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Abstract
This paper presents a generative adversarial network (GAN) capable of producing realistic microstructure morphology 
features and demonstrates its capabilities on a dataset of crystalline titanium grain shapes. Alongside this, we present an 
approach to train deep learning networks to understand material-specific descriptor features, such as grain shapes, based 
on existing conceptual relationships with established learning spaces, such as functional object shapes. A style-based GAN 
with Wasserstein loss, called M-GAN, was first trained to recognize distributions of morphology features from function 
objects in the ShapeNet dataset and was then applied to grain morphologies from a 3D crystallographic dataset of Ti–6Al–
4V. Evaluation of feature recognition on objects showed comparable or better performance than state-of-the-art voxel-based 
network approaches. When applied to experimental data, M-GAN generated realistic grain morphologies comparable to 
those seen in Ti–6Al–4V. A quantitative comparison of moment invariant distributions showed that the generated grains 
were similar in shape and structure to the ground truth, but scale invariance learned from object recognition led to difficulty 
in distinguishing between the physical features of small grains and spatial resolution artifacts. The physical implications of 
M-GAN’s learning capabilities are discussed, as well as the extensibility of this approach to other material characteristics 
related to grain morphology.

Keywords Microstructure generation · 3D grain morphology · Machine learning · Deep learning · Generative adversarial 
networks · Polycrystalline materials

Introduction

One of the most pervasive challenges of materials discovery 
and development is that the process demands an enormous 
amount of time, labor, and capital. Reducing these demands 
has been a central driver for a number of international ini-
tiatives [1–7]. This challenge stems from the inefficient use 
of a linear approach to explore high-dimensional materials 
spaces, which is compounded by critical metrics for material 
classes that account for both processing variations and com-
plexity of application environment. For example, there are 
a wide range of metal alloy compositions that can be used 
in turbine engine components, and the type of alloy being 
used can vary widely depending on the location and operat-
ing demands of the specific turbine section. But regardless 
of composition chosen, any alloy must be able withstand the 
operating environment, and evaluations of its performance 
must cover thousands or even millions of manufacturing iter-
ations. The sheer size of these composition and application 
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spaces places materials science at a unique tipping point 
for the integration of machine learning to rapidly accelerate 
design and discovery.

Deep learning methods have attracted attention as cost 
reducers in fields such as voice, text, and image process-
ing. Neural networks perform strongly both in accuracy and 
efficiency when trained on large collections of well-labeled 
ground-truth data. These networks may reliably outperform 
traditional algorithmic approaches and can make further 
important distinctions, like the identification of specific 
voices, faces, or fingerprints, with only a small amount of 
additional input. Neural networks can accelerate and refine 
the research process by reducing the quantity of required 
experimental iterations and by enhancing the accuracy and 
efficiency of material analyses. However, their performance 
depends on the quality of material data available for training. 
For materials data in particular, providing sufficient amounts 
of meaningful information is difficult, and finding ways to 
address this challenge is the goal of this study.

When considering available material data for use in deep 
learning approaches, the most significant obstacles are limi-
tations in data scope and dimensionality. Here, data scope 
is defined as the breadth of readily available data, and what 
range of information that data describes. Large amounts of 
materials data have been captured, but much of these data 
are either difficult to access or are tailored to a specific pur-
pose that limits its broader context. In other deep learning 
applications, such as text and voice, a great deal of data is 
made available through literary and audio collections and 
social media. In materials, not all data are readily avail-
able due to the expense of data generation or proprietary 
concerns, and when data are available, the wide array of 
collection methods can make establishing broader connec-
tions challenging. When discussing data dimensionality, 
limitations can be considered in terms of both variable and 
spatial dimensions. Variable dimensions refer to the num-
ber of different descriptors or characteristics represented in 
a given dataset. This challenge is particularly prevalent in 
engineering materials like the ones considered in this inves-
tigation. The vast majority of engineering materials are poly-
crystalline, so the bulk material is typically composed of 
billions of crystals that are rarely uniform in their crystallo-
graphic, morphological, or chemical properties. The effects 
of external environment and test conditions (e.g., specimen 
geometry, surface treatment, loading conditions) must also 
be considered, which adds further complexity to these mate-
rial descriptors. In addition to the number of data variables, 
it is also critical to consider the dimensions of physical space 
being represented. In materials analysis, an important point 
to note is the difficulty of generating and subsequent lack 
of three-dimensional experimental measurements, which 
are essential for physically accurate neural network train-
ing. Recent experimental advances have greatly improved 

volumetric materials characterization [8–15], but the quality 
and quantity of available data are limited by inherent restric-
tions, such as costly and specialized equipment, reduced 
spatial/temporal resolution, limitations on sample material/
geometry, and sample destruction during characterization.

Deep learning capabilities that have been developed in 
other domains can be leveraged to address the problem of 
limited data in the materials domain. Adapting these capa-
bilities for the characteristics of materials requires establish-
ing a relationship between the processing–structure–proper-
ties space of materials science and the classification spaces 
used in other fields of deep learning. One such established 
space in deep learning is object recognition, where seman-
tically labeled objects are recognized by neural networks 
based on the collection of features that compose that object. 
Approaches in this space are readily extensible to materials 
structure, where relationships can be established between 
microstructural morphology and other image recognition 
approaches that focus specifically on object shape. For 
example, in polycrystalline metals, much of the relation-
ship between material processing, structure, and properties 
manifests through the shape and arrangement of the crys-
talline subdomains we call grains. In the case of uniform 
crystallization, the physics are well understood. Grains take 
the shape of faceted polyhedrons, where the number of facets 
is dictated by impinging neighbors, and facet size and shape 
are dictated by interfacial energies. Morphologically, these 
polyhedral shapes are relatively simple, but variations in 
thermal and mechanical processing can drastically alter the 
distribution of possible shapes, as demonstrated in Fig. 1. 
Under normal growth conditions, the most probable grain 
shapes are polyhedrons, but orientationally biased mechani-
cal or thermal processing can create conditions where ani-
sotropic grains that are flattened, twisted, or directionally 
aligned become more probable. When considered from the 
standpoint of deep learning, these types of processing–struc-
ture relationships can be seen as changes to the distribution 
of expected grain morphologies for a given material system. 
While learning just the standard class of polyhedrons might 
be a relatively simple task, additional processing possibili-
ties present changes to the shape distribution that vary based 
on the functional constraints of the applied process. This 
type of constraint-based change in morphology is fundamen-
tally similar to the learnable constraints for other functional 
object classes, and building off this conceptual relationship 
is the premise for this investigation.

Here, we develop a novel network architecture that learns 
the shape of volumetric data with functional constraints and 
applies it to the problem of grain morphology of polycrys-
talline metals. This approach integrates recent advances in 
generative adversarial networks (GANs) [16] into the mate-
rials domain to generate new grain morphologies based on 
the distributions of training data. As grains are stochastic 
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and valid morphologies are not always recognizable, net-
work training and refinement was initially performed on 
functional objects (e.g., chair, guitar, etc.) from a publicly 
available dataset built for deep-learning-based object recog-
nition, and the network was subsequently trained to generate 
Ti–6Al–4V microstructures. The resultant grain morpholo-
gies were evaluated for adherence to the shape constraints of 
actual polycrystalline metals. The results of this analysis are 
discussed in detail, and the limitations and potential benefits 
of this type of network-based approach are discussed in the 
context of the physics of crystalline materials.

Background

Previous Studies in 3D Object Generation

As this investigation builds on the foundations of machine 
learning for 3D object recognition and synthesis, we will 
briefly describe relevant established approaches. Until 
recently, the majority of studies on 3D object generation 
have focused on the retrieval or combination of compo-
nents of the object of interest, such as in [17–19]. In these 
approaches, for a given database of shapes, a probabilistic 
graphical model learns the geometric and semantic relation-
ships that will yield a stylistically compatible object. Taking 
this a step further, Wu et al. [20] represented geometric 3D 
shapes as probability distributions of binary variables on 
a 3D voxel grid and was able to successfully demonstrate 
shape completion from “2.5-dimensional” depth maps. A 
related investigation from [21] proposed a network that used 
the ShapeNet dataset to learn a mapping from 2D images 

to their underlying 3D shapes, enabling the generation of 
a 3D representation of an object from an input 2D image. 
This led to efforts from [22–24] and [25] to generate 3D 
representations from 2D images. Although these methods 
showed encouraging results, most relied on some form of 
human supervision and did not focus on directly generating 
3D objects from latent space, which can be thought of as a 
compressed data space used by the network to describe dif-
ferent possible output of interest. In this case, a lack of focus 
on latent space focus means these methods were not as well-
suited for the recognition and synthesis of broadly described 
stochastic objects like grain morphologies. In the context of 
unsupervised 3D object synthesis, [26] proposed a promis-
ing autoencoder-based network to learn a deep embedding 
of object shapes, which yielded then state-of-the-art shape 
completion results, but overall, supervised approaches have 
historically had greater success with libraries of readily dis-
tinguishable objects.

When considering GAN-based approaches for shape 
generation, the most relevant approaches are from [27, 28], 
which focus on 3D shape generation from a probabilistic 
latent space with feature-based learning and adversarial loss 
components. The 3D-GAN network from [27] generates 3D 
objects from a low-dimensional latent space, thus allowing 
for both the sampling of objects without a reference image or 
CAD model as well as the exploration of the 3D object man-
ifold. Similarly, [28] proposed a novel 3D GAN network, but 
supplemented it with a 2D image enhancer network. This 
enhancer network was able to effectively learn and feed 
image features into the 3D model generator to synthesize 
high-quality 3D data. While both of these networks deliver 
on their promise to provide a solution to the 3D model 

Fig. 1  Grain distributions across materials and processes: 3D datasets 
collected from Ti–6Al–4V (top left), strontium titanate (top right), 
and additively manufactured (AM) Inconel 718 superalloy (bottom) 
samples with detailed examples of specific grains contained within. 
Data shown were gathered with 3D electron backscatter diffraction 
(EBSD). Average grain size is much larger relative to voxel size reso-

lution in the strontium titanate dataset compared the Ti–6Al–4V data-
set, resulting in fewer total grains, but better defined grain facets. The 
Inconel 718 sample and the grain contained within the melt pool on 
the top surface of the sample are elongated due to the directional heat 
flux in the AM process
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generation problem, they offer somewhat limited resolution 
and detail in the shapes that they generate. Furthermore, 
enhancement of three-dimensional object results using two-
dimensional supplemental images is not readily achievable 
with images of materials microstructure because most, if 
not all, 2D microstructure imaging techniques offer only a 
planar image of surface microstructure with minimal depth 
of field, no photographic perspective, and no real means by 
which underlying 3D microstructure can be inferred.

Materials‑Specific Approaches

Within the materials domain, the earliest computational 
approaches used to generate microstructural morpholo-
gies derive from physics-based models, which have been 
recognized for both their high level of detail and realistic 
output. A study by [29] used a Voronoi tessellation model 
that simulated ceramic grain boundary evolution based on 
well-established equations developed by [30–32]. Addition-
ally, research approaches by [33] combined Monte Carlo 
simulations and grain growth kinetics to model metal crys-
tallization. These physics-based models are promising, but 
often require significant computational power and detailed 
knowledge of the energetics of the system. These are not 
always readily available, especially in more complex pro-
cessing scenarios. To avoid this knowledge and computa-
tional burden, models have also been developed to generate 
microstructures based primarily on their statistical proper-
ties. For example, [34, 35] used statistical descriptors to gen-
erate microstructures using tessellation and ellipsoid coars-
ening, respectively. A method for the robust comparison of 
synthetic microstructures (e.g., generated by the model of 
[35]) with experimental results is described in [36], with 
the finding that certain morphological descriptors resulted 
in improved discrimination, and that the starting shapes for 
grain generation impacted different descriptors. Approaches 
such as these are computationally efficient and versatile, 
compared to physics-based models, but tend to result in less 
realistic grain morphologies and limited accuracy in local 
grain environment descriptions.

Beyond physics-based models, machine learning has been 
employed to explore the material microstructure space of 
non-crystalline materials. [37] used graph neural networks 
of 3D atomic arrangements to describe general amorphous 
structures, such as those found in glassy materials. These 
graphical descriptions were then used as predictive tools 
to explore how the observed structure affects mobility and 
resultant glass properties. This approach showed promise 
for glasses, but does not extend to the crystalline domain. 
In the context of more general two-phase microstructures, 
[38] used 3D convolutional neural networks to characterize 
possible stochastic microstructures made from filtered noise. 
These types of stochastic microstructures have also been 

investigated in 2D by [39] using classification trees and by 
[40] using GANs.

Machine learning techniques have also been previously 
applied specifically to experimental crystalline structures. 
Investigations by [41] compiled a database of 2D ultra-high-
carbon steel micrographs and classified these images into 
microstructures based on the distributions of their micro-
structural features [42]. In [43], a Wasserstein GAN with 
gradient penalty was used to generate 2D microstructures 
using the database of [41] as training data. Related to this 
investigation, [44] used StyleGAN to generate various 2D 
microstructures, and [45] used a convolutional deep belief 
network to generate 2D microstructures of the same titanium 
alloy explored in this study. Approaches such as these have 
strong experimental underpinnings; however, validation 
of microstructures is difficult in 2D. The challenge in 2D 
microstructure assessment stems from the fact that material 
micrographs are planar images of solid material that offer 
very little or no perspective-based information from which 
3D appearance can be inferred. For quantitative evaluation, 
the challenge becomes virtually impossible, as establish-
ing 3D structure from 2D for anisotropic shape classes is 
mathematically intractable [46]. In order for the output from 
machine learning-based models to be fully comparable to 
material microstructures, generation and evaluation must be 
made against robust 3D microstructure information.

Noteworthy advances have also been made in 3D crystal-
line material generation and evaluation in property space. 
[47] used structural optimization to explore the microstruc-
ture space of the iron-gallium alloy Galfenol. This approach 
focused on techniques for optimizing grain arrangement in 
the Galfenol microstructure to achieve an orientation dis-
tribution that would improve desired properties. While 
this approach allows for extensive exploration of property 
space, the basis of the model is theoretical, and there are no 
means of verifying that the proposed microstructures can 
be physically realized with available processing techniques. 
More recently, [48] used GAN-based approaches to generate 
three-phase microstructures of solid oxide fuel cells, which 
were then evaluated against experimental results and simi-
lar structures generated by the statistical methods of [35]. 
This approach evaluated microstructures both at the feature 
and property level and demonstrated strong representation 
and promising results. As the focus of the network was to 
generate distributions of the three phases present in the fuel 
cell anode, namely yttria-stabilized zirconia, nickel, and 
pore/void, it was tailored around producing phase distribu-
tions specifically and did not address features within those 
phases. Often, deep learning approaches rely on some form 
of experimental ground-truth data, and for the investigation 
presented here, the experimental ground truth was gathered 
using a technique known as electron backscatter diffraction 
(EBSD). EBSD is a scanning electron microscopy technique 
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where electrons from the microscope beam are diffracted 
by a crystalline structure according to Bragg’s law [49], 
forming a pattern that can be indexed to determine infor-
mation about the underlying structure. This approach is a 
well established crystallography technique whose capabili-
ties are discussed in [50] and [51]. Typically, the first step 
in processing EBSD data is indexing, where the diffraction 
pattern gathered from the microscope is mapped to a particu-
lar crystal structure and orientation. The most conventional 
method of indexing is mapping using a Hough transform, but 
other more sophisticated mathematical and machine-learn-
ing-based approaches, such as those presented by [52–55], 
allow for more efficient and higher quality indexing with 
reduced error. Because indexing is a mapping of a diffraction 
patterns to specific locations, all EBSD data are inherently 
in pixel or voxel form. After the data are indexed, additional 
material information can be extracted based on the relative 
orientations and deformation states of the mapped crystal-
line grain structures. Because this study is interested in grain 
morphology, all ground-truth data used in this study are fully 
indexed and segmented into grains based on continuity of 
crystalline domains. However, in the investigation presented 
here, much of the novelty arises not from the demonstrated 
experimental application, but rather from the extensibility 
of the approach. By learning morphologies from general dis-
tributions of relevant features, a network can be produced 
that is applicable to a wide variety of materials systems and 
applications with no needed architectural refinement.

Approach

In this investigation, we demonstrate the GAN-based rec-
ognition and synthesis of crystalline grain morphologies 
using learned feature distributions built on the same funda-
mental principles used for the generation of other functional 
objects. We start with readily available databases of easily 
recognized functional objects to refine the GAN’s synthesis 

capabilities and evaluate network performance on recogniz-
able objects. We then apply the established architecture to 
materials systems, more specifically grain morphologies, 
where the scope of accessible data is limited and recognition 
is not straightforward. While this is not directly equivalent to 
transfer learning, it demonstrates how available information 
databases might be used to teach relevant broader concepts 
to networks, which, in the right context, can be applied to 
scientific problems where large-scale datasets are not easily 
obtained.

Architecture and Training

First proposed by [16], a simple GAN consists of a generator 
G and a discriminator D. The generator tries to synthesize 
samples that look like the training data, while the discrimi-
nator tries to determine whether a given sample is a real 
sample that originated from the ground-truth data distribu-
tion or is synthesized from the generator. The discriminator 
D then outputs a confidence value D(x) of whether input x 
is real or synthetic. A basic layout of the GAN architecture 
is shown in Fig. 2. StyleGAN, developed by [56], garnered 
widespread attention for its life-like image quality and unsu-
pervised high-level attribute separation in the generated out-
put. Because of these characteristics, we used StyleGAN as 
the base architecture for our network. Instead of passing a 
random noise vector z to the generator, z is first mapped to 
an intermediate latent space W, which is transformed into 
spatially invariant styles � = (�s, �b) . This is then used to 
control the generator through adaptive instance normali-
zation (AdaIN) at each convolutional layer. The AdaIN is 
described by [56] using the form:

where �i is a feature map normalized separately for 
each instance i and then scaled and biased using the 

(1)AdaIN(�i, �) = �s,i

�i − �(�i)

�(�i)
+ �b,i

Fig. 2  Generative adversarial network (GAN) architecture overview: a layout of the architecture of a traditional GAN, as described by [16]
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corresponding scalar components �s and �b from style � . 
Mapping to intermediate latent space allows for disentan-
glement, which provides clearer tracking of the influence of 
latent space variations on the generated output. For genera-
tive architectures, latent space is the random source noise 
used as input, and disentanglement, as described by [56], 
allows for the fluctuations in this space to be separated and 
applied independently for different generated features. This 
helps produce better results in scenarios where features are 
not represented proportionally to the initial sampling, such 
as for the anisotropic feature distributions expected for both 
the functional objects and experimental material data inves-
tigated here. Additionally, the use of style-based representa-
tion allows for better evaluation of network understanding at 
different feature levels, which is particularly useful in sto-
chastic structures of variable size, such as grains.

In our 3D generative adversarial network (M-GAN), an 
initial latent space vector z of size 512 is chosen through 
Gaussian sampling of latent space, similar to the work of 
[56]. In their work, [56] determined that a size of 512 for z 
was sufficiently large to keep all components of latent space 
disentangled. The generator G then maps this latent vector 
into an intermediate latent space W using a mapping network 
of 8 fully connected layers with a LeakyReLU activation 
function after each layer. The output W is then converted 
into the styles previously described as � using a learned aff-
ine transformation, denoted as A in Fig. 3, and these styles 
are used to control adaptive instance normalization (AdaIN) 
in the synthesis network, as described in Eq. 1. This local-
ization of styles better preserves the small scale physical 
features of each object or grain, allowing for more detailed 
morphology output compared to other networks [27, 28]. 

Our synthesis architecture diverges from that of StyleGAN 
by using blocks consisting of a 3D deconvolution passed 
through an AdaIN operation and ReLU activation function. 
The synthesis network has a total of five blocks, with the 
first having a constant input vector and normalization, and 
the fifth having a sigmoid activation function instead of a 
ReLU. In comparison, StyleGAN blocks use upsampling 
followed by two alternating convolution layers and AdaIN 
operations, with noise introduced after each convolution 
to add stochastic variation. However, in 3D, this noise was 
found to add instability during training and was therefore 
not included in the M-GAN network. Architecturally, the 
discriminator is similar to that of [27] in that it consists of 5 
progressive 3D convolution layers with no downsampling. 
Each of these convolution layers has a LeakyReLU activa-
tion function except for the last layer, which has no activa-
tion function. The first four layers have a kernel size of 4, 
stride size of 2, and padding size of 1, and the last block has 
kernel size of 4 and stride size 2 with no padding. The output 
of this last block goes directly into the loss function. In this 
investigation, the discriminator makes its decisions (real vs. 
generated) based on collections of multiple objects from the 
same class, rather than just singular instances, similar to the 
method presented by [57].

The data used to train this network consisted of a combi-
nation of object-based data for network refinement and eval-
uation as well as fully indexed EBSD data for application to 
material microstructures. For object-based data, six major 
categories from the ShapeNet Dataset by [58] were used in 
the network training: car, chair, plane, guitar, sofa, and rifle. 
Each category has a 128-sample training set. All objects 
are presented in a voxel-based format, and each individual 

Fig. 3  Generator architecture of M-GAN: a mapping network 
comprised of eight fully connected (FC) layers with Leaky ReLU 
activation function after each FC layer takes as input a 512-dimen-
sional latent vector z. The output is then mapped to an intermediate 
latent space W , converted into styles using a learned affine trans-

formation (A), and passed through an AdaIN operation for each 
of the five blocks in the synthesis network. Block 1 passes con-
stant input through AdaIN and ReLU activation functions, while 
Blocks 2–5 are deconvolution blocks progressively grown from 
8 × 8 × 8 → 64 × 64 × 64
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object instance is contained within of 64 × 64 × 64 voxel 
volume. The material microstructure data used in this study 
was 3D EBSD gathered by Wendorf et  al.  [59] using a 
method developed by [60] known as the Tribeam system, 
which performs rapid serial sectioning using ablation with 
ultrashort pulse femtosecond lasers. The material investi-
gated here is a polycrystalline wrought titanium alloy con-
taining 6.75 wt% aluminum and 4.5 wt% vanadium. This 
alloy, commonly referred to as Ti–6Al–4V, has applications 
in turbine engines, aerospace, and medical prostheses. The 
grain information is gathered at the voxel level using elec-
tron backscatter diffraction, with each voxel having a size of 
1.5 μ m × 1.5 μ m × 1.5 μ m. Each grain is passed to the net-
work inside a cubic volume of size 64 × 64 × 64 voxels. An 
image of the full dataset is shown in Fig. 4. This Ti–6Al–4V 
dataset was originally gathered to study slip behavior and 
long-range plastic deformation across multiple length scales 
[61] as well as explore how microtextured regions in tita-
nium alloys affect overall mechanical response [59, 62]. To 
better capture long-range mechanical response, the sample 
size is relatively large compared to the grain size, so many 
grains are relatively small compared to the voxel resolution 
and detailed grain facets are not easily resolved. Despite 
these resolution limitations, this set has the major advantage 
of offering a large number of grains as a good foundation 
for network training. In total, 84,215 grains from this dataset 
were used for network training.

Stable training of the GAN was achieved by setting the 
learning rate for both the generator and discriminator at 
0.0002, with a batch size of 16. Similar to [27], the discrimi-
nator in this approach is updated five times for each genera-
tor update and employs the Adam optimizer described by 
[63] with � = 0.5 . The output of the network is in a 64 × 64 

× 64-dimensional space. The Wasserstein loss as described 
in [64] with a gradient penalty is used for the discriminator 
and the generator, which are defined as follows:

Here, G� is the generator network, D� is the discriminator 
network, z(i)m

i=1
∼ p(z) is a batch of random noise from latent 

space ( p(z) = population distribution for latent space), x(i) 
is instance i of real data from a batch of size m such that 
x(i)

m

i=1
∼ ℙr ( ℙr = population distribution of real data), ∇ is 

the gradient operator, � is a gradient penalty coefficient as 
described by [65], and x̂(i) is defined as �x(i) + (1 − �)G�(z

(i)) 
where � is a uniform random variable in [0,1]. This Wasser-
stein loss metric, also known as the “earth-mover” metric, 
quantitatively compares the difference between two distribu-
tions by considering the area under each distribution curve 
and measuring how much area would have to be moved from 
one distribution for it to match the other. When applied to 
feature distributions, it is a measure of how well the fea-
tures in the generated data match those found within the 
feature distribution of the ground-truth dataset. This type of 
comparison uses the ground-truth data as guide for training 
without relying directly on one-to-one mappings between 
generated and ground-truth data, which enables the network 
to better produce results that are similar to the ground truth 
without being direct copies. By definition, this lack of a 
one-to-one mapping also means this approach is considered 
an unsupervised learning method. Furthermore, since this 
approach is unsupervised, all hyperparameters used in this 
study are preset before training, and all validation of data is 
done as analysis on objects generated by the network during 
inference time.

Evaluation

We evaluate our network across several areas. First, we show 
qualitative results of generated 3D objects from the Shap-
eNet dataset by [58]. Then, we evaluate the unsupervised 
learned representations from the discriminator by using 
them as features for 3D object classification. Next, quanti-
tative results are shown on the popular benchmark ModelNet 
dataset from [20]. Finally, we apply the network approach 
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Fig. 4  Experimental training set: Ti–6Al–4V dataset, whose grains 
were used to train M-GAN on grain shape recognition. Sample is 
shown to scale in inverse pole figure (IPF) color. The IPF color indi-
cates the orientation for each individual voxel, and these orientations 
are used in the segmentation process to identify individual grains, 
which are subsequently used for training
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to grain morphologies from real, experimentally gathered 
materials data. Because grain shapes are stochastic, direct 
recognition of resultant objects is not straightforward, so 
shape quality must is validated by other means. Here, shapes 
are validated using the moment invariant approach described 
in [66].

We train one M-GAN for each object category using a 
512-dimensional random vector that follows a normal distri-
bution with mean 0 and variance 0.2. We compare our gener-
ated objects with [27], because [28] used an enhancer net-
work and additional information from 2D rendered images 
during training. Our network synthesizes high-resolution 
3D objects ( 64 × 64 × 64 ) with detailed shape information 
trained from only 3D input. To ensure that the network is not 
simply memorizing the training data, we analyze synthesized 
objects using comparisons to nearest neighbors in discrimi-
nator feature space as described by [27]. For this analysis, 
discriminator feature vectors are captured for both the gener-
ated samples and ground-truth data, and nearest neighbors 
in feature space are determined using minimum �2 distance, 
which is far more efficient than direct 3D object comparison. 
Feature analysis shows that the generated samples were not 
identical to their nearest neighbors.

To evaluate the unsupervised learned features from our 
network and assess performance, we use the feature extrac-
tion approach discussed in [27] to provide a means of com-
parison, as there is no established standard. In this approach, 
features identified in the convolution layers of the discrimi-
nator are collected for a variety of different categorically 
classified objects. This library of features is then integrated 
into a support vector machine whose classification perfor-
mance is tested using a new dataset of equivalently classi-
fied objects. We train our M-GAN network on six object 
categories (bed, car, chair, plane, sofa, table) from [27]. Each 
object category has 25 samples, similar to [27] in the train-
ing set from the ShapeNet dataset.

Next, we use the ModelNet dataset from [58] to evaluate 
the unsupervised features learned by our network. The Mod-
elNet dataset has two categories: ModelNet10 (10 classes) 
and ModelNet40 (40 classes). ModelNet10 has a total of 
3991 training samples and 908 test samples. From this data-
set, we use 100 samples from each category, totaling 1000 
training samples. ModelNet40 has a total of 9843 training 
samples and 2468 test samples. From this dataset, we use up 
to 100 samples from each category when available, totaling 
3906 training samples, as some categories had fewer than 
100 samples. For ModelNet10 and ModelNet40, we use the 
entire test dataset provided, though fewer training samples 
than were used by [27, 28].

When evaluating feature extraction accuracy, to provide 
a fair comparison, we use the same kernel size = {8, 4, 2} 
defined by both [27] and [28], as well as the defined stride 
= {4, 2, 1} by [28]. We calculate features from the second, 

third, and fourth layers of the trained discriminator, which 
are then concatenated after applying max-pooling with the 
defined kernel size and stride. We then train a linear Support 
Vector Machine (SVM) on training features and calculate 
classification accuracy on the test features.

Functional object data from the ShapeNet and ModelNet 
sets are well suited for network refinement and performance 
assessment, in part due to their easy visual recognition. 
Grain shapes, on the other hand, have a stochastic morpho-
logical appearance, so they cannot be easily evaluated by 
visual means or by direct object comparison. For this reason, 
we use statistical distribution comparison of 3D moment 
invariants to assess the quality of generated results for single 
grains. Much like the image moments used in 2D analysis, 
3D moment invariants are integration-based descriptors 
that numerically quantify an object based on the distribu-
tion of its solid volume. These types of invariants have been 
used previously by [67] as shape descriptors for general 3D 
objects, and in materials science by [66, 68] to describe the 
shapes of particles such as grains and inclusions. Following 
the approach of [66], Cartesian moment descriptors �pqr take 
the form:

where F(r) is a characteristic function that has a value of one 
in material regions and a value of zero in void regions. As all 
ground-truth data are in voxel-based form in this investiga-
tion, all integrations herein are calculated as Riemann sums 
in voxel space rather than as continuous integrals. Following 
this Cartesian moment form, �000 is directly equal to the vol-
ume V of an object, and the centroid (Xc, Yc, Zc) of an object 
can be expressed in the following form:

Working from a coordinate space originating at the centroid, 
the non-normalized moment invariants O1,O2,O3 are as 
follows:

These can be normalized to object volume to produce the 
moment invariants (Ω1,Ω2,Ω3):
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The distributions of these moment invariants are used to 
evaluate the shape quality of the generated grains. Addi-
tional analysis of 3D moment invariants can be found in 
[66].

Results and Discussion

Object‑Based Data

For object-based datasets, the network showed strong per-
formance. Examples of generated object output based on 
ShapeNet training are shown in Fig. 5, and network perfor-
mance against existing architectures is shown in Table 1. 
With fewer training samples than [27, 28], we achieved 
92.29% accuracy on the ModelNet10 dataset and 85.08% 
accuracy on the ModelNet40 dataset. If we use a comparable 
training set size to [27], we achieve a 2.29% improvement 
on ModelNet10 and a 3.78% improvement on ModelNet40 
dataset. Furthermore, [28] uses all available training samples 
as well as additional rendered 2D images for both datasets, 
compared to our use of fewer training samples and only 3D 
input.

Since all benchmarking for M-GAN was done on rec-
ognizable objects with well-defined orientations, no rota-
tional augmentation of datasets was used during training 
with objects or grains, and all results are shown in their 
as-generated orientation. Analysis of generated objects indi-
cates that the M-GAN network is not generating any rotated 
objects in cases where rotation effects are distinguishable. 
For microstructural objects like grains, since they are fun-
damentally stochastic and have no defined top or bottom, 
rotation augmentation may prove beneficial as an additional 

(9)
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training tool, especially for anisotropic grain structures, but 
the influence of rotational augmentation is not explored in 
this work.

Material Data

Following functional object generation, the network was 
trained on experimentally gathered Ti–6Al–4V grain mor-
phologies. Representative volumes of grains generated using 
the M-GAN are shown in Fig. 6. Unlike the benchmark 
results, which are shown as contour displays, these figures 
are shown in voxel form, which matches the representation 
of the ground-truth data. It should be noted that some gen-
eration artifacts were present in 64 × 64 × 64 volume con-
taining these grains, with the most common of these artifacts 
being filled single voxels at random locations in the render 

Fig. 5  ShapeNet output: the 
M-GAN network generates 
detailed shape information for a 
diverse range of 3D objects. As 
the network learns from shape 
feature distributions, these 
objects are similar but not iden-
tical, such as the different styles 
of chairs shown in the bottom 
row. The variation within a 
class of generated objects that 
satisfies functional requirements 
is applied to the generation of 
grains across different mate-
rial and processing classes, as 
shown in Fig. 1

Table 1  Comparison of object-based performance for the Model-
Net10 and ModelNet40 datasets using the feature extraction approach 
described by [27]

Method (supervised) ModelNet10 (%) ModelNet40 (%)

3D ShapeNets [20] 83.54 77.32
VoxNet [69] 92.00 83.00
Geometry image [70] 88.40 83.90
PointNet [71] 77.60 –
GIFT [72] 92.35 83.10
FusionNet [73] 93.11 90.80
Method (unsupervised) ” ”
SPH [74] 79.79 68.23
LFD [75] 79.87 75.47
VConv-DAE [26] 80.50 75.50
3D-GAN [27] 91.00 83.30
3D-GAN ( ≈ 100 samples) 90.00 81.30
Ours (M-GAN) (100 samples) 92.29 85.08
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volume. Some examples of these artifacts can be seen in the 
contour images of the benchmark set shown in Fig. 5. In 
the case of grain volumes shown in Fig. 6, only the largest 
connected volume is shown. These representative volumes 
show shapes that would be reasonably expected of grains in 
an equiaxed polycrystalline metal like wrought Ti–6Al–4V, 
but these representative volumes alone are insufficient veri-
fication of generated grain quality.

For quantitative shape evaluation, the distributions of the 
3D moment invariants (Ω1,Ω2,Ω3) evaluated in this study 
are shown in Fig. 7. The ground-truth dataset contained 
84,215 grains and the M-GAN generated a total of 150,000 
grains. For each of the three invariants, less than 0.2% of 
the grains had values that were either infinite or nonphysical 
across both the ground truth and generated sets. In observed 
cases, this resulted from very small grain structures that 
were linear or planar in nature, which led to extremely large 
errors in Riemann summation during the calculation of the 

invariants. Due to their nonphysicality, these values were 
omitted from the statistical distribution comparisons.

A comparison of the experimental moment invariant dis-
tributions in this investigation compared to those analyzed 
in [36] shows that ones presented here are of slightly lower 
average value, which indicates grains being more cube-like 
in shape. This is expected though, given that the grains in 
this set are of lower resolution in order to capture a large 
volume, and lower resolution will mean more cube-like grain 
features. The means and standard deviations for each of the 
distributions are shown in the insets of Fig. 7. These values 
show that the generated data consistently exhibited lower 
means and larger standard deviations. Comparison of the 
distribution shapes in Fig. 7 reveals the cause to be that the 
generated data have a range of moment invariants values in 
the region close to zero that is not seen in the real dataset.

Analysis of generated grains from these lower magnitude 
moment invariant values revealed two common issues. The 

Fig. 6  Visual comparison of grains: sampling of grains from real and 
generated sets are shown to verify visual similarity. Voxel size is 1.5 
� m × 1.5 � m × 1.5 � m. For generated grains, only largest connected 

component is shown. Stochastic nature of grains means no directly 
matching shapes are expected. Shape distributions are compared in 
Fig. 7

Fig. 7  Quantitative evaluation of M-GAN grain generation: moment 
invariants ( Ω1,Ω2,Ω3 ) are used to evaluate the similarity of real and 
generated shape distributions, as grains shapes are stochastic and cor-

rectness is a matter of shape probability rather than object recogni-
tion. Histograms are shown for both real (top) and generated (bottom) 
grain shapes. Distribution means are indicated by vertical lines
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first was that many of the generated grains in this region 
were smaller in volume than the ground truth. In the ground-
truth dataset, the smallest grains that could be reliably dis-
tinguished from artifacts and noise were on the order of 25 
voxels in volume, but many of the generated grains with 
low moment invariant values had volumes of fewer than 20 
voxels. While small volume alone is not necessarily a con-
cern, these smaller grains had a greater negative interac-
tion with the other major issue of generator noise, which 
was also noticed in the some object-based data as in Fig. 5. 
Although the generator noise was not displayed in Fig. 6 for 
visual clarity, this noise was still included in the moment 
invariant calculation both to minimize quantitative bias and 
because no steps were included in the architecture or train-
ing process to directly mitigate noise. Noise removal with 
the aid of domain knowledge is a widely accepted practice 
for microstructural data, but since the goal of this work is 
direct evaluation of network performance, denoising is con-
sidered a post-processing step that is outside the scope of 
the network. This consideration of noise is critical because 
some generated grains had very small volumes compared to 
the ground truth, and many more still had relatively small 
volumes compared to the 64 × 64 × 64 voxel region in which 
they were generated. Thus, generator artifacts located far 
away from the grain itself can cause significant shifts in the 
centroid location used to establish the coordinate basis for 
the calculation of the moment invariants, thereby creating 
distortions in the data. However, beyond these factors, the 
overall shape and position of the main peaks for both distri-
butions are very similar, indicating that the M-GAN network 
is producing data that is similar to the ground-truth data 
without directly replicating it.

