispersion analysis. Finally, we present a heuristic complexity anal-
ysis, which suggests that memory and time complexity of the matrix
factorization are O�n4� and O�n6�, respectively, when considering a
3D n3 computational domain. These estimations are consis-tent with
former theoretical analysis. We conclude with some comments on
future developments.

THE PARSIMONIOUS MIXED-GRID FD METHOD

Principle of the method

The aim of this section is to design an accurate and spatially com-
pact FD stencil for frequency-domain modeling based on a direct
solver. We propose an extension to the 3D case of the 2D parsimoni-
ous mixed-grid method presented by Hustedt et al. �2004�, which is
itself an extension of the mixed-grid method developed by Jo et al.
�1996� for homogeneous acoustic media and extended by Štekl and
Pratt �1998� for viscoelastic heterogeneous media. Use of a spatially
compact stencil is critical if a direct method �LU factorization� is
used to solve the system resulting from the discretization of the
Helmholtz equation. Indeed, spatially compact stencils allow limita-
tion of the numerical bandwidth of the matrix and hence its filling
during LU factorization. We implemented spatially compact stencils
with second-order accurate differencing operators. Accuracy in
terms of both numerical anisotropy and dispersion is achieved using
the following: First, the differential operators are discretized on dif-
ferent rotated coordinate systems and combined linearly following
the so-called mixed-grid strategy �Jo et al., 1996, Štekl and Pratt,
1998; Hustedt et al., 2004�. Second, the mass term at the collocation
point is replaced by its weighted average over the grid points in-
volved in the stencil �Marfurt, 1984; Takeuchi et al., 2000�.

Concerning discretization of differential operators, Hustedt et al.
�2004� clarify the relationship between the original mixed-grid ap-
proach of Jo et al. �1996� and the staggered-grid methods applied to
the first-order hyperbolic velocity-stress formulation of the wave
equation �Virieux, 1984, 1986; Saenger et al., 2000� through a parsi-
monious strategy, originally developed for the time-domain wave
equation �Luo and Schuster, 1990�. The parsimonious strategy pro-
vides a systematic recipe for discretizing the second-order wave
equation from its first-order representation. In the parsimonious ap-
proach of Hustedt et al. �2004�, the wave equation is first written as a
first-order hyperbolic system in pressure-particle velocity and dis-
cretized using staggered-grid stencils of second-order accuracy on
different rotated coordinate systems. After discretization, particle
velocity wavefields are eliminated from the system, leading to a par-
simonious staggered-grid wave equation on each rotated coordinate
system. Elimination of the three particle-velocity wavefields allows
decreasing the order of the matrix by a factor of four for the 3D
acoustic wave equation. Once the discretization and the elimination
have been applied on each coordinate system, the resulting differ-
encing operators are linearly combined into a single discrete wave
equation.

In the following section, we detail the successive steps involved in
FD discretization of the 3D frequency-domain wave equation intro-
duced above.

The 3D frequency-domain visco-acoustic wave equation

We begin with a review of the 3D frequency-domain acoustic
wave equation. This equation is written as a first-order hyperbolic
system �Virieux, 1984� using physical quantities as the pressure, and
the particle velocity is given by
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This first-order system of equations will be discretized with stag-
gered-grid stencils in the following section. In equation 1, wave-
fields vx�x,y,z,��, vy�x,y,z,��, and vz�x,y,z,�� are components of
the particle velocity vector, p�x,y,z,�� is the pressure, � is the angu-
lar frequency. The bulk modulus is ��x,y,z� and b�x,y,z� is the buoy-
ancy, the inverse of density. External forces acting as the source term
are represented by fx, f y, and f z. The 1D functions �x, �y, and �z define
damping functions implemented in the absorbing perfectly matched
layers �PML� surrounding the model on all four sides of the compu-
tational domain �Berenger, 1994�. System 1 based on unsplit PML
conditions is derived from the time-domain wave equation with split
PML conditions inAppendix A.

We inject the expression of the particle velocities �last three equa-
tions of equation system 1� in the first equation of system 1, which
leads to the second-order elliptic wave equation in pressure,
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where s = � · f is the pressure source. This elimination procedure
will be applied after discretization of system 1 in the following sec-
tion.

If fx, f y, and f z are unidirectional impulses applied at the same spa-
tial position, the pressure source corresponds to an explosion.

In matrix form, we have

�M + S�p = −s ,

where M and S are the mass and stiffness matrices, respectively. We
implemented an explosive source in vector s by setting one nonzero
complex coefficient at the position of the explosion. This coefficient
is the Fourier transform of the source wavelet at the current frequen-
cy, normalized by the volume of the cubic cell.

Differencing operators: The 3D 27-point stencil

In this section, we discretize in a finite-difference sense the Helm-
holtz equation, equation 2, using the parsimonious mixed-grid strat-
egy. The successive steps of the discretization are

Step 1: 3D coordinate systems are defined such that their axes span
as many directions as possible in a cubic cell �Figure 1�. These co-
ordinate systems must be consistent with 3D second-order stag-
gered geometry �e.g., see Virieux, 1984 and Hustedt et al., 2004 for
the 2D case�.
Step 2: The first equation of system 1 is discretized on each of the
coordinate systems using second-order centered staggered-grid
stencils. The discrete equation will involve particle velocities on
staggered grids.
Step 3: The particle velocities at the grid points involved in the first
equation of system 1 are inferred from the last three equations of
system 1 using the same staggered-grid stencils as for the first equa-
tion.
Step 4: The expressions of the particle velocities are reinjected in
the first equation of system 1, leading to a second-order parsimoni-
ous staggered-grid wave equation in pressure.
Step 5: Once steps 2–4 have been performed for each coordinate
systems, all the discrete wave equations are combined linearly. A
necessary condition for applying this combination is that the pres-
sure wavefield kept after elimination be discretized on the same
grid as the coordinate system that was selected during step 1.

Here we identify eight coordinate systems that cover all possible
directions in a cubic cell and that are consistent with the staggered-
grid geometry. Spatial partial derivatives in the wave equation, equa-
tion 1, are discretized along these coordinate systems.

These eight coordinate systems are

1� the classic Cartesian coordinate system �x,y,z�. The associated
basis will be denoted by Bc in the following and the resulting
stencil will be referred to as stencil 1 �Figure 1a�.

2� three coordinate systems obtained by rotating the Cartesian
system around each Cartesian axis x, y, and z. The associated
basis obtained by rotation around x, y, and z will be noted by Bx,
By, and Bz, respectively. The coordinates on each basis will be
noted �x,yx,zx�, �xy,y,zy�, and �xz,yz,z�, respectively �Figure 1b�.
Each stencil associated with the basis Bx, By, and Bz incorpo-
rates 11 coefficients. The stencil resulting from the averaging of
the stencils developed on each basis Bx, By, and Bz will be re-
ferred to as stencil 2 and incorporates 19 coefficients.

3� four coordinate systems defined by the four big diagonals of a
cube �Figure 1c�. If we denote by d1

ˆ , d2
ˆ , d3

ˆ , and d4
ˆ unit vectors

along each of these diagonals, four bases can be formed
B1 = �d1

ˆ ,d2
ˆ ,d3

ˆ �, B2 = �d1
ˆ ,d2

ˆ ,d4
ˆ �, B3 = �d1

ˆ ,d3
ˆ ,d4

ˆ �, and B4 =
�d2

ˆ ,d3
ˆ ,d4

ˆ �. The associated coordinates will be denoted as d1, d2,
d3, and d4 in the following. These four coordinate systems are
similar to those developed by Saenger et al. �2000� for 3D time-
domain elastic staggered-grid finite-difference methods. The
stencil resulting from the averaging of the four stencils devel-
oped on the base B1, B2, B3, and B4 will be referred to as stencil
3. This stencil has 27 coefficients.

These coordinate systems differ from those introduced by Štekl et
al. �2002� and Štekl and Pain �2002� who propose using, in addition
to the Cartesian system and the three systems Bx, By, and Bz, six addi-
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tional coordinate systems obtained by rotation around two of the
Cartesian axes. These coordinate systems are not consistent with our
staggered-grid method in the sense that it would require defining
more than one pressure grid.

Finally, the stiffness matrices associated with each coordinate
system are combined linearly:

Sp ⇒ �w1SBc
+ w2/3�SBx

+ SBy
+ SBz

� + w3/4�SB1

+ SB2
+ SB3

+ SB4
��p ,

where we introduced the weighting coefficients w1, w2/3, and w3/4
associated with stencils 1, 2, and 3, respectively. The coefficients
verify

w1 + w2 + w3 = 1. �3�

The factors 1/3 and 1/4 applied to coefficients w2 and w3 account for
the fact that stencils 2 and 3 are the average of three elementary sten-
cils and four elementary stencils, respectively.

Expression of the partial derivatives with respect to x, y, and z as a
function of the spatial derivatives with respect to each of the above
mentioned coordinates are given in Appendix B. The second-order
centered staggered-grid stencils for each partial derivative of a
wavefield with respect to each coordinate are given in Appendix C.
These discrete expressions are used to discretize the equations in
system 1 before elimination of the discrete particle velocity fields.
The final expression of the eight parsimonious staggered-grid wave
equations are given in Appendix D. In the appendices and below, we
used the following notations for compactness: We consider a given
cubic cell of the finite-difference mesh. The pressure at the nodes of
the cubic cell are denoted by plmn where l,m,n� �− 1,0,1�, and p000

denotes the central grid point.
Indices 1/2 indicate buoyancy grid points located at intermediate

positions with respect to the reference pressure grid following the
staggered-grid strategy.

Mass-term averaging

The accuracy of the stencil can be greatly improved by a redistri-
bution of the mass term over the different grid points surrounding the
collocation point involved in the finite-difference stencils following
an antilumped mass approach. Following standard procedure of fi-
nite element methods �Marfurt, 1984�, the diagonal mass term is dis-
tributed through weighted values such that
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Figure 1. FD stencils. Circles are pressure grid points. Squares are
positions where buoyancy needs to be interpolated because of the
staggered-grid geometry. Gray circles are pressure grid points in-
volved in the stencil. �a� Stencil on the classic Cartesian coordinate
system. This stencil incorporates seven coefficients. �b� Stencil on
the rotated Cartesian coordinate system. Rotation is applied around x
on the figure. This stencil incorporates 11 coefficients. The same
strategy can be applied by rotation around y and z. Averaging of the
three resultant stencils defines a 19-coefficient stencil. �c� Stencil
obtained from four coordinate systems, each associated with three
big diagonals of a cubic cell. This stencil incorporates 27 coeffi-
cients.
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In equation 4, we used the notations
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In the frame of finite-element methods, this strategy is equivalent to
combining the consistent and lumped mass matrices.

In summary, the discrete wave equation can be compactly written
as
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+ ��w1SBc
+ w2/3�SBx

+ SBy
+ SBz

� + w3/4�SB1
+ SB2

+ SB3
+ SB4

��p�000 = s000.

The pattern of the resulting discrete impedance matrix is illustrated
in Figure 2 for a small 8�8�8 grid. The matrix is band diagonal
with fringes. Their are 27 nonzero coefficients per row. The band-
width is of the order of the product of the two smallest dimensions,
O�ni �n j�, where ni �n j = min�nx �ny,nx �nz,ny �nz� �64 in this
case�. The impedance matrix has a symmetric pattern caused by the
reciprocity of Green’s functions, but is unsymmetric because of the
mass-term averaging and the discretization of the PML-absorbing
boundary conditions. The coefficients are complex because of the
PML-absorbing boundary conditions and the use of complex veloci-
ties to introduce attenuation in the simulation �Toksöz and Johnston,
1981�.

NUMERICAL DISPERSION ANALYSIS

In this section, we present a classic dispersion analysis to assess
the accuracy of the stencil. We first derive the expression of the phase
velocity for the infinite homogeneous scheme. Since the phase ve-
locity depends on the weighting coefficients wm1, wm2, wm3, w1, and
w2, we solve in a second step an optimization problem for the estima-
tion of these coefficients, minimizing the numerical phase velocity
dispersion.

Consider an infinite homogeneous velocity model of velocity c

and a constant density equal to 1. From Appendix D, the discrete
wave equation �without PML conditions� reduces to
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2
�3 − �2 + 2�1 − 12�0
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where

�0 = p000,

�1 = p100 + p010 + p001 + p−100 + p0−10 + p00−1,

�2 = p110 + p011 + p101 + p−110 + p0−11 + p−101 + p1−10

+ p01−1 + p10−1 + p−1−10 + p0−1−1 + p−10−1,

�3 = p111 + p−1−1−1 + p−111 + p1−11 + p11−1 + p−1−11

+ p1−1−1 + p−11−1.

Following a classic harmonic approach, we insert the discrete ex-
pression of a plane wave, plmn = e−ihk�l cos � cos �+m cos � sin �+n sin ��,

where i2 = −1, in equation 6. The phase velocity is given by �/k. We
define the normalized phase velocity by ṽph = vph/c and introduce
G = �/h = 2	/kh, the number of points per wavelength �.

After some straightforward manipulations, we obtain the follow-
ing expression for the phase velocity:

ṽph =
G

�2J	
�w1�3 − C� +

w2

3
�6 − C − B� +

2w3

4
�3 − 3A + B − C� ,

�7�

where J = �wm1 + 2wm2C + 4wm3B + 8wm4A� with

Column number of impedance matrix
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Figure 2. Pattern of the square impedance matrix discretized with the
27-point stencil. The matrix is band diagonal with fringes. The band-
width is O�2N1N2� where N1 and N2 are the two smallest dimensions
of the 3D grid. The number of rows/columns in the matrix is N1 �N2

�N3. In the figure, N1 = N2 = N3 = 8.
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A = cos a cos b cos c ,

B = cos a cos b + cos a cos c + cos b cos c ,

C = cos a + cos b + cos c ,

and a = 2	/G cos � cos �,b = 2	/G cos � sin �,c = 2	/G sin �.
One can easily check that ṽph→1 when G→
 for J = 1 and for the
three cases �w1,w2,w3� = �1,0,0�, �0,1,0�, and �0,0,1� for all � and �.
This validates the expression of the phase velocity, equation 7.

We look for the five independent parameters wm1, wm2, wm3, w1,
and w2, which minimize the least-square norm of the misfit �1.
− ṽph�. The two remaining coefficients wm4 and w3 are inferred from
equations 3 and 5, respectively. We estimated these coefficients by a
global optimization procedure based on a very fast simulating an-
nealing algorithm �Sen and Stoffa, 1995�. We minimize the cost
function for five angles � and � spanning 0° and 45° and for four val-
ues of G ranging between four and 10.

We found wm1 = 0.4964958, wm2 = 0.4510125, wm3 = 0.052487,
w1 = 1.8395265�10−5, and w2 = 0.890077, which give wm4

= 0.45523�10−5 and w3 = 0.1099046. The coefficients show that
stencils 2 and 3 are dominant contributers in the mixed-grid stencil.
On the other hand, the mass coefficients show a dominant contribu-
tion of the coefficients located at the collocation point and at the
nodes associated with stencil 1.

The dispersion curves for stencils 1, 2, and 3 without mass averag-
ing are shown in Figure 3. These stencils, used individually, would
require up to 40 grid points per wavelength. The phase- and group-
velocity dispersion curves for the mixed stencil without mass aver-
aging are shown in Figure 4a and b. Note how the dispersion curves
for different incidence angles are focused, illustrating the isotropy of
the stencil. However, the accuracy of the stencil remains poor. Com-
bining the mixed-grid discretization strategy with mass averaging
allows us to mitigate both numerical anisotropy and dispersion �Fig-
ure 4c and d�. The phase-velocity dispersion curve suggests that a
discretization rule of four grid-points per wavelength can be used. If
the wave propagation modeling algorithm is used as a tool for full-
waveform inversion, this discretization rule is optimal in the sense
that theoretical resolution of full-waveform inversion at normal inci-
dence is half the wavelength �Miller et al., 1987�. The sampling theo-
rem states that four points per wavelength is the maximum grid inter-
val for sampling half a wavelength without aliasing.
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Figure 3. Dispersion curves for phase velocity. Normalized phase
velocity as a function of the inverse of the number of grid points per
wavelength is plotted. �a� Stencil 1 without mass averaging. �b�
Stencil 2 without mass averaging. �c� Stencil 3 without mass averag-
ing. The curves are plotted for angles � and � ranging from 0° to 45°.
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Figure 4. Dispersion curves for phase and group ve-
locities. Normalized phase and group velocities as
a function of the inverse of the number of grid
points per wavelength are plotted.�a� Phase- and
�b� group-velocity dispersion curves for mixed-
grid stencil without mass averaging. �c-d� Same as
�a-b� but with mass averaging. The curves are plot-
ted for angles � and � ranging from 0° to 45°.
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THE MASSIVELY PARALLEL DIRECT

SOLVER — MUMPS

To solve the sparse system of linear equations, we used the direct
multifrontal massively parallel solver �MUMPS� designed for dis-
tributed memory platforms. The method and its underlying algorith-
mic aspects are extensively described by Amestoy et al. �2006�,
MUMPS Team �2007�, and Guermouche et al. �2003�. The MUMPS
solver is based on a multifrontal method �Duff and Reid, 1983; Liu,
1992�. In this approach, the resolution of the linear system is subdi-
vided into three main tasks. The first is an analysis phase or symbolic
factorization. This analysis is currently sequential in MUMPS. Re-
ordering of the matrix coefficients is first performed in order to mini-
mize fill-ins, namely, the additional nonzero coefficients introduced
during the elimination process. We used the METIS algorithm,
which is based on a hybrid multilevel nested-dissection and multiple
minimum degree algorithm �Karypis and Kumar, 1998�. Then, the
dependency graph that describes the order in which the matrix can be
factored is estimated as well as the memory required to perform the
subsequent numerical factorization. If several simulations need to be
performed in slightly different velocity models during iterative full-
waveform inversion, the analysis phase needs to be performed only
once per frequency. The second task is numerical factorization. The
third task is the solution phase performed by forward and backward
substitutions. During the resolution phase, multiple-shot solutions
can be simultaneously computed from the LU factors, taking advan-
tage of basic linear algebra subprograms �BLAS3� library, and either
assembled on the host or kept distributed on the processors for sub-
sequent parallel computations.

We performed the factorization and the resolution phases in single
precision. To reduce the condition number of the matrix, row and
column scaling is applied in MUMPS before factorization. The spar-
sity of the matrix and suitable equilibration made single precision
factorization accurate enough for the 2D and 3D problems we tack-
led �Hustedt et al., 2004�. If single precision factorization were not
considered accurate enough for very large problems, an alternative
approach to double precision factorization could be postprocessing
of the solution by a simple and fast iterative refinement performed in
double precision �Demmel, 1997, p. 60 and 61; Kurzak and Don-
garra 2006; Langou et al., 2006�.

NUMERICAL EXPERIMENTS

Validation in a homogeneous medium

To check this 3D mixed-grid stencil, the numerical solution is
compared with the analytical one computed for homogeneous medi-
um. The P-wave velocity is 4 km/s and the density is 2000 kg/m3.
The frequency is 4 Hz. The grid size is 161�101�51 and the grid
interval is 250 m, which represents one fourth of the propagated
wavelength. The PML layer is discretized with four grid points and
hence spans one wavelength. All the simulations presented in the
following were computed on a PC cluster composed of dual-core
2.4 GHz biprocessors with 8 GB of memory per node. The intercon-
nect is Infiniband 4X. The peak power is 19.2 Gflops per node.

We used 60 processes for this simulation. The total memory allo-
cated for factorization was 38 GB. The real time for factorization
was 409 s. The number of entries in LU factors was 2.15�109, cor-
responding to 17.2 GB of memory allocated for storage of these fac-
tors. The time for resolution was 1.67 s for one right-hand side.

Figure 5 shows a monofrequency pressure wavefield. The PML
absorption is efficient, although there are only four grid points in the
PML layers.

Figure 6 compares some vertical and horizontal graphs extracted
from the pressure wavefield �Figure 5� with the 3D analytical solu-
tion. The agreement is quite good.

2.5D corner-edge model

The second validation of the 3D FD stencil was performed by
comparing the solution of the 3D FDFD code computed in a 2.5D ve-
locity model �i.e., homogeneous along y� with a line source along y

and the solution of a 2D FDFD code �Hustedt et al., 2004� computed
in a slice of the 2.5D velocity model. The velocity model is com-
posed of two homogeneous half-spaces delineated by horizontal and
vertical interfaces forming a corner �the so-called corner-edge mod-
el�. Velocities in the upper-left and the lower-right media are 4 and
5 km/s, respectively. The corner is at x = 7.8 km, z = 2.5 km. The
source is at �x = 10.95 km,z = 1.45 km�. The grid interval is 150 m
corresponding to 6.7 grid points per minimum wavelength. The
computed frequency is 4 Hz. The grid size is nx = 201�ny = 141
�nz = 71. There are seven grid points in the PML layers, which cor-
responds to one minimum wavelength. The modeling was computed
using 120 processors. The elapsed time for factorization was 1950 s.
The total amount of memory allocated during factorization was
133.96 GB. The number of entries in LU factors was 7.72�109, cor-
responding to 61.76 GB in a single-precision complex. The average
and maximum memory allocated to each processor during factoriza-
tion was 1.11 and 1.37 GB, respectively. The time for resolution was
5.81 s for one right-hand side.

A perspective view of the 2.5D wavefield computed with the 3D
FDFD code is shown in Figure 7a. A slice of the cube is compared
with the solution of the 2D code in Figure 7b and c, showing good
agreement between the two solutions. The difference between the
2D and 3D solutions is shown in Figure 7d with the same scale as
Figure 7b and c.

3D SEG/EAGE overthrust model

In order to test the feasibility of using 3D acoustic FDFD wave
propagation modeling to address realistic problems, we used the 3D
SEG/EAGE overthrust velocity model designed by the oil explora-
tion community to test 3D seismic imaging methods �Aminzadeh et
al., 1994, 1995�.
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Figure 5. Example monofrequency wavefield �real part� computed
in the homogeneous model.
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The 3D SEG/EAGE overthrust model is a constant-density acous-
tic model covering an area 20�20�4.65 km. It is discretized with
25-m cubic cells representing a uniform mesh of 801�801�187
nodes. The minimum and maximum velocities in the overthrust
model are 2.2 and 6.0 km/s, respectively.

We performed three simulations for frequencies of 5, 7, and
10 Hz. The grid interval was adapted to the modeled frequency in or-
der to fit the dispersion condition of four grid points per minimum
wavelength. This leads to grid intervals of 100, 75, and 50 m for the
5-, 7-, and 10-Hz frequencies, respectively. Before undersampling,
the initial velocity model was smoothed using a 2D Gaussian filter
whose correlation length was adapted to the coarse grid interval to
avoid creating artificial staircases in the undersampled velocity
model.

We performed the 5-Hz simulation on 32 dual-core biprocessor
nodes. The 7- and 10-Hz simulations were performed using 48
nodes. The smoothed and undersampled models as well as some ex-
amples of monochromatic wavefields are shown in Figures 8–10 for
5-, 7-, and 10-Hz frequencies, respectively.

Simulation statistics are summarized in Tables 1 and 2. The com-
putational grid spans 20�20�4.65 km, 20�15�4.65 km, and
20�5�4.65 km at 5-, 7-, and 10-Hz frequencies, respectively, be-
cause of memory limitation. The real time for the resolution step is
3.8, 9.8, and 10.3 s for the 5-, 7-, and 10-Hz frequencies, respective-

ly. This highlights the potential benefit of FDFD simulations based
on a direct solver if enough core memory is available to store the LU
factors. Resolutions for multiple shots were performed in sequence,
i.e., the right-hand terms were processed sequentially. The resolu-
tion times discussed here may be significantly reduced by using the
MUMPS functionality, which allows simultaneous resolution for
multiple shots, taking advantage of the BLAS3 library �MUMPS
team, 2007�, but we have not yet attempted to do this. Simultaneous
resolution for multiple shots assumes that multiple solutions can be
distributed in the core memory on different processors. Part of the
memory occupied by the overheads during factorization is released
before resolution and can be used for this purpose.

The number of LU factors NLU is O�2�Nx �Ny �Nz �Ny �Nz�
for the natural ordering of the matrix, assuming that Nx �max
�Ny,Nz�. Using METIS ordering, we obtained for each simulation
NLU = 6.48�NLUord

, 3.84�NLUord
, and 2.46�NLUord

, where NLU and
NLUord

stand for the number of LU factors without and with METIS
ordering, respectively.

We used the MUMPS analysis phase to obtain an estimate of
NLUord

for a larger 3D grid with the same ratio between the three di-
mensions as for the overthrust model. For a grid of 340�340�85,
NLUord

was estimated to be 47.98�109, corresponding to 384 GB in a
single precision complex. These grid dimensions would allow mod-
eling of the 9.5-Hz frequency in the full overthrust model.

COMPLEXITY ANALYSIS

We performed a series of numerical tests to as-
sess the memory and time scalability �behavior of
the algorithm when the problem size augments�
of the MUMPS solver. We considered cubic grids
of increasing dimension N �the total number of
grid points in the grid is N3�. Statistics of the sim-
ulations are summarized in Table 3. The number
of processors Nproc was 36 for N ranging between
40 and 80, and 50 for N between 85 and 110. The
theoretical memory complexity of the LU factor-
ization is O�N4� if nested-dissection ordering is
used, and the number of floating-point operations
during factorization is O�N6� �e.g., Ashcraft and
Liu, 1998�. The CPU-time complexity of the res-
olution step is O�N4�. The number of LU factors
�NLUord

� as a function of the grid dimension N is
shown in Figure 11a; the gray curve corresponds
to numerical factorization, and the black curve
corresponds to estimation returned by symbolic
factorization performed during analysis. There is
good agreement between the analysis estimation
and the numerical factorization, suggesting stable
behavior of the latter. These two curves are com-
pared with different curves corresponding to
some power of N. The curve showing the ratio
NLUord

/N4 exhibits a reasonable horizontal pattern
until N = 140, suggesting that the real complexi-
ty of the factorization after reordering is closed to
the theoretical one �Figure 11b�. This curve also
reveals that a significant multiplicative factor of
around 35 must be applied to N4 to obtain the
number of LU factors. This may be because of the
size of the separators in the nested-dissection al-

0.2

0.1

0

–0.1

–0.2

A
m

p
lit

u
d

e
(r

e
a

l
p

a
rt

)

–4 –2 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34

Offset (km)

0.1

0

–0.1

–0.2

A
m

p
lit

u
d
e

(r
e
a
l
p
a
rt

)

0.1

0

–0.1

–0.2

A
m

p
lit

u
d

e
(r

e
a

l
p

a
rt

)

–4 –2 0 2 4 6 8 10 12 14 16 18

Offset (km)

–1 1 3 5 7 9

Offset (km)

a)

b)

c)

Figure 6. Comparison between �black� numerical and �gray� analytical solutions along
�a� x, �b� y, and �c� z. The graphs run through the point source position. Amplitudes were
corrected for 3D geometric spreading.

SM202 Operto et al.



gorithm associated with the 27-point stencil. Therefore, we conclude
that the memory complexity of the factorization is O�35N4�.

Simulation of a 10-Hz frequency in a 10�10�10 km cubic grid
�corresponding to a 210�210�210 grid for a minimum velocity of
2 km/s� would require around 320 GB of RAM to store the LU sin-
gle precision complex factors. We speculate that the 15-Hz frequen-
cy in a 10�10�10 km volume �corresponding to a 300�300
�300 grid� would require around 1 Tbyte of RAM or disk to store
the LU factors. This 3D volume is representative of the domain
spanned by one shot patch of a 3D wide-azimuth multichannel seis-
mic experiment �see Michell et al., 2006 for a description of a 3D
wide-azimuth streamer survey�. Therefore, this amount of memory
may be representative of the memory required to process a 3D wide-
azimuth multichannel seismic reflection dataset by FDFD migration
based on a two-way wave equation with a maximum frequency of
15 Hz �see Plessix and Mulder, 2004 and Mulder and Plessix, 2004,
for a description of two-way wave equation FDFD migration�.

The memory overheads required during factorization are shown
in Figure 12. This curve suggests that the memory required by the
overheads is of the order of that required to store the LU factors.

The ratio between the real time for factorization over the time
complexity of the factorization O�N6� is plotted as a function of N in
Figure 13. The reasonably horizontal pattern of the curve shows the
consistency between numerical experience and theoretical complex-
ity analysis. The sharp decrease of the ratio between N = 80 and N

= 85 is caused by an increase in the number of processors from 36 to
50 �see Table 3�.

The efficiency of the parallel factorization is illustrated in Figure
14. Efficiency is defined by Tseq/Tpar ·Nproc where Tseq is the effective
time for sequential factorization, Tpar is the effective time for parallel
factorization, and Nproc is the number of processors involved in the
parallel factorization. For this test, N = 50. Using 36 processors, we
obtained an efficiency of 0.35, which leads to a speed-up of 12.6.
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Figure 8. �a� Smoothed and undersampled overthrust model. Mesh
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Table 1. Model dimensions for overthrust simulations: „Nx,Ny,Nz…, size of the 3D FD grid including PML layers; NPML, number

of grid points in the PML layers; h, grid interval; f, modeled frequency (Hz); „Lx,Ly,Lz…, physical dimensions of the propagating
model (i.e., without PML); O, number of unknowns; NNZ, number of nonzero coefficients.

Nx Ny Nz NPML h �m� f �Hz� Lx �km� Ly �km� Lz �km� O/1e6 NNZ//1e6

207 207 53 5 100 5 19.6 19.6 4.2 2.27 61.31

275 218 71 5 75 7 19.8 15.5 4.5 4.25 114.92

409 109 102 5 50 10 19.9 4.9 4.55 4.54 122.77

Table 2. Computational effort for overthrust simulations: NCPU, number of processes; TA(s), time for analysis; TD(s), time for

sparse matrix distribution; TF(s), elapsed time for factorization; TR„s…, elapsed time for resolution for 1 RHS; MP (MB),
maximum space per working processor during factorization; M̃P (MB), average space per working processor during
factorization; MF (GB), total amount of memory allocated during factorization; Nn, number of nodes in the tree; SF, maximum
frontal size; NLU

ord
, number of entries in LU factors; ISF: integer space for factors.

NCPU TA TD TF TR M̃P MP MF Nn SF NLUord
/1e6 ISF/1e6

128 94 16 1181 3.8 958 1249 143 139491 22886 7693 57

192 257 53 6425 9.3 1603 2891 385 258170 42814 22517 183

192 401 56 9826 10.3 1820 2406 449 280181 33693 29073 230
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Figure 9. �a� Smoothed and undersampled overthrust model. Mesh
spacing is 75 m. �b–c� Two examples of 7-Hz monofrequency wave-
fields in a fraction of the overthrust model.
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Figure 10. �a� Smoothed and undersampled overthrust model. Mesh
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Table 3. Memory and time scalabilities of factorization and resolution: NCPU, number of process; N, dimension of the cubic

computational grid; TD„s…, time for sparse matrix distribution; TF„s…, elapsed time for factorization; TR„s…, elapsed time for
resolution for 1 RHS; MP (MB), average space per working processor during factorization; MF (MB), total amount of memory
allocated during factorization; NLU

ord
, number of LU factors.

NCPU N TD �s� TF TR �s� MP �Mb� MF �Mb� NLUord
/1e6

36 40 0.43 8.7957 0.17 73 2639 83.3

36 50 0.67 31.24 0.33 147 5302 207.08

36 60 0.99 81.08 0.59 255 9193 435.39

36 70 1.50 198.98 0.90 449 16177 821.62

36 80 2.08 481.80 1.71 840 30248 1423.93

50 90 3.09 628.18 1.94 908 45449 2292.02

50 100 4.10 1402.16 3.52 1508 75406 3521.87

50 110 5.34 2031.37 11.86 1871 93555 5240.76

64 115 7.52 2485.90 7.05 1819 116440 6472.24
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ferred from numerical factorization and the black curve from sym-
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CONCLUSION AND PERSPECTIVES

We presented a feasibility study of 3D finite-difference frequen-
cy-domain modeling of acoustic wave propagation based on a mas-
sively parallel direct solver. This modeling algorithm was developed
as a tool for frequency-domain full-waveform inversion, which re-
quires modeling of a limited number of frequencies and a large num-
ber of sources �typically, hundreds to thousands depending on the
design of the acquisition�. We first designed an optimal FD stencil
for the frequency-domain formulation. The key properties of this
stencil are its local support, which minimizes the dependencies in
the graph of the matrix, and a discretization rule of four grid points
per minimum wavelength which is optimal with respect to the theo-
retical resolution of full-waveform inversion.

We presented several simulations in the 3D SEG/EAGE over-
thrust model. Our results confirm the huge memory complexity of
the factorization and the CPU efficiency of the resolution. We esti-
mated the memory complexity of the factorization to be O�35N4� for
an N�N�N grid.

Future work of the MUMPS team will include the use of out-of-
core memory �disk space� in the MUMPS solver and the paralleliza-
tion of the analysis phase, which should allow us to address larger
problems for a given distributed memory platform. The applicability
of the approach presented in this paper, which is strongly related to
the memory issue, will probably be dependent on the evolution of the
cluster technologies in the next decade. Such technologies may
evolve toward clusters with more processors and less memory per
processor. Since the memory scalability of a massively parallel di-
rect solver is not naturally high, this evolution should not be favor-
able to our approach. However, the out-of-core version of direct
solvers should allow a more flexible management of memory for
these platforms. The second possible evolution is the increasing de-
velopment of hybrid architectures combining shared and distributed
memory models. For these architectures, one can take advantage of
threaded BLAS libraries by allowing fewer MPI processes than ac-
tual processors. This should avoid duplication of symbolic informa-
tion and improve memory scalability.

Another perspective of a methodological nature is the evolution
toward hybrid direct/iterative methods relying on domain decompo-
sition methods. One possiblity is to use an iterative approach after in-
complete/partial direct factorization. Another is to apply the direct
factorization to subdomains of limited dimensions and to use a
Schwarz domain decomposition method to retrieve the solution in
the full domain. In both cases, the method presented in this paper
will provide a valuable tool to tackle the direct part in the hybrid ap-
proach.

The modeling code presented in this paper will be implemented in
a 3D massively parallel frequency-domain full-waveform inversion
program. Implementation of the frequency-domain full-waveform
inversion will contribute to a number of applications as well as to-
ward the comparison with time-domain inversions.
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APPENDIX A

3D FREQUENCY-DOMAIN WAVE EQUATION

WITH UNSPLIT PML CONDITION

In this appendix, we develop the 3D frequency-domain acoustic
wave equation with unsplit PML conditions from the time-domain
acoustic equation with split PML conditions. The velocity-stress
system of hyperbolic equations for the 3D damped wave equation in
the time domain is given by

�px�x,y,z,t�

�t
+ �x�x�px�x,y,z,t� = ��x,y,z� ·

�vx�x,y,z,t�

�x
,

�py�x,y,z,t�

�t
+ �y�y�py�x,y,z,t� = ��x,y,z� ·

�vy�x,y,z,t�

�x
,

�pz�x,y,z,t�

�t
+ �z�z�pz�x,y,z,t� = ��x,y,z� ·

�vz�x,y,z,t�

�z
,

�vx�x,y,z,t�

�t
+ �x�x�vx�x,y,z,t� = b�x,y,z� ·

�p�x,y,z,t�

�x

+ fx�x,y,z,t� ,

�vy�x,y,z,t�

�t
+ �y�y�vy�x,y,z,t� = b�x,y,z� ·

�p�x,y,z,t�

�x

+ fx�x,y,z,t� .

�vz�x,y,z,t�

�t
+ �z�z�vz�x,y,z,t� = b�x,y,z� ·

�p�x,y,z,t�

�z

+ fx�x,y,z,t� . �A-1�

The pressure p�x,y,z,t� is split in to three components, px�x,y,z,t�,
py�x,y,z,t�, and pz�x,y,z,t�, for separation of the horizontal and verti-
cal derivatives �Berenger, 1994�.

The pressure wavefield is deduced through the simple addition
of three unphysical acoustic fields px, py, and pz: p�x,y,z,t�
= px�x,y,z,t� + py�x,y,z,t� + pz�x,y,z,t�. These unphysical acoustic
fields px, py and pz are used to account for the PML-absorbing bound-
ary conditions �see Zhang and Ballmann, 1997, or Operto et al.,
2002, for the application of PML boundary conditions to the SH and
P-SV wave equations�. The 1D functions �x, �y, and �z define the
PML damping behavior in the PML layers surrounding the model on
all four sides. These functions differ from zero only inside the PML
layers. In the PML layers, we used ��x� = cPML cos�

	

2
x

L� where L de-
notes the width of the PML layer and x is a local coordinate in the
PML layer whose origin is located at the outer edges of the model.
The scalar cPML is defined by trial and error depending on the width of
the PML layer �i.e., several values of cPML are tested for representa-
tive PML widths; the best value is the one for which the reflections
coming from the edges of the model have the smallest amplitude�.

We transform the system of equations to the Fourier domain
and introduce the new functions �x�x� = 1 + i�x�x�/�, �y�y� = 1
+ i�y�y�/�, and �z�z� = 1 + i�z�z�/� in the right-hand sides of the
equations:
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−i�

��x,y,z�
px�x,y,z,�� =

1

�x�x�

�vx�x,y,z,��

�x
,

−i�

��x,y,z�
py�x,y,z,�� =

1

�y�y�

�vy�x,y,z,��

�y
,

−i��z�z�

��x,y,z�
pz�x,y,z,�� =

1

�z�z�

�vz�x,y,z,��

�z
,

−i�vx�x,y,z,�� =
b�x,y,z�

�x�x�

�p�x,y,z,��

�x

+ fx�x,y,z,�� ,

−i�vy�x,y,z,�� =
b�x,y,z�

�y�y�

�p�x,y,z,��

�y

+ fy�x,y,z,�� ,

−i�vz�x,y,z,�� =
b�x,y,z�

�z�z�

�p�x,y,z,��

�z

+ fz�x,y,z,�� . �A-2�

The �x, �y, and �z functions are not applied to the external forces be-
cause we assume these forces are located outside the PML layers
where these functions are equal to one.

The first three equations of equation systemA-2 can be added,

−i�

��x,y,z�
p�x,y,z,�� =

1.

�x�x�

�vx�x,y,z,��

�x

+
1.

�y�y�

�vy�x,y,z,��

�y

+
1.

�z�z�

�vz�x,y,z,��

�z
,

vx�x,y,z,�� = −
b�x,y,z�

i��x�x�

�p�x,y,z,��

�x

+ fx�x,y,z,�� ,

vy�x,y,z,�� = −
b�x,y,z�

i��y�y�

�p�x,y,z,��

�y

+ fy�x,y,z,�� ,

vz�x,y,z,�� = −
b�x,y,z�

i��z�z�

�p�x,y,z,��

�z

+ fz�x,y,z,�� , �A-3�

which provides equation 1 in the text.
After Fourier transform, introduction of the � functions and sum-

mation of the first three equations of system A-2, the physical pres-
sure wavefield p�x,y,z,�� was reintroduced in equation 1. This high-
lights the benefit of the frequency-domain formulation for designing
unsplit PML-absorbing boundary conditions.

APPENDIX B

ROTATED DIFFERENTIAL OPERATORS

We give below the expression of the spatial derivatives with re-
spect to x, y, and z as a function of the spatial derivatives with respect
to the coordinates of each basis �Bx, By, Bz, B1, B2, B3, B4�. These ex-
pressions are reinjected into equation system 1 before discretization.

Bx:
�

�y
=

�2

2
	 �

�yx

−
�

�zx


,
�

�z
=

�2

2
	 �

�yx

+
�

�zx


 .

By:
�

�x
=

�2

2
	 �

�xy

+
�

�zy


,
�

�z
=

�2

2
	−

�

�xy

+
�

�zy


 .

Bz:
�

�x
=

�2

2
	 �

�xz

−
�

�yz


,
�

�y
=

�2

2
	 �

�xz

+
�

�yz


 .

�B-1�

B1:
�

�x
=

�3

2
	 �

�d2
+

�

�d3

,

�

�y
=

�3

2
	 �

�d1
−

�

�d3

,

�

�z
=

�3

2
	 �

�d1
−

�

�d2

 .

B2:
�

�x
=

�3

2
	 �

�d1
+

�

�d4

,

�

�y
=

�3

2
	 �

�d2
−

�

�d4

,

�

�z
=

�3

2
	 �

�d1
−

�

�d2

 .

B3:
�

�x
=

�3

2
	 �

�d1
+

�

�d4

,

�

�y
=

�3

2
	 �

�d1
−

�

�d3

,

�

�z
=

�3

2
	 �

�d3
−

�

�d4

 .

B4:
�

�x
=

�3

2
	 �

�d2
+

�

�d3

,

�

�y
=

�3

2
	 �

�d2
−

�

�d4

,

�

�z
=

�3

2
	 �

�d3
−

�

�d4

 . �B-2�

APPENDIX C

SECOND-ORDER CENTERED

STAGGERED-GRID STENCILS

We give below the expression of the second-order accurate stag-
gered-grid FD stencil of the first-order spatial derivative on each co-
ordinate system. Indices 1/2 indicate intermediate positions with re-
spect to the reference grid i, j,k. In the example below, X stands for
the particle velocity wavefields in the sense that their spatial deriva-
tives need to be estimated on the reference pressure grid.
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� �X

�x
�

i,j,k
=

1

h
�Xi+1/2,j,k − Xi−1/2,j,k� ,

� �X

�y
�

i,j,k
=

1

h
�Xi,j+1/2,k − Xi,j−1/2,k� ,

� �X

�z
�

i,j,k
=

1

h
�Xi,j,k+1/2 − Xi,j,k−1/2� . �C-1�

Bx: � �X

�yx

�
i,j,k

=
1

�2h
�Xi,j+1/2,k+1/2 − Xi,j−1/2,k−1/2� ,

� �X

�zx

�
i,j,k

=
1

�2h
�Xi,j−1/2,k+1/2 − Xi,j+1/2,k−1/2� .

By: � �X

�xy

�
i,j,k

=
1

�2h
�Xi+1/2,j,k−1/2 − Xi−1/2,j,k+1/2� ,

� �X

�zy

�
i,j,k

=
1

�2h
�Xi+1/2,j,k+1/2 − Xi−1/2,j,k−1/2� .

Bz: � �X

�xz

�
i,j,k

=
1

�2h
�Xi+1/2,j+1/2,k − Xi−1/2,j−1/2,k� ,

� �X

�yz

�
i,j,k

=
1

�2h
�Xi−1/2,j+1/2,k − Xi+1/2,j−1/2,k� .

B1: � �X

�d1
�

i,j,k
=

1
�3h

�Xi+1/2,j+1/2,k+1/2

− Xi−1/2,j−1/2,k−1/2� ,

� �X

�d2
�

i,j,k
=

1
�3h

�Xi+1/2,j+1/2,k−1/2

− Xi−1/2,j−1/2,k+1/2� ,

� �X

�d3
�

i,j,k
=

1
�3h

�Xi+1/2,j−1/2,k+1/2

− Xi−1/2,j+1/2,k−1/2� .

B2: � �X

�d1
�

i,j,k
=

1
�3h

�Xi+1/2,j+1/2,k+1/2

− Xi−1/2,j−1/2,k−1/2� ,

� �X

�d2
�

i,j,k
=

1
�3h

�Xi+1/2,j+1/2,k−1/2

− Xi−1/2,j−1/2,k+1/2� ,

� �X

�d4
�

i,j,k
=

1
�3h

�Xi+1/2,j−1/2,k−1/2

− Xi−1/2,j+1/2,k+1/2� .

B3: � �X

�d1
�

i,j,k
=

1
�3h

�Xi+1/2,j+1/2,k+1/2

− Xi−1/2,j−1/2,k−1/2� ,

� �X

�d3
�

i,j,k
=

1
�3h

�Xi+1/2,j−1/2,k+1/2

− Xi−1/2,j+1/2,k−1/2� ,

� �X

�d4
�

i,j,k
=

1
�3h

�Xi+1/2,j−1/2,k−1/2

− Xi−1/2,j+1/2,k+1/2� .

B4: � �X

�d2
�

i,j,k
=

1
�3h

�Xi+1/2,j+1/2,k−1/2

− Xi−1/2,j−1/2,k+1/2� ,

� �X

�d3
�

i,j,k
=

1
�3h

�Xi+1/2,j−1/2,k+1/2

− Xi−1/2,j+1/2,k−1/2� ,

� �X

�d4
�

i,j,k
=

1
�3h

�Xi+1/2,j−1/2,k−1/2

− Xi−1/2,j+1/2,k+1/2� , �C-2�

where h is the mesh spacing in the uniform grid.

APPENDIX D

PARSIMONIOUS STAGGERED-GRID

FINITE-DIFFERENCE WAVE EQUATIONS

Implementation of the stencils given in Appendix B in equation
system 1 and elimination of the particle velocity wavefields lead to
the following second-order discrete wave equations in pressure. The
buoyancy needs to be interpolated at intermediate positions with re-
spect to the reference grid.

In this study, we used the following averaging

b1/200 = 0.5�b000 + b100� ,

b1/21/20 = 0.25�b000 + b100 + b010 + b110� ,

b1/21/21/2 = 0.125�b000 + b100 + b010 + b001 + b110

+ b011 + b101 + b111� . �D-1�

Bc:
�2

K000
P000 +

1

�x0h2�b1/200

�x1/2
�P100 − P000� −

b−1/200

�x−1/2
�P000

− P−100�� +
1

�y0h2�b01/20

�y1/2
�P010 − P000�

−
b0−1/20

�y−1/2
�P000 − P0−10�� +

1

�z0h2�b001/2

�z1/2
�P001

− P000� −
b00−1/2

�z−1/2
�P000 − P00−1�� = S000. �D-2�
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Bx:
�2

K000
P000 +

1

�x0h2�b1/200

�x1/2
�P100 − P000� −

b−1/200

�x−1/2
�P000

− P−100�� +
1

�y04h2�b01/21/2

�y1/2
�P011 − P000 − P001

+ P010� −
b0−1/2−1/2

�y−1/2
�P000 − P0−1−1 − P0−10 + P00−1�

−
b0−1/21/2

�y−1/2
�P001 − P0−10 − P0−11 + P000�

+
b01/2−1/2

�y1/2
�P010 − P00−1 − P000 + P01−1�� +

1

�z04h2

��b01/21/2

�z1/2
�P011 − P000 + P001 − P010�

−
b0−1/2−1/2

�z−1/2
�P000 − P0−1−1 + P0−10 − P00−1�

+
b0−1/21/2

�z1/2
�P001 − P0−10 + P0−11 − P000�

−
b01/2−1/2

�z−1/2
�P010 − P00−1 + P000 − P01−1�� = S000.

