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ABSTRACT

Despite being often considered less challenging than image-based person re-identification (re-id), video-based per-

son re-id is still appealing as it mimics a more realistic scenario owing to the availability of pedestrian sequences

from surveillance cameras. In order to exploit the temporal information provided, a number of feature extraction

methods have been proposed. Although the features could be equally learned at a significantly higher computa-

tional cost, the scarce nature of labelled re-id datasets encourages the development of robust hand-crafted feature

representations as an efficient alternative, especially when novel distance metrics or multi-shot ranking algorithms

are to be validated. This paper presents a novel hand-crafted feature representation for video-based person re-id

based on a 3-dimensional hierarchical Gaussian descriptor. Compared to similar approaches, the proposed descrip-

tor (i) does not require any walking cycle extraction, hence avoiding the complexity of this task, (ii) can be easily

fed into off-shelf learned distance metrics, (iii) and consistently achieves superior performance regardless of the

matching method adopted. The performance of the proposed method was validated on PRID2011 and iLIDS-VID

datasets outperforming similar methods on both benchmarks.
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1 INTRODUCTION

With the rise in the need for smart surveillance appli-

cations, person re-identification (re-id) has attracted the

attention of many researchers within the computer vi-

sion community. The problem entails finding a match

for a given person image or sequence of images (the

probe) among a set of gallery person instances captured

using a different non-overlapping camera view. The

aim is to track the person under a multi-camera setting.

The challenges associated reside mainly in the large

intra-class variations caused by significant changes in

viewpoint angle, pose and illumination, added to the

presence of background clutter and occlusions [1, 2,

3]. Furthermore, small inter-class variations caused by

clothes similarities between different people render the

task even more challenging.

To mitigate the effect of these challenging attributes

on re-id performance, one could exploit the rich vi-
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sual cues and temporal information provided by per-

son video sequences available from surveillance cam-

eras. For this purpose, the past few years have wit-

nessed the development of several video person re-id

algorithms. As few of the descriptors were specially

designed for the video-based problem, most of them

rely on image-based low-level representations to de-

velop multi-shot ranking algorithms based on set-to-set

distance measures [4, 5, 6], or to perform frame selec-

tion and weighting [7, 8]. When it comes to descriptors

utilising spatio-temporal information, they are often ac-

companied by walking cycle extraction [9, 10], which is

not trivial especially under severe noise and occlusions.

A robust hand-crafted spatio-temporal descriptor that

can be efficiently computed and used for matching with

common distance metrics has not been yet proposed,

which motivates the current work. Such a descriptor

presents the advantage of considerably boosting met-

ric learning or multi-shot ranking accuracy, while be-

ing equally suited for use in unsupervised settings as no

learning is required.

Benefitting from the advances achieved in image-based

person re-id feature design, the state-of-the-art Gaus-

sian of Gaussian (GOG) [11] feature is here extended

to 3 dimensions integrating temporal information. The

suggested extension coupled with existing metric learn-

ing approaches achieved significant accuracy improve-
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ment on two widely tested video-based person re-id

benchmarks, PRID2011 and iLIDS-VID.

Briefly, this paper proposes a robust person descrip-

tor for video-based re-id leveraging both spatial and

temporal cues. The proposed method is based on lo-

cal Gaussian distributions of 3-dimensional pixel fea-

tures that are subsequently projected into the Euclidean

space. This allows the extracted feature to be learning-

free and flexible to use with any matching method.

The remainder of the paper is organised as follows.

Section 2 highlights recent related work. Section 3 ex-

plains the proposed approach. The experiments con-

ducted are described in detail in Section 4. Finally, the

paper is concluded in Section 5.

2 RELATED WORK

Tracking a person in a multi-camera setting involves

three main steps: person detection, tracking, and re-

trieval. The latter consists of searching a person cap-

tured in one view, in a different non-overlapping camera

view. It is commonly known as person re-id. For that

purpose, two tasks should be fulfilled: pedestrian de-

scription and matching. The former involves represent-

ing persons by a set of features describing their phys-

ical appearance. The most popular have been colour

and texture features [11, 12, 13, 14, 15, 16, 17]. On the

other hand, distance metric learning has emerged as the

most prevalent matching method [15, 6, 14, 18, 19] due

to its efficiency and promising accuracy.

Early research in person re-id focused mostly on the

single-shot scenario where each person is represented

by a pair of images that need to be matched [17, 20,

21]. Other scenarios were also investigated including

multi-shot re-id and video-based re-id [4, 5, 6, 9, 10,

22]. In that case, each subject is represented by multiple

images or video sequences in both probe and gallery

views.

Hand-crafted features have been predominant in person

re-id until very recently when deep-learning popular-

ity started growing [22, 23, 24, 25]. This was mainly

triggered by the release of large-scale datasets such as

CUHK03 [24], Market-1501 [26], and MARS [25]. A

common practice for hand-crafted methods is to divide

the person image into small patches and several hori-

zontal stripes on which features are subsequently ex-

tracted. The most prominent methods in this category

are ELF [20], gBiCov [12], HistLBP [14], Densecolor-

SIFT [27], and LOMO [15]. They all leverage colour

and texture information to describe the person’s appear-

ance.

More recently, a high-performing image person de-

scriptor called GOG [11] has been proposed. It divides

the image into small overlapping patches and a number

of horizontal stripes. It then leverages both mean and

covariance information by encoding each patch using

a Gaussian distribution. Towards the goal, each pixel

i is initially described by a feature vector pi given by

pi = [y,M0◦ ,M90◦ ,M180◦ ,M270◦ ,R,G,B]T where y is the

y-coordinate of pixel i, M0◦ to M270◦ are the orienta-

tions along which the gradient is quantised and multi-

plied by the gradient magnitude, and R, G, B are the

RGB colour channels. Patches belonging to the same

horizontal stripe are in turn summarised using another

Gaussian distribution that is flattened into the Euclidean

space. The final image representation is the concatena-

tion of all stripes’ features.

As for the matching process, distance metric learning

attempts to find a subspace that brings positive samples

(feature vectors of the same person) closer to each

other while pushing negative samples apart. Various

methods were proposed in this category of which

the most prominent are KISSME [18], Cross-view

Quadratic Discriminant Analysis (XQDA) [15], and

kernelised versions of Local Fisher Discriminant Anal-

ysis (kLFDA) and Marginal Fisher Analysis (kMFA)

[14]. More recently, Zhang et al. [19] exploited

the kernel Null Foley-Sammon Transform (kNFST)

to learn a subspace where the within-scatter is zero

and the between-scatter is positive. By enforcing

such a strict condition, the learned subspace is more

discriminative and exhibits better separability of the

data. Distance metric learning methods have been

a great success in person re-id given their efficiency

and accuracy especially on small datasets where deep

learning usually fails. These reasons motivate their use

in this work to additionally boost the performance of

the proposed person descriptor.

Compared to image-based re-id, video-based re-id rep-

resents a more intuitive scenario owing to the availabil-

ity of pedestrian videos from surveillance cameras. The

early trend was to treat the task as a multi-shot match-

ing problem. That is, features were extracted from still

images on which the person appearance was built, and

temporal cues were completely ignored [5, 21]. This

was compensated by exploiting the multiple person in-

stances in the matching process. More recently, Wang

et al. [9] leveraged temporal information by proposing

a spatio-temporal descriptor based on HOG3D features

[28], they later combined it with mean colour values

[29]. These features were computed on fragments ex-

tracted from the person sequence using the Flow En-

ergy Profile (FEP) signal as an approximation of walk-

ing cycles. A ranking function, DVR, was learned for

matching. Liu et al. [10] subsequently proposed a

spatio-temporal descriptor based on Fisher vectors ex-

tracted from video-fragments representing body-action

units after performing walking cycle extraction simi-

larly to [9].
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(a) (b) (c) (d) (e)

Figure 1: Representative diagram of GOG3D feature. (a) Patch Gaussians are computed. (b) They are then

flattened into the Euclidean space. (c) Region Gaussians are formed using patches in the same horizontal region.

(d) They are also projected into the Euclidean space. (e) Region feature vectors are concatenated to form the final

image feature. Finally, average-pooling is performed over image features of the same person.

Following these works, temporal information was

mainly exploited in deep learning methods such as

RNN [22] or ASTPN [23] where spatial and temporal

pooling layers were added for that purpose. The

remaining video-based re-id systems either design

a set-to-set distance metric such as DRAH [4] that

models the distance between two sequences as the

minimum distance between their respective affine

hulls, or assign a signature to each person using the

corresponding frames by fitting a GMM [30] for

instance.

The proposed method is a spatio-temporal descriptor

that benefits from temporal correlation to give a richer

representation for each person. However, each person

sequence is eventually described by a single feature

vector which is in essence similar to the single-shot sce-

nario. This is very convenient as it speeds up the match-

ing process significantly and broadens the applicability

of the descriptor with any off-shelf distance metric. It

is worth noting here that extracting the proposed feature

from sampled walking cycles is also possible. However,

in this work we highlight the advantages presented by

using it in its simplest setting.

3 PROPOSED METHOD

This section details the proposed spatio-temporal de-

scriptor for video-based person re-id which we call

GOG3D. Similar to GOG [11], a part-based model

is adopted where each person image is divided into

R overlapping horizontal stripes, roughly representing

different human body-parts. Each stripe is also divided

into small overlapping patches, and each patch is mod-

elled by a Gaussian distribution using its pixel feature

information. Patch Gaussians are subsequently em-

bedded into the space of Symmetric Positive Definite

(SPD) matrices and flattened into the Euclidean space

forming the patch feature vector. Patches belonging to

the same horizontal region are in turn summarised by

a Gaussian that is projected into the Euclidean space

forming the region feature vector. Region feature vec-

tors are concatenated to form the final image feature.

Finally, image features of the same person are averaged

to form the final representation of a person sequence. A

diagram summarising GOG3D is shown in Fig. 1.

3.1 Pixel Features

By first considering each of the patches, local informa-

tion is described using a 10-dimensional pixel feature

vector summarising the spatial position of the pixel, its

gradient magnitudes along four directions, and the in-

tensity values of some colour channels. Namely, for a

pixel i, the pixel feature vector pi is given by:

pi = [x,y,M0◦ ,M90◦ ,M180◦ ,M270◦ , |It |,L,A,B]T , (1)

where x and y are the x- and y-coordinates of pixel i

taken from the top-left of the image, M0
◦ through M270◦

are the orientations along which the gradient is quan-

tised and multiplied by its magnitude, |It | is the gradient

magnitude in the temporal direction, and finally L, A, B

correspond to the Lab colour channels. Each dimen-

sion of pi is scaled to the range [0, 1] before further

processing can take place. The computation of these

pixel features is detailed in the following.

For simplicity, let us consider one person sequence of

images given by S = {Qk|k = 1, ...,N}, where N is the

number of frames in this video sequence. By taking a

pixel i(x,y, t) in frame Qt , the gradients Ix, Iy and It in

the horizontal, vertical and temporal directions can be

computed as:

Ix(x,y, t) = i(x+1,y, t)− i(x−1,y, t), (2)
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Figure 2: The top row represents example images sampled from person sequences of iLIDS-VID dataset, each

2 adjacent images represent a correct match. The bottom row includes the temporal gradient computed for these

sequences and averaged over the frames involved.

Iy(x,y, t) = i(x,y+1, t)− i(x,y−1, t), (3)

It(x,y, t) = i(x,y, t +1)− i(x,y, t −1), (4)

where x,y and t are the x-, y- and t-coordinates of pixel

i(x,y, t), respectively.

Although, it is possible to compute the gradient orienta-

tion in 3D and quantise it using a regular polyhedron in

a manner similar to HOG3D in spirit [28], this is subop-

timal in our case due to the following reasons. Firstly,

binning in 3D while preserving the distinctive power of

the descriptor requires the use of a dodecahedron (12

bins) or icosahedron (20 bins) [28], thus raising signifi-

cantly the dimensionality of the pixel feature vector pi.

A high-dimensional pi will definitely cause numerical

problems upon the computation of covariance matrices

in small patches. Moreover, it is favourable to use spa-

tial gradients separately as a texture descriptor, while

motion information is encoded via the temporal gradi-

ent. For this purpose, hereby the orientation of the spa-

tial gradient given by Ix and Iy is exploited separately to

the temporal gradient It .

The gradient orientation O is given by O= arctan(Iy/Ix)

and its magnitude is defined as M =
√

(I2
x + I2

y ). It has

been proved in [31] that quantisation into vector angles

rather than using magnitude and orientation raw val-

ues is essential to enhance the discriminative power of

the descriptor. Therefore, soft voting is used to quan-

tise the values of O into two neighbouring bins to ac-

count for the loss of information caused by quantisation

while maintaining some rotation invariance. Since four

bins are considered in this case, the reference points

are 0◦, 90◦, 180◦, and 270◦. Given α ≤ O < β where

α,β ∈ {0◦,90◦,180◦,270◦} are the boundaries of the

bin containing O, the distances (positive differences)

dα = |O − α| and dβ = |O − β | from O to the bin

boundaries are computed, and the voting weights are

assigned as wα = dβ/(dα + dβ ), wβ = dα/(dα + dβ )
and w(θ 6=α ,β ) = 0. These weights are finally multi-

plied by the gradient magnitude M to obtain Mθ ,θ ∈
{0◦,90◦,180◦,270◦}. As for the temporal gradient It ,

the magnitude of It is found by taking its absolute value

|It |. Some examples of the information provided by

computing |It | for all sequence images and taking their

average can be seen in Fig. 2. This highlights the type

of information added by computing the gradient in the

temporal direction.

The choice of the colour channels is crucial for any

appearance descriptor, especially for person re-id

where individuals are mainly distinguished by their

clothes’ colours and texture. Performing feature

fusion by extracting the features four times, each with

different colour channels such as RGB, HSV, Lab and

normalised RGB (nRGB), and concatenating them

similarly to GOGfusion [11] and moM [16], is highly

inefficient. The reason is that the features have to be

extracted four times for each person, and the resulting

vector has a high dimension which in turn slows down

the matching process. For this purpose, it is convenient

to select the most discriminative colour channels that

can better deal with illumination changes. In this work,

these are found to be the Lab colour channels.

It has been previously argued that person images are

aligned vertically but not horizontally [13], therefore

only the y-coordinate has been used in GOG algorithm.

However, as it will be detailed thereafter, we find that

the orderless representation of patches in the same hor-

izontal stripe as a mean to deal with viewpoint angle

variations may cause the loss of some important spatial

information that could be useful for re-identification.
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This could be avoided by including the horizontal lo-

cation of the pixel represented by its x-coordinate.

3.2 Patch and Region Gaussians

As both mean and covariance features have proved

successful in person re-id [9, 12], a promising way

to leverage both types of information is to summarise

them using a Gaussian distribution. As discussed in

[11], it is definitely possible to use a Gaussian Mix-

ture Model (GMM) instead for a more accurate repre-

sentation. However, given the small patch size, a sim-

ple Gaussian model should be sufficient to describe the

patches. More importantly, unimodal Gaussians can

be efficiently projected into the Euclidean space which

renders the matching process with the resulting feature

much easier, as any off-shelf distance metric can thus

be exploited. Therefore, for each patch H, the mean µH

and covariance ΣH are estimated as µH = 1
nH

∑i∈H pi

and ΣH = 1
nH−1 ∑i∈H(pi − µH)(pi − µH)

T where nH is

the number of pixels in patch H and pi is the feature

vector of pixel i defined in Section 3.1. Subsequently,

the patch Gaussian N (p; µH ,ΣH) is given by:

N (p; µH ,ΣH) =
exp

(

− 1
2
(p−µH)

T Σ−1
H (p−µH)

)

(2π)d/2|ΣH |
,

(5)

where | · | is the matrix determinant operator and d is

the dimension of pixel feature vector p.

Once all patch Gaussians are computed, an algorithm

(see Section 3.3) is used to project these Gaussians

into the Euclidean space transforming them into patch

feature vectors fH . To account for background clut-

ter, patches are weighted similarly to SDALF algorithm

[17] according to their distance from the central verti-

cal axis of the image such that wH = exp
(

− (xH−xC)
2

2σ2

)

where xC =W/2, σ =W/4 and xH is the x-coordinate

of the central pixel in patch H. By W we denote the

image width. According to this definition, it is easy to

see that more weight is assigned to patches closer to the

central vertical axis of the image where the person is

expected to be centred.

In a similar manner to patch Gaussian computation,

the patches belonging to the same horizontal region are

in turn summarised into a region Gaussian using their

mean and covariance information. Based on the above

defined weights, the region mean µR and covariance ΣR

are defined for region R as:

µR =
1

∑H∈R wH
∑

H∈R

wh fh, (6)

ΣR =
1

∑H∈R wH
∑

H∈R

wH( fH −µR)( fH −µR)
T , (7)

where fH is the patch feature vector for patch H. The

region Gaussians are consequently computed according

to 5 and projected into the Euclidean space before con-

catenation, to form the final representation of an image.

Finally, frame-wise features are averaged over a per-

son’s sequence to form the final representation of that

sequence. It is also worth noting that covariance matri-

ces are regularised by adding a small value ε to diagonal

entries to prevent them from becoming singular.

3.3 Euclidean Space Projection

Projecting patch and region Gaussians into the Eu-

clidean space is essential for GOG3D, primarily to ob-

tain a final descriptor that can be used with off-shelf

distance metrics. Towards the goal, the following two

steps need to be applied.

It is well known that multivariate Gaussian distribu-

tions lie on a Riemannian manifold that can be embed-

ded into the space of SPD matrices [32]. Such em-

bedding is favoured as the SPD space endowed with

the log-Euclidean metric can be locally flattened into

the tangent Euclidean space through matrix logarithm.

More specifically, consider a d-dimensional multivari-

ate Gaussian N (µH ,ΣH), this can be embedded into a

(d +1)-dimensional SPD matrix PH as follows:

N (p; µH ,ΣH)∼ PH = |ΣH |−
1

d+1

[

ΣH +µH µT
H µH

µT
H 1

]

.

(8)

PH can subsequently be mapped into the Euclidean

tangent space by computing ΓH = log(PH) where

log(·) is the matrix logarithm operator. Noting that

ΓH is symmetric, only the upper triangular part

needs to be stored resulting in the final vector fH

being m = (d2 + 3d)/2 + 1 dimensional. Thus,

fH = vec(ΓH) = [Γ(1,1),
√

2Γ(1,2), ...,
√

2Γ(1,d +
1),Γ(2,2),

√
2Γ(2,3), ...,Γ(d + 1,d + 1)]. Note that

off-diagonal entries are multiplied by
√

2 upon

half-vectorisation to ensure that the Frobenius norm

of ΓH remains equal to the ℓ2-norm of fH , that is

||ΓH ||F = || fH ||2.

4 EXPERIMENTS

4.1 Datasets

The proposed GOG3D feature is evaluated on the two

most widely tested benchmarks for video-based person

re-id, PRID2011 and iLIDS-VID.

iLIDS-VID [9] includes 600 person sequences created

from two non-overlapping camera views captured by a

CCTV network in an airport arrival hall. 300 different

subjects are sampled in this dataset with two sequences

per person. Sequences have variable lengths ranging

from 23 to 192 frames with an average number of 73.

iLIDS-VID is a very challenging dataset in terms of il-

lumination changes, viewpoint angle variations and oc-

clusions.
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Figure 3: General pipeline of the re-id system employed

in this work.

PRID2011 [33] consists of 400 image sequences of

200 different subjects captured by two adjacent cam-

eras. Sequences lengths vary from 5 to 675 frames

with an average number of 100 frames per sequence.

PRID2011 is less challenging than iLIDS-VID as no

occlusions or background clutter are involved. How-

ever, significant changes in illumination are exhibited.

4.2 Implementation Details

The original GOG algorithm divides the image into

7 overlapping horizontal regions and employs a patch

size of 5× 5 pixels. Patches are extracted at 2 pixels

interval, and the regularisation parameter is ε = 0.001.

For the first experiment reported in Section 4.3, and for

fair comparison with GOG, a similar setting is used for

GOG3D. This results in the patch feature vector being

of size (102+3×10)/2+1= 66, and the region feature

vector being (662+3×66)/2+1= 2,278 dimensional,

finally the person descriptor obtained is 7 × 2,278 =
15,945 dimensional. When comparing to state of the

art (Section 4.4), the parameters of GOG3D are further

tuned through extensive experimentation which results

in a better performance for a patch size of 9× 9 pixels

and ε = 0.0001. The patch extraction interval is kept at

2 pixels, and the results obtained on both datasets are

presented using 10 and 15 overlapping horizontal re-

gions denoted GOG3D10 and GOG3D15, respectively.

In that case, the resulting feature vector is 22,780 and

34,170 dimensional for R = 10 and R = 15, respec-

tively.

Similar to GOG, mean removal and ℓ2-normalisation

are applied. Dimension reduction using PCA is per-

formed with KISSME metric [18], and the dimension

of the reduced feature is set to 100. A linear kernel is

used with kNFST [19], kLFDA [14], and kMFA [14]

in all experiments. The code provided by the authors

is employed for GOG, and frame-wise features are also

averaged for a person sequence in a similar manner to

proposed GOG3D. The performance is evaluated using

the Cumulative Matching Characteristic (CMC) curve

as follows. Given a probe (query) instance, the gallery

elements are ranked according to their distance from

the probe, and at each given rank of the CMC curve,

the probability of the correct match appearing at a sim-

ilar or higher rank is computed. The general pipeline of

the re-id system employed in this work can be seen in

Fig. 3.

4.3 Components Analysis and Compari-

son to GOG

To highlight the consistent performance gain by em-

ploying GOG3D over GOG algorithm for video-based

re-id, we compare the results in top-matching rates of

the CMC curve using five state-of-the-art metric learn-

ing methods: XQDA [15], KISSME [18], NFST [19],

kLFDA and kMFA [14]. For this purpose, each dataset

was divided into two subsets, half for training and half

for testing. The experiments were repeated over 10 tri-

als and the average results are reported.

Table 1 shows the performance obtained by adding

different pixel features to baseline GOG. Specifically,

GOG_It is obtained by adding the |It | component,

GOG_It_x also involves the x-coordinate, and GOG3D

is the final feature obtained by replacing RGB colour

channels by the Lab channels. A detailed evaluation of

these components is performed using XQDA distance

metric since the latter was initially used with GOG in

[11]. Moreover, results comparing GOG directly to

GOG3D with four other metrics can be seen in Table 2

for further validation.

It is clear from these results that GOG3D presents a

remarkable advantage over GOG for video-based per-

son re-id. Using XQDA, the performance gain was

gradual and consistent by adding different pixel fea-

ture components to reach a maximum of almost 7% for

iLIDS-VID and 3% for PRID2011 from baseline GOG

to GOG3D. This margin undergoes some fluctuations

when employing different metrics. It reaches a maxi-

mum of almost 13% with kLFDA on iLIDS-VID and

2% on PRID2011 with most other metrics.

4.4 Comparison to State of the Art

Since available spatio-temporal descriptors are mostly

designed to be applied to extracted walking cycles or

fragments sampled from person sequences [9, 10], em-

ploying them directly with a common distance met-

ric in the same evaluation protocol to ours is unfair.

When possible, it will in fact cause their performance to

downgrade. Therefore, video-based re-id systems were
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Dataset iLIDS-VID PRID2011

Rank 1 5 20 1 5 20

GOG + XQDA 66.6 87.2 96.9 86.6 97.6 99.6

GOG_It + XQDA 70.6 90.6 98 87.2 97.2 99.8

GOG_It_x + XQDA 72.9 91.3 98.7 87.7 97.8 99.9

GOG3D + XQDA 73.7 92 98.3 89.9 97.9 100

Table 1: Components analysis of GOG3D. Best results in top-matching rates are in bold.

Dataset iLIDS-VID PRID2011

Rank 1 5 20 1 5 20

GOG + KISSME 49.5 73.4 88.1 81 94.2 99.2

GOG3D + KISSME 55.1 78.9 92.7 83.3 94.9 99.2

GOG + kNFST 63.9 85.9 95 87.8 97.4 99.9

GOG3D + kNFST 74.3 92.2 98.9 89.6 97.8 100

GOG + kLFDA 54.6 85.5 97.5 82.8 96.8 99.6

GOG3D + kLFDA 67.4 90.7 98.8 85.1 96.5 99.9

GOG + kMFA 56.3 85.3 97.6 83.3 96.7 99.5

GOG3D + kMFA 66.5 90.9 98.9 85.4 96.6 99.9

Table 2: Comparison to GOG. Best results in top-matching rates for each distance metric are in bold.

compared to our method in their original setting. For

this purpose, the same evaluation protocol employed

by most algorithms was adopted. More specifically, for

PRID2011 dataset, only sequences from 178 persons

consisting of more than 27 frames were retained. Half

of each dataset was used for training and the remaining

half for testing. Experiments were repeated over 10 tri-

als and average results in CMC top-matching rates are

reported in Table 3. The distance metric used in this ex-

periment was kNFST due to its superior performance.

It is worth noting that the results here are different from

those of the previous subsection because the evaluation

protocol of PRID2011 and the parameters (patch size,

ε , and number of stripes) have been changed as previ-

ously detailed in Section 4.2.

ColHOG3D [9] and STFV3D [10] are state-of-the-art

spatio-temporal descriptors that fall in the same cat-

egory with GOG3D. The difference in performance

between GOG3D and these descriptors is very obvious,

even when using the same distance metric KISSME

as shown in the second row of Table 2. The gap

in rank1 matching-rate with the better performing

STFV3D is over 10% on iLIDS-VID and around 20%

on PRID2011.