Relation to Material Physics

While a quantitative analysis of morphology shows promis-
ing results, network performance must be considered in the 
context of actual material physics. Here, the issue of small 
grain volumes brings to light another challenge with GAN-
based morphology synthesis, namely that of size–shape 
relationships. Throughout object training, the network is 
constrained to a 64 × 64 × 64 voxel final output size, regard-
less of the object morphology being generated. As such, it 
learns to recognize morphological features independent of 
the object size, and voxels are assigned whatever physical 
length scale is necessary to render the object in the avail-
able volume. Thus, when considering, for example, cars and 
guitars, the relevant features on both of these objects are 
learned in the context of the available rendering scale, even 
though the physical size of the guitar and car are different.

In many scenarios, size-independent morphological rec-
ognition is an asset that offers greater versatility. However, 
for materials data, it has some undesired consequences. In 

the previously discussed case of low-volume grains, the 
network generated objects smaller than the experimental 
resolution of the dataset, even going as far as to produce an 
instance of a grain with single-voxel volume. While these 
results are inaccurate with respect to the ground-truth data, 
this is primarily due to voxel-based resolution limitations 
rather than physical inaccuracies. Even for the most extreme 
case of a single voxel grain, if we apply the ground-truth 
length scale of 1.5 μ m × 1.5 μ m × 1.5 μ m per voxel, it is cer-
tainly possible for a grain with a diameter of 1.5 μ m to exist 
in a variety of real materials. However, regardless of mate-
rial, that grain will possess morphological constraints that 
are not represented by a single-voxel rendering. This tells 
us the network has challenges with distinguishing feature 
constraints associated with physics from those associated 
with resolution limitations. This is a challenging problem 
to address in EBSD images, where data are gathered using a 
rastering electron beam, and therefore will always be pixel- 
or voxel-based. Currently, the most promising outlook for 
resolving this issue is an automated means of enhancing 3D 
images with resolution artifacts, such as super-resolution, a 
survey of which is presented by [76]. With sufficient reso-
lution enhancement, small-scale grains could be presented 
to the network at a volume scale where physical features 
can be readily recognized beyond resolution limitations. It 
may be possible to remove some of these resolution limita-
tions using either networks that produce non-voxel output, or 
networks that allow for continuous resolution scaling, such 
as Infinity GAN by [77]. However, achieving meaningful 
results on materials data with either of these approaches 
would require detailed 3D information across a variety of 
different length scales, which is nontrivial to obtain.

The other challenge that must be addressed for crystalline 
materials is grain connectivity relationships. For both the 
object and material data, all learning was performed with 
independent renderings of single objects. Recognition of 
individual objects regardless of context can be beneficial; 
however, in polycrystals, the shape of each grain depends 
on physical interaction with its surrounding neighbors. The 
network presented here has a good understanding of grain 
morphology, but cannot infer how different grain shapes are 
related to one another in the bulk material. It is possible 
that graph- or label-based approaches may offer a means to 
clarify these 3D connectivity relationships, but to date, the 
available resources for achieving this are limited.

The presented M-GAN approach demonstrates how fun-
damental materials concepts, such as grain morphology, 
can be learned by network-based approaches in cases where 
an abundance of data is not readily available. Grain mor-
phology is addressed herein as it is a principal component 
in understanding the relationships between microstructure 
and material properties. Network-based approaches such 
as M-GAN enable the generation of material features (e.g., 
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grain morphologies) in a generalizable context. This broad 
generative capacity expands our exploration of the process-
ing–structure and structure–property relationships that are 
critical to materials discovery and development. For exam-
ple, the M-GAN approach is directly applicable to the gen-
eration of bulk synthetic polycrystalline microstructures 
from constituent components. M-GAN can readily be used 
to generate collections of grain morphologies based on a 
distribution of interest, and these morphologies can be itera-
tively packed and assigned crystallographic orientations to 
form a bulk polycrystalline solid. Network-based approaches 
like M-GAN also serve as a foundation to explore morphol-
ogy-dependent relationships, such as the formation of micro-
textured regions in titanium alloys [78–80], or the formation 
of thermomechanically dependent grain structures, such as 
columnar grains from directional melt solidification in addi-
tive manufactured metals [81–83].

Conclusions

We present M-GAN, a generative adversarial network, to 
recognize and synthesize 3D grain morphologies in crystal-
line microstructures. All objects are generated from latent 
space vectors without any supplemental 2D input.

Network capabilities are demonstrated on the ModelNet 
benchmark datasets and on an experimental 3D material 
dataset of Ti–6Al–4V. On benchmark datasets, the M-GAN 
yielded more reliable discriminator classification with expo-
sure to fewer objects, highlighting the quality of its discrimi-
nator feature recognition. On experimental data, the M-GAN 
network produced results that were morphologically similar 
to ground truth without being a direct replication. The effects 
of generator noise produced some variation in the moment 
invariant distribution compared to experimental data, par-
ticularly at low value invariants, and most often with grains 
of smaller volume. These challenges with smaller grains 
indicate a limitation of the network in distinguishing grain 
shape features from spatial resolution artifacts.

This approach lays a foundation for the use of network 
based approaches to understand key relationships between 
grain structure and properties of crystalline materials. In 
future work, this approach could also be extended to relate 
grain shape to neighbor connectivity in the bulk material 
structure.
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