�D-3�

By:
�2

K000
P000 +

1

�x04h2�b1/20−1/2

�x1/2
�P10−1 − P000 + P100

− P00−1� −
b−1/201/2

�x−1/2
�P000 − P−101 − P001 + P−100�

+
b1/201/2

�x1/2
�P100 − P001 + P101 − P000�

−
b−1/20−1/2

�x−1/2
�P00−1 − P−100 + P000 − P−10−1��

+
1

�y0h2�b01/20

�y1/2
�P010 − P000� −

b0−1/20

�y−1/2
�P000

− P0−10�� +
1

�z04h2�−
b1/20−1/2

�z−1/2
�− P10−1 + P000

+ P100 − P00−1� +
b1/201/2

�z1/2
�− P000 + P−101 + P001

− P−100� +
b1/201/2

�z1/2
�− P100 + P001 + P101 − P000�

−
b−1/20−1/2

�z−1/2
�− P00−1 − P−100 + P000 − P−10−1��

= S000. �D-4�

Bz:
�2

K000
P000 +

1

�x04h2�b1/21/20

�x1/2
�P110 − P000 − P010

+ P100� −
b−1/2−1/20

�x−1/2
�P000 − P−1−10 − P−100 + P0−10�

−
b−1/21/20

�x−1/2
�P010 − P−100 − P−110 + P000�

−
b1/2−1/20

�x1/2
�P100 − P0−10 − P000 + P1−10�� +

1

�y04h2

��b1/21/20

�y1/2
�P110 − P000 + P010 − P100�

−
b−1/2−1/20

�y−1/2
�P000 − P−1−10 + P−100 − P0−10�

+
b−1/21/20

�y1/2
�P010 − P−100 + P−110 − P000�

−
b1/2−1/20

�y−1/2
�P100 − P0−10 + P000 − P1−10��

+
1

�z0h2�b001/2

�z1/2
�P001 − P000� −

b00−1/2

�z−1/2
�P000

− P00−1�� = S000. �D-5�

B1:
�2

K000
P000 +

1

�x04h2�b1/21/2−1/2

�x1/2
�P11−1 − P000 + P100

− P01−1� −
b−1/2−1/21/2

�x−1/2
�P000 − P−1−11 + P0−11

− P−100� +
b1/2−1/21/2

�x1/2
�P100 − P0−11 + P1−11 − P000�

−
b−1/21/2−1/2

�x−1/2
�P01−1 − P−100 + P000 − P−11−1��

+
1

�y04h2�b1/21/21/2

�y1/2
�P111 − P000 − P101 + P010�

−
b−1/2−1/2−1/2

�y−1/2
�P000 − P−1−1−1 − P0−10 − P−10−1�

−
b1/2−1/21/2

�y−1/2
�P101 − P0−10 − P1−11 + P000�

+
b−1/21/2−1/2

�y1/2
�P010 − P−10−1 − P000 + P−11−1��

+
1

�z04h2�b1/21/21/2

�z1/2
�P111 − P000 − P110 + P001�

−
b−1/2−1/2−1/2

�z−1/2
�P000 − P−1−1−1 − P00−1 + P−1−10�
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−
b1/21/2−1/2

�z−1/2
�P110 − P00−1 − P11−1 + P000�

+
b−1/2−1/21/2

�z1/2
�P001 − P−1−10 − P000 + P−1−11�� = S000.

�D-6�

B2:
�2

K000
P000 +

1

�x04h2�b1/21/21/2

�x1/2
�P111 − P000 + P100

− P011� −
b−1/2−1/2−1/2

�x−1/2
�P000 − P−1−1−1 + P0−1−1

− P−100� +
b1/2−1/2−1/2

�x1/2
�P100 − P0−1−1 + P1−1−1

− P000� −
b−1/21/21/2

�x−1/2
�P011 − P−100 + P000 − P−111��

+
1

�y04h2�b1/21/2−1/2

�y1/2
�P11−1 − P000 − P10−1 + P010�

−
b−1/2−1/21/2

�y−1/2
�P000 − P−1−11 − P0−10 + P−101�

−
b1/2−1/2−1/2

�y−1/2
�P10−1 − P0−10 − P1−1−1 + P000�

+
b−1/21/21/2

�y1/2
�P010 − P−101 − P000 + P−111��

+
1

�z04h2�b1/21/21/2

�z1/2
�P111 − P000 − P110 + P001�

−
b−1/2−1/2−1/2

�z−1/2
�P000 − P−1−1−1 − P00−1 + P−1−10�

−
b1/21/2−1/2

�z−1/2
�P110 − P00−1 − P11−1 + P000�

+
b−1/2−1/21/2

�z1/2
�P001 − P−1−10 − P000 + P−1−11�� = S000.

�D-7�

B3:
�2

K000
P000 +

1

�x04h2�b1/21/21/2

�x1/2
�P111 − P000 + P100

− P011� −
b−1/2−1/2−1/2

�x−1/2
�P000 − P−1−1−1 + P0−1−1

− P−100� +
b1/2−1/2−1/2

�x1/2
�P100 − P0−1−1 + P1−1−1

− P000� −
b−1/21/21/2

�x−1/2
�P011 − P−100 + P000 − P−111��

+
1

�y04h2�b1/21/21/2

�y1/2
�P111 − P000 − P101 + P010�

−
b−1/2−1/2−1/2

�y−1/2
�P000 − P−1−1−1 − P0−10 + P−10−1�

−
b1/2−1/21/2

�y−1/2
�P101 − P0−10 − P1−11 + P000�

+
b−1/21/2−1/2

�y1/2
�P010 − P−10−1 − P000 + P−11−1��

+
1

�z04h2�b1/2−1/21/2

�z1/2
�P1−11 − P000 − P1−10 + P001�

−
b−1/21/2−1/2

�z−1/2
�P000 − P−11−1 − P00−1 + P−110�

−
b1/2−1/2−1/2

�z−1/2
�P1−10 − P00−1 − P1−1−1 + P000�

+
b−1/21/21/2

�z1/2
�P001 − P−110 − P000 + P−111�� = S000.

�D-8�

B4:
�2

K000
P000 +

1

�x04h2�b1/21/2−1/2

�x1/2
�P11−1 − P000 + P100

− P01−1� −
b−1/2−1/21/2

�x−1/2
�P000 − P−1−11 + P0−11

− P−100� +
b1/2−1/21/2

�x1/2
�P100 − P0−11 + P1−11 − P000�

−
b−1/21/2−1/2

�x−1/2
�P01−1 − P−100 + P000 − P−11−1��

+
1

�y04h2�b1/21/2−1/2

�y1/2
�P11−1 − P000 − P10−1 + P010�

−
b−1/2−1/21/2

�y−1/2
�P000 − P−1−11 − P0−10 + P−101�

−
b1/2−1/2−1/2

�y−1/2
�P10−1 − P0−10 − P1−1−1 + P000�

+
b−1/21/21/2

�y1/2
�P010 − P−101 − P000 + P−111��

+
1

�z04h2�b1/2−1/21/2

�z1/2
�P1−11 − P000 − P1−10 + P001�

−
b−1/21/2−1/2

�z−1/2
�P000 − P−11−1 − P00−1 + P−110�

−
b1/2−1/2−1/2

�z−1/2
�P1−10 − P00−1 − P1−1−1 + P000�

+
b−1/21/21/2

�z1/2
�P001 − P−110 − P000 + P−111�� = S000.

�D-9�
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