When compared to deep learning techniques, GOG3D

+ kNFST outperforms RNN [22], CNN + XQDA [25]

and ASTPN [23] by at least 18% on iLIDS-VID and

17% on PRID2011 in terms of rank1 accuracy. It also

outperforms multi-shot ranking methods DRAH [4] and

SPW [8] by around 10% on iLIDS-VID for SPW and

around 5% on PRID2011 for DRAH. The only method

that exhibits comparable or slightly worse performance

than GOG3D on both datasets is PAM+KISSME [30].

However, while not being in the same category with

GOG3D, PAM requires (i) extracting low-level fea-

tures, (ii) fitting GMMs to person sequences with many

parameters to learn, and (iii) the final person representa-

tion does not fall in a Euclidean space. Hence, special

care needs to be taken for matching. This also means

that the final person signature does not exhibit the flex-

ibility of use with other distance metrics.

It is finally noteworthy that GOG3D not only achieves

outstanding results on two challenging benchmarks, it

is also simple, flexible and computationally efficient.

The low computational complexity is derived from

omitting additional tasks like walking cycle extraction

and fragment selection used by similar space-time

descriptors, or feature clustering and frame weighting

required for multi-shot ranking methods that may

involve further learning. Moreover, the high computa-

tional cost needed to train deep neural networks is also

avoided. Finally, the flexibility of GOG3D feature is

granted by the possibility of its use with any matching

method in both supervised and unsupervised settings

since it does not involve any learning.

4.5 Computational Cost

GOG3D is implemented in MATLAB and experiments

are run on a desktop PC equipped with Intel Xeon

X5550 @2.67GHz CPU. The average time to extract

GOG3D features per frame is 0.44 seconds. It is com-

puted on 10 video sequences from PRID2011 dataset
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Dataset iLIDS-VID PRID2011

Rank 1 5 20 1 5 20

ColHOG3D+DVR [9] 39.5 61.1 81 40 71.7 92.2

STFV3D+KISSME [10] 44.3 71.7 91.7 64.1 87.3 92

RNN [22] 58 84 96 70 90 97

CNN+XQDA [25] 53 81.4 95.1 77.3 93.5 99.3

ASTPN [23] 62 86 98 77 95 99

DRAH [4] 64 86 96.3 88.7 97.9 99.7

PAM+KISSME [30] 79.5 95.1 99.1 92.5 99.3 100

SPW [8] 69.3 89.6 98.2 83.5 96.3 100

GOG3D10+kNFST (proposed) 80 95.3 99.5 93.6 99.4 100

GOG3D15+kNFST (proposed) 79.5 95.4 99.5 94 99.1 100

Table 3: Comparison to state-of-the-art methods. Best and second best results in top-matching rates are in bold.

and averaged over the number of frames constituting

these sequences. Under the same setting, the time taken

to compute GOG features is 0.35 seconds per frame. It

is intuitive for GOG3D to be slightly slower than GOG

since it uses additional pixel features and more horizon-

tal stripes. However, compared to other video person

re-id descriptors [9, 10], GOG3D is evidently more ef-

ficient since it omits the walking cycle extraction step

and any further post-processing. Moreover, frame-wise

feature pooling employed with GOG3D renders the

matching process very efficient. For instance, the aver-

age time taken to train the kNFST metric on PRID2011

dataset over 10 trials is 0.034 seconds, and the testing

time on the same dataset is 0.008 seconds which is ex-

ceptionally fast for video-based re-id methods.

5 CONCLUSION

A novel spatio-temporal descriptor for video-based

person re-id based on hierarchical Gaussian distri-

butions was presented in this paper. The proposed

algorithm leverages the gradient in the temporal

direction to describe the temporal correlation between

consecutive frames yielding significant improvement

in accuracy. Unlike available spatio-temporal re-id

descriptors, the proposed method does not require any

complex walking cycle extraction of frame selection

and weighting. It also does not involve any learning.

By simply averaging the frame-wise computed features

over a person sequence, robust representation can

be achieved and consequently fed to most off-shelf

distance metrics.

A thorough analysis of the proposed descriptor was

conducted on 2 widely used benchmarks using 5

distance metrics, highlighting the advantages brought

by exploiting temporal cues. Extensive experiments

showed that the performance achieved surpasses

similar methods by a large margin. It also outperforms

a number of existing deep learning and multi-shot

ranking techniques.
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