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Abstract: Hexagonal arrays of micron sized silica beads have been trapped 
in three-dimensions within an optical lattice formed by the interference of 
multiple plane-waves. The optical lattice design with sharply peaked 
intensity gradients produces a stronger trapping force than the traditionally 
sinusoidal intensity distributions of other interferometric systems.  The 
plane waves were generated using a single, phase-only, spatial light 
modulator (SLM), sited near a Talbot image plane of the traps.  Compared 
to conventional optical tweezers, where the traps are formed in the Fourier-
plane of the SLM, this approach may offer an advantage in the creation of 
large periodic array structures.  This method of pattern formation may also 
be applicable to trapping arrays of atoms. 
© 2005 Optical Society of America 
OCIS Codes: (020.7010) Trapping, (170.4520) Optical confinement and manipulation, 
(090.1760) Computer holography, (090.2880) Holographic interferometry; (260.3160) 
Interference, (230.6120) Spatial light modulators. 
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1. Introduction 

Optical tweezers were first demonstrated by Ashkin nearly 20 years ago [1].  Most tweezers 
systems reported to date rely on the gradient force produced by a tightly focused laser beam, 
acting on a dielectric particle, to create a three-dimensional (3D) trap near the beam focus.  
Other successful implementations include trapping particles in the local maxima of 
interference patterns [2-4] or in Laguerre Gaussian beams [5-7].  To trap large numbers of 
particles, an ideal optical potential is a periodic array.  Such patterns can be generated by the 
interference of multiple plane-waves.  In this paper, we use a collection of eighteen collimated 
beams to create the interference pattern, which is periodic both laterally and axially, enabling 
3D trapping of multiple particles. In addition, by including higher spatial harmonics we create 
higher intensity gradients as well as transversely and axially localized traps. Therefore, the 
large number of planes waves means that we can form optical traps that are both brighter and 
narrower than those which would result from a sinusoidal fringe pattern. 

In recent years, there has been a resurgence of interest in optical trapping because 
computer addressable spatial light modulators (SLMs) make possible the creation of multiple 
traps that can be steered individually [8-11].  The addressability of these SLMs is in contrast 
to the earlier work using static diffractive optics [12] or axicons which could only produce 
fixed patterns of traps.  The ability to introduce focal power with the SLM also means that the 
traps can be manipulated axially allowing controlled 3D positioning within the sample cell 
volume, typically over a range of several 10’s microns [13].  Complicated 3D structures can 
be assembled in this way and manipulated [14].  In principle diffractive optical elements can 
modulate either the phase or intensity of the light to generate 3D fields [15], but for 
applications such as tweezers, where the overall optical efficiency is important, it is standard 
to use SLMs as phase modulators, typically diffracting over 40% of the incident light into the 
optical traps.  
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Most holographic optical tweezers set-ups place the trapping sample in the Fourier-plane 
of the SLM in such a way that a linear phase introduced at the SLM results in a lateral 
displacement of the optical trap.  This Fourier-relationship means that calculation of the 
holographic pattern transferred to the SLM is computationally intensive; therefore arbitrary 
3D distributions typically require a few milliseconds of calculation per trap. 

Recently, there has been success in using both an image plane and a Fresnel plane 
geometry.  If the SLM is placed in the image plane of the traps and used in phase modulation 
mode with a phase-contrast filter in the Fourier plane, a small -phase spot written to the SLM 
can specify a trap, producing a bright spot in the trapping plane [16].  Clearly, this phase-
contrast approach requires only limited computation.  Axial positioning is more problematic, 
however, and relies on the radiation pressure of counter-propagating beams [17]. Moreover, 
this technique uses low numerical aperture optics with typically lower lateral resolution.  

Successful optical tweezers systems have also been implemented by trapping particles in 
the Fresnel region of a SLM. Placing the sample plane slightly displaced from the Fourier 
plane of the SLM provides some of the advantages of both the Fourier plane approach and the 
phase contrast image approach [18].  In our experimental set-up we also place the sample in a 
Fresnel region, but instead of a small detuning from the Fourier plane, we use a small 
detuning from the image plane. Moreover, this setup is also suitable for array trapping in three 
dimensions. 

As an alternative to using a tightly focused laser beam to form a single localized trap, 
tweezers have also been implemented based on interference patterns formed between two or 
more beams [2-4].  This strategy has been applied to form large arrays of two-dimensional 
traps, but to our knowledge has not been extended to full 3D trapping.  Controlling the 
relative phase of the beams allows the interference patterns to be translated, or in the case of 
helically phased beams, rotated [19].  The interferometric approach becomes more interesting 
for the creation of large arrays, where the aperture of the focusing lens does not fundamentally 
limit the field of view of the trapping field.  Another advantage of interference fields over 
focused beams is that the intensity modