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Abstract

We explore 3D human pose estimation from a single

RGB image. While many approaches try to directly pre-

dict 3D pose from image measurements, we explore a sim-

ple architecture that reasons through intermediate 2D pose

predictions. Our approach is based on two key observa-

tions (1) Deep neural nets have revolutionized 2D pose es-

timation, producing accurate 2D predictions even for poses

with self-occlusions (2) ”Big-data”sets of 3D mocap data

are now readily available, making it tempting to “lift” pre-

dicted 2D poses to 3D through simple memorization (e.g.,

nearest neighbors). The resulting architecture is straight-

forward to implement with off-the-shelf 2D pose estimation

systems and 3D mocap libraries. Importantly, we demon-

strate that such methods outperform almost all state-of-the-

art 3D pose estimation systems, most of which directly try

to regress 3D pose from 2D measurements.

1. Introduction

Inferring 3D human pose from image measurements is

classic task in computer vision, dating back to the iconic

work of Hogg [11] and O’Rourke and Badler [22]. Such a

technology has immediate applications in various tasks such

as action understanding, surveillance, human-robot interac-

tion, and motion capture, to name a few. As such, it has

a long and storied history. We refer the reader to various

surveys for a broad overview of the popular topic [8, 19].

Previous approaches often make use of a highly sensored

environment, including video streams [37, 30], multiview

cameras [3, 10], depth images [23, 36, 27]. In this work, we

focus on the ”pure” and challenging setting of recovering

3D body pose with a single 2D RGB image [17, 35, 25, 32].

Our key insight to the problem is leveraging recent ad-

vances in 2D image understanding, made possible through

the undeniable impact of deep learning. While origi-

nally explored for coarse recognition tasks such as im-

age classification, recent methods have extended such net-

work architectures to “fine-grained” human pose estima-

tion, where the task is formulated as one of 2D heatmap
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Input Image 3D Pose Library

CNN Depth added by
3D Exemplar 

Output 3D Pose

Figure 1. Overview of our approach for 3D pose estimation: given

an input image, first estimate a 2D pose and then estimate its depth

by matching to a library of 3D poses. The final prediction is given

by the colored skeleton, while the ground-truth is shown in gray.

Our approach works surprisingly well because 2D pose estimation

is accurate even during occlusions (as illustrated by both wrists

above), suggesting that 2D pose estimates need only be refined by

adding depth values.

prediction [33, 21, 31, 12]. One of the long standing chal-

lenges in 2D human pose estimation has been estimating

poses under self-occlusions. Indeed, reasoning about occlu-

sions has been one of the underlying motivations for work-

ing in a 3D coordinate frame rather than 2D. But one of

our salient conclusions is that state-of-the-art methods do a

surprisingly good job of 2D pose estimation even under oc-

clusion. Given this observation, the remaining challenge is

predicting depth values for the estimated 2D joints.

Inferring 3D structure from 2D correspondences is also a
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well-studied problem in computer vision, often addressed in

multiview setting as structure from motion. In the context of

monocular human pose estimation, the relevant cues seem

to be semantic rather than geometric. One can estimate 3D

postures from a 2D skeleton based on high-level knowl-

edge derived from anthropometric, kinematic, and dynamic

constraints. Inspired by the success of data-driven architec-

tures, we explore a simple non-parametric encoding of such

high-level constraints: given a 3D pose library, we gener-

ate a large number of 2D projections (from virtual camera

views). Given this training set of paired (2D,3D) data and

predictions from a 2D pose estimation algorithm, we report

back the depths from the 3D pose associated with the closest

matching 2D example from our library. Our entire pipeline

is summarized in Fig. 1.

Generalization: One desirable property of our two-

stage approach is generalization. Due to the difficulty of

annotation in 3D, training datasets with 3D labels are typi-

cally collected in a lab environment, while 2D datasets tend

to be more diverse. Our two-stage pipeline makes use of

different training sets for different stages, resulting a sys-

tem that can predict 3D poses from “in-the-wild” images.

Evaluation: Though we present qualitative results on

in-the-wild-imagery, we also perform an extensive quanti-

tative evaluation of our method on widely benchmarked 3D

human-pose datasets, such as Human3.6M [13]. We fol-

low standard train/test protocol splits, but our analysis re-

veals that there has been inconsistent reporting in the lit-

erature, both in terms of test sets and evaluation criteria.

To make our results as transparent as possible, we report

performance for all metrics and splits we could find. One

of our surprising findings is the impressive performance of

our simple pipeline: we outperform essentially all prior

work on all metrics. Our entire pipeline, even given the

non-parametric matching step, returns a 3D pose given a

2D image in under 200ms (160ms for 2D estimation by a

CNN, 26ms for exemplar matching with a training library of

200,000 poses). Finally, to promote future progress, we per-

form an exhaustive analysis of additional baselines with up-

per bounds that reveal the continued benefit of working with

intermediate 2D representations and data-driven encoding

of 3D constraints.

2. Related work

Here we review related works on 3D human pose predic-

tion most relevant to our approach.

(Deep) Regression: Most existing work that makes use

of deep features tends to formulate the problem as a di-

rect 2D image to 3D pose regression task. Li et al. [17]

use deep learning to train a regression model to predict 3D

pose directly from images. Tekin et al. [30] integrate spatio-

temporal features via an image sequence to learn regression

model for 3D pose mapping. We provide both a theoretical

and empirical analysis that suggests that 2D pose may be a

useful intermediate representation.

Intermediate 2D pose: Other approaches have explored

pipelines that use 2D poses as an intermediate result. Most

focus on the second-stage that lifts 2D estimates to 3D. This

is classically treated as a constrained optimization problem

who’s objective minimizes the 2D reprojection error of an

unknown 3D pose and unknown camera [37, 32, 24, 2].

The optimization problem is often subject to kinematic con-

straints [34, 29], and sometimes 3D poses are assumed

to live a in low-dimensional subspace to better condition

the optimization [37]. Such optimization-based approaches

could be sensitive to initialization and local minima, and

often require expensive constrained solvers. We use data-

driven matching, that when combined with a simple closed-

form warping algorithm, yields a fast and accurate 3D solu-

tion.

Exemplar-based: Previous work has also explored

example-based methods, dating back at least to [26]. A cen-

tral challenge is generalization to novel poses outside the

training set. [14] propose matching upper and lower bodies

individually, to allow for novel compositions at test-time.

[35] adapt exemplars to better match image measurements

with an energy minimization approach. [25] synthesize new

2D images with image-based rendering. Other methods also

warp 3D exemplars to 2D image descriptors, often based on

shape-context [1, 20] or silhouette features [5]. In our work,

we show that a modest number of exemplars (200,000),

combined with a simple closed-form algorithm for warp-

ing a 3D exemplar to exactly project to 2D pose estimates,

outperforms more complex methods.

3. Approach

In this section, we describe our method for estimating 3D

human pose given a single RGB image. We make use of a

probabilistic formulation over variables including the image

I , the 3D pose X ∈ R
N×3, and the 2D pose x ∈ R

N×2,

where N is the number of articulated joints. We write the

joint probability as:

p(X,x, I) = p(X|x, I) · p(x|I) · p(I) (1)

where the above makes no limiting assumptions by itself.

Conditional independence: Let us now assume that the

3D pose X is conditionally independent of image I given

the 2D pose x. This is equivalent to the implication that

given a 2D skeleton, the prediction of its corresponding 3D

skeleton would not be affected by 2D image measurements.

While this is not quite true (we show a counter example

in Fig. 2), it seems to be a reasonable first-order approxi-

mation. Moreover, this factorization still allows for p(x|I)
to be arbitrarily complex, which is likely needed to accu-

rately model complex interactions between 2D projections
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Figure 2. A failure case where the 3D pose is not conditionally in-

dependent of the image given the 2D pose: p(X|x, I) �= p(X|x).
We show the output of our system given the ground-truth 2D pose,

with the (incorrect) best-matching 3D exemplar on the right (vi-

sualized from a novel viewpoint, where the estimated camera is

drawn as a view frustum). Our experiments suggest that such cases

are rare, and that much of the time 3D can be inferred from 2D

projections.

and image features during occlusions. Given this condi-

tional Independence, one can write:

p(X,x, I) = p(X|x)
︸ ︷︷ ︸

NN

· p(x|I)
︸ ︷︷ ︸

CNN

·p(I) (2)

We tackle the second term with a image-based CNN that

predicts 2D keypoint heatmaps. We tackle the first term

with a non-parametric nearest-neighbor (NN) model. We

describe each term in turn below.

3.1. Image-Based 2D Pose Estimation

Given the above Independence assumption, we would

first like to predict 2D pose given image measurements. We

model the conditional of 2D pose given an image as

P (x|I) = CNN(I) (3)

where we assume CNN is a nonlinear function that returns

N 2D heatmaps (or marginal distributions over the location

of individual joints). We make use of convolutional pose

machines (CPMs) [33], which return precisely N heatmaps

for individual body joints. We normalize the heatmaps so

that they can be interpreted as marginal distributions for

each joint. CPM is a near-state-of-the-art pose estimation

system (88.5% PCKh on MPII dataset [4], quite close to

the state-of-the-art value of 90.9% [21]). Note the off-

the-shelf CPM model was trained on MPII dataset, which

is a somewhat limited dataset in that annotations are pro-

vided through manual inspection. We fine-tune this model

on the large scale Human3.6M [13] training set, which con-

tains annotations acquired by a mocap system (allowing for

larger-scale labeling).

3.2. Nonparametric 3D shape model

We model P (X|x) with a non-parametric nearest neigh-

bor model. We will follow a notational convention where

X = [X,Y, Z] and x = [x, y]. Assume that we have library

Xi Xi
*

Figure 3. On the left, we show the 3D exemplar Xi that best

matches the ground-truth 2D pose x. While the overall pose is

roughly correct, the arms and legs are bent incorrectly. By sim-

ply copying the depth values from the exemplar (and copying the

(x, y) values from the 2D pose under a weak perspective model,

as given in (6)), we can obtain a warped exemplar X∗

i that better

matches the 2D pose.

of 3D poses {Xi} paired with a particular camera projection

matrix {Mi}, such that the associated 2D poses are given by

{Mi(Xi)}. If we want to consider multiple cameras for a

single 3D pose, we add another copy of the 3D pose with a

different camera matrix to our library. We define a distribu-

tion over 3D poses based on reprojection error:

P (X = Xi|x) ∝ e−
1

σ2
||Mi(Xi)−x||2 (4)

where the MAP estimate is given by the 1-nearest neigh-

bor (1NN). We explore two extensions to the above basic

framework.

Virtual cameras: We can further reduce the squared re-

projection error by searching over small perturbations of

each camera. This involves solving a camera resectioning

problem [9], where an iterative solver can be initialized with

Mi:

M∗
i = argmin

M

||M(Xi)− x||2 (5)

In practice, we construct a shortlist of k candidates that

score well according to (4), and resort them according to

optimal camera matrix. We found that optimizing over cam-

eras produced a small but noticeable improvement in our ex-

periments. Unless otherwise specified, we choose k = 10
in our experiments.

Warped exemplars: Much previous work on exemplars

introduce methods for warping exemplars to better match

the 2D pose estimates, often formulated as an inverse kine-

matics optimization problem. We describe an extremely

lightweight method for doing so here. We first align the 3D

exemplar to the camera-coordinate system used to compute

the projection x. This is done with a 3D rigid transforma-

tion given by the camera extrinsics encoded in Mi (or M∗
i

).

In practice we use a training set {Xi} where 3D exemplars

are already aligned to their projections {xi}, implying that

extrinsics in Mi reduce to an identity matrix (which is the

case for the Human3.6M dataset [13], since 3D poses are
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specified in camera coordinates of their associated image

projections). Given this alignment, we simply replace the

(Xi, Yi) exemplar coordinates with their scaled 2D coun-

terparts (x, y) under a weak perspective camera model:

X
∗
i =

[
sx sy Zi

]
, where s =

average(Zi)

f
(6)

where f is the focal length of the camera (given by the in-

trinsics in Mi) and average(Zi) is the average depth of the

3D joints. Such weak-perspective approximations are com-

monly used to initialize algorithms for perspective (PnP)

camera calibration [18], and will be reasonable when the

depth variation of the human skeleton is small relative to

the overall distance to the camera. Our results suggest that

such closed-form solutions for 3D warping rival the accu-

racy of complex energy minimization methods (see Fig. 3).

4. Experiments

In our experiments, we test a variety of variations of our

proposed pipeline.

Qualitative results: We first present some qualitative

results. Fig. 4 shows results on challenging examples from

subject S11 of Human3.6M. We choose examples with self-

occlusions and sitting poses. To demonstrate the accuracy

of the 3D predictions, we visualize novel viewpoints. We

then apply the proposed method on Leeds Sports Pose(LSP)

dataset [15] to test cross-dataset generalization. We posit

that our pipeline will generalize across image variation (due

to the underlying robustness of our 2D pose estimation sys-

tem) but maybe limited in the 3D estimates due to the li-

brary used (from Human3.6M). Importantly, our approach

produces plausible 3D poses even when the activity class is

not included in Human3.6M. This implies that our method

can reliably estimate 3D poses in the wild!

4.1. Evaluation protocols

We use Human3.6M for quantitative evaluation and anal-

ysis. It appears that multiple train/test splits have been used

in the literature, as well as different approaches to comput-

ing mean per joint position error (MPJPE), measured in mil-

limeters. We summarize them here.

Protocol 1: In [35, 16, 25], the entire dataset was par-

titioned into six training subjects (S1, S5, S6, S7, S8, S9),

and one testing subject (S11). Evaluation is performed on

every 64th frame of S11’s video clips. In this configuration,

there are total 1.8 million 3D poses available in the training

set. MPJPE between the ground truth 3D pose and the es-

timated 3D pose is computed by first aligning poses with a

rigid transformation [16].

Protocol 2: Others [37, 30, 17] use five subjects (S1,

S5, S6, S7, S8) for training, and two subjects (S9, S11)

for testing. We follow [37]’s setup that downsamples the

videos from 50 fps to 10 fps. Here, MPJPE is evaluated

without a rigid transformation, following the original h36m

protocol: both the ground-truth and predicted 3D pose is

centered with respect to a root joint (ie. pelvis). In contrast

to Protocol 1, this evaluation can be sensitive to a single

poorly-predicted joint, particularly if it is the root [13].

To compare to published performance numbers, we use

the appropriate protocol as needed. From our own experi-

ence, we find Protocol 1 to be simpler and more intuitive,

and so focus on it for our diagnostic evaluations.

4.2. Comparison to state-of-the-art (Protocol 1)

Final system: Table 1 compare MPJPE for each activ-

ity class. Our approach clearly outperforms [35] and [25].

(”Ours” in the tables of comparison throughout the exper-

iment refers to the warped exemplar X∗ described in Sec-

tion 3.2)

Performance given ground-truth 2D: A common di-

agnostic is evaluating performance given ground-truth 2D

poses, written as gt. Table 2 shows that our simple matching

+ warping outperforms [35], who use a complex iterative al-

gorithm for matching and warping exemplars to image ev-

idence. Our diagnostics will later show that even matching

exemplars without warping outperforms prior art, indicating

the remarkable power of a simple NN baseline.

Size of trainset: Table 3 shows the MPJPE versus the

training data size. Since approaches deal with 2D and 3D

sources differently, we list both sizes. Yasin et al. [35]

project multiple 2D poses from each 3D exemplar (with

virtual cameras) to create 2D poses for matching, and Ro-

gez et al. [25] directly synthesize 2D images for training.

Our approach makes use of the default training data in Hu-

man3.6M, where each 3D pose is paired with a single 2D

projection. We max out performance with a modest pose

library of 180k 3D-2D pairs, but produce competitive accu-

racy even for 18k. The slight increase in MPJPE for larger

training sets seems to be related to noise from 2D pose es-

timation, since we observe a monotonically decrease when

ground truth 2D poses are given (Fig. 7).

4.3. Comparison to state-of-the-art (Protocol 2)

Final system: Table 4 provides the comparison to [37]

and [30] using Protocol 2. Note that in both these works,

temporal smoothness was exploited by taking a short image

sequences as input. Even though we do not use temporal

information, our system is quite close to state-of-the-art. A

qualitative comparison to [37] is also provided in Fig. 5.

Performance given ground-truth 2D: Our strong per-

formance in Fig. 5 might be attributed to better 2D pose

estimation. Therefore, we investigate the case given ground

truth 2D pose, following Zhou’s diagnostic protocol [37]:

evaluate MPJPE up to a 3D rigid body transformation in-

cluding scale, only on the first 30 seconds of the first cam-
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Images with
2D pose
Estimation

3D pose in a 
novel view

Figure 4. We show qualitative results on Human3.6M-test (top) and LSP-test (bottom). Our method produces plausible results for chal-

lenging images with self-occlusions and extreme poses, and can generalize to activities and poses not in the train set (Human3.6M-train).

era in Human3.6M. For a fair comparison, we make use the

same training set of 3D-2D training data for both methods.

The results are shown in Table 5. With a shortlist of k = 10
matches, camera resectioning (5) and exemplar warping (6)

produces a slightly lower error than [37]’s approach with-

out a 3D prior. Qualitative results are provided in Fig. 6.

Our approach produces lower 2D reprojection error, while

Zhou’s method appears to suffers from the restriction of 3D

poses to a low-dimensional subspace.

4.4. Diagnostics

We now perform an extensive set of diagnostics to reveal

the strength of our individual components, as well as upper-

bound analysis that is useful for guiding future work. For

simplicity, we restrict ourselves to Protocol 1.
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Mean Per Joint Position Error (MPJPE), in mm

Method Direction Discuss Eat Greet Phone Pose Purchase Sit SitDown

Yasin [35] 88.4 72.5 108.5 110.2 97.1 81.6 107.2 119.0 170.8

Rogez [25] - - - - - - - - -

Ours 71.63 66.60 74.74 79.09 70.05 67.56 89.30 90.74 195.62

Method Smoke Photo Wait Walk WalkDog WalkPair Avg. Median -

Yasin [35] 108.2 142.5 86.9 92.1 165.7 102.0 108.3 - -

Rogez [25] - - - - - - 88.1 - -

Ours 83.46 93.26 71.15 55.74 85.86 62.51 82.72 69.05 -
Table 1. Comparison to [35] by Protocol 1. Our results are clearly state-of-the-art. Please see text for more details.

Method Direction Discuss Eat Greet Phone Pose Purchase Sit SitDown

Yasin [35] 60.0 54.7 71.6 67.5 63.8 61.9 55.7 73.9 110.8

X
∗|gt (Ours) 53.27 46.75 58.63 61.21 55.98 58.13 48.85 55.60 73.41

Method Smoke Photo Wait Walk WalkDog WalkPair Avg. Median -

Yasin [35] 78.9 96.9 67.9 47.5 89.3 53.4 70.5 - -

Ours 60.25 76.05 62.19 35.76 61.93 51.08 57.50 51.93 -
Table 2. Comparison to [35] by Protocol 1 given 2D ground truth. Our approach is clearly state-of-the-art, indicating the effectiveness of

our simple approach to NN matching and warping. Table 7 shows that even simple NN matching produces an average accuracy of 70.93,

rivaling prior art.

Method 2D source 3D source Avg. MPJPE

Yasin [35] 64,000k 380k 108.3

Rogez [25] 207k 190k 88.1

Ours 18k 18k 85.94

Ours 180k 180k 82.37

Ours 1,800k 1,800k 82.72
Table 3. Comparison to [35] and [25] under different amounts of

training data, under Protocol 1. Our approach yields the best per-

formance at the source size of 180k.

Effect of warping: We evaluate the benefits of warping

(X∗ vs X) in Table 6. It is clear that warping exemplars X∗

is a simple and effective approach to reducing error. Quite

surprisingly, even without warping, simply matching to a

set of 3D exemplar projections outperforms the state-of-the-

art (see Table 1 & Table 6)! To analyze an upper-bound for

our warping approach, we combine 2D estimates (x, y) with

depth values Z given by the ground-truth 3D pose ZGT .

In the last row, the performance of combining ground truth

depth ZGT with x is listed as a reference baseline. This

suggests that one can still dramatically lower error by 2X

even when continuing to use the output of current 2D pose

estimation systems.

Warping given ground-truth 2D: Next, we compute

the error for the case that ground truth 2D pose is given, as

shown in Table 7. We write |gt to emphasize that methods

now have access to 2D ground-truth pose estimates. We first

note that matching unwarped examples rivals the accuracy

of state-of-the-art (see Table 2 & Table 7). This again sug-

gests the remarkable power a simple NN baseline based on

matching 2D projections. That said, warping still improves

results by a considerable margin. A qualitative example is

provided in Fig. 3.

Warping given optimal exemplar match: It is natural

to ask what is the upper-bound on performance given our

training set of (3D,2D) pairs. We first compute the optimal

exemplar that minimizes 3D reprojection error (up to a rigid

body transformation) to the true 3D test pose. We write the

index of this best match from the training set as i = GT .

We would like to see the effect of warping given this opti-

mal match. We analyze this combination in Table 8. This

suggests that, in principle, error can still be significantly re-

duced (by almost 2X) even given our fixed library of 3D

poses. However, it is not clear that this is obtainable given

our pipeline because it may require image evidence to se-

lect this optimal 3D exemplar (violating the conditional in-

dependence assumption from (2)).

Effect of trainset size: An important aspect to investi-

gate is the influence of database size. Here we investigate

the error versus the number of exemplars in the database.

Fig. 7 evaluates performance versus a random fraction of

our overall database. As expected, more data results in

lower error, though diminishing results are observed (even

in log scale). This is reasonable since training data is ex-

tracted from videos captured at 50 fps, implying that cor-

relations over frames might limit the benefit of additional

frames. We see that convergence is also effected by the

quality of the 2D pose estimates: error given ground-truth

2D poses plateaus at 5 × 105, while 2D pose estimates

plateau even sooner at 2 × 105. We posit that a more

restricted 3D pose prior (implicitly enforced by a small
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Method Direction Discuss Eat Greet Phone Pose Purchase Sit SitDown

Zhou [37] 87.36 109.31 87.05 103.16 116.18 106.88 99.78 124.52 199.23

Tekin [30] 102.41 147.72 88.83 125.38 118.02 112.38 129.17 138.89 224.9

Ours 89.87 97.57 89.98 107.87 107.31 93.56 136.09 133.14 240.12

Method Smoke Photo Wait Walk WalkDog WalkPair Avg. Median -

Zhou [37] 107.42 139.46 118.09 79.39 114.23 97.70 113.01 - -

Tekin [30] 118.42 182.73 138.75 55.07 126.29 65.76 124.97 - -

Ours 106.65 139.17 106.21 87.03 114.05 90.55 114.18 93.05 -
Table 4. Comparison to [37] and [30] by Protocol 2. Our results are close to state-of-the-art.

Zhou’s results Our results

Figure 5. Qualitative comparison of Zhou [37] with our results.

Our results are generally more accurate, but both methods strug-

gle with left/right limb ambiguities (e.g., the second row). While

much of our improved performance comes from better 2D pose es-

timation, we still compare favorably when using the same ground-

truth 2D pose estimates (Fig. 6 and Table 5).

randomly-sampled 3D library) helps given inaccurate 2D

pose estimates. But in either case, exemplar-based 3D

matching is effective even for modestly-size training sets

(200,000). This analysis appears to suggest that better 2D

pose estimates are needed to take advantage of “bigger” 3D

datasets.

Since the joint prediction error is not a normal distribu-

tion, we also plot median error in Fig. 8. We see that the

median is generally lower than mean error, and the differ-

ence between the two becomes smaller when ground truth

2D or 3D is given. This may suggest that errors are often

Zhou’s results Our resultsp

Figure 6. Qualitative comparison of Zhou [37] with our results,

given access to the same ground-truth 2D pose. While both 3D

estimates are plausible, Zhou’s tends to produce higher 2D repro-

jection error since 3D poses are restricted to lie in a subspace (e.g.,

the incorrectly-articulated head).

Method Avg. MPJPE

Ramakrishna [24]|gt, multi-frame 89.50

Dai [6]|gt, multi-frame 72.98

Zhou [37]|gt, single-frame 50.04

Zhou [37]|gt, multi-frame 49.64

X
∗|gt, k = 1, single-frame 51.06

X
∗|gt, k = 10, single-frame 49.55

Table 5. 3D pose estimation accuracy given ground-truth 2D poses,

under Protocol 2. Here, k is the number of candidate exemplar ex-

tracted in the shortlist that are subsequently processed by search-

ing over virtual cameras. Our single-frame results with k = 10
outperforms all prior art, including those which make use of multi-

frame temporal cues.

Prediction Avg. Median

X|x 85.52 75.04

X
∗|x 82.72 69.05

[sx ZGT ] 43.86 30.19

Table 6. Given the predicted 2D pose x, warped exemplars X∗ out-

perform unwarped exemplars X by a reasonable margin. We also

compute an upper-bound for warped exemplars that uses (x, y) es-

timates from the predicted pose and z estimates from the ground-

truth 3D pose. The dramatic error reduction suggests that signif-

icant further improvement is possible by improving upon our 3D

matching. Importantly, this improvement is realizable even given

existing 2D pose estimation systems.

due to a single incorrect joint prediction, which would sig-

nificantly impact average error but not the median.

Cross-dataset evaluation: To further examine general-
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Prediction Avg. Median

X|gt 70.93 65.35

X
∗|gt 57.50 51.93

Table 7. We compare matching to exemplars X and warped exem-

plars X∗ given ground-truth 2D pose estimates. This suggests that

our simple closed-form warping approach would be even more ef-

fective with better 2D pose estimates.

Prediction Avg. Median

X|GT 60.11 55.36

X
∗|GT 37.32 33.91

Table 8. We analyze performance given the optimal matching 3D

training exemplar ”GT” (in terms of 3D error wrt the ground-truth

test 3D pose). Simply reporting this optimal match produces an

error of 60mm, around 10mm lower than the actual match found

given an ideal 2D pose-estimation system (Table 7). Warping this

exemplar X∗|GT significantly improves accuracy. This suggests

that our overall 3D matching stage could still be significantly im-

proved even given the current size of the library of 3D poses.

Figure 7. Mean MPJPE by Protocol 1 versus size of the 3D pose li-

brary. We explore diagnostic variants using previously-introduced

notation. In general, MPJPE decreases with a larger library. The

error saturates at 2 × 105 when using CNN-predicted 2D poses

“|x”, but saturates later at 5 × 105when using ground-truth 2D

poses “|gt”. The results suggest that with better 2D pose esti-

mates, our exemplar matching would benefit from larger training

data.

ization of exemplar-matching, Table 9 quantitatively evalu-

ates accuracy on HumanEva-I [28] given a model trained on

Human3.6M. These results suggest that the 3D exemplars

from HumanEva do generalize, and that generalization is

significantly improved through our warping procedure.

5. Conclusion

We present an simple approach to 3D human pose esti-

mation by performing 2D pose estimation, followed by 3D

exemplar matching. The simplicity and efficiency of our

method, combined with its state-of-the-art performance on

both benchmark datasets and unconstrained “in-the-wild”

Figure 8. Median MPJPE by Protocol 1 versus database size. Me-

dian error is lower than mean error in Fig. 7, suggesting that a few

joints are responsible for a large mean error. Other trends follow

the mean error curves from Fig. 7.

Walk Jog Throw Gestures Box Avg.

Catch

Warped 64.46 69.88 59.99 67.89 79.22 68.29

Unwarped 90.17 95.27 82.74 88.82 103.85 92.17

Table 9. We evaluate a Human3.6M-trained model on HumanEva

(under Protocol 1). To isolate the impact of 3D matching, we use

ground-truth 2D keypoints. As a point of comparison, average er-

ror on Human3.6M test is 70.93 (unwarped) and 57.5 (warped)

(Table 9). These results suggest that 3D exemplars do generalize

across datasets, and importantly, warping significantly increases

the amount of generalization. Note that the two datasets use dif-

ferent definitions of skeletons, implying that learning a mapping

should reduce error even further.

imagery, suggests that such simple baselines should be used

for future benchmarking in 3D pose estimation. A notable

advantage of intermediate 2D representations is modular

training – 2D datasets (which are typically larger and more

diverse because of ease of annotation) can be used to train

the initial-image processing module, while 3D motion cap-

ture data can be used to train the subsequent 3D-reasoning

module. This allows our system to take immediate advan-

tage of advances in 2D pose estimation, such as multi-body

analysis [7]. Our results also suggest that 3D inference is,

in some sense, “all about 2D”, at least in the case of articu-

lated objects. Indeed, one of our surprising findings was the

high performance of 2D pose estimation systems even un-

der occlusions, suggesting that 2D estimates can in fact be

reliably estimated without directly reasoning about depth.

Given such reliable 2D estimates, we show that one can

efficiently impute depth through simple memorization and

warping of a 3D pose library.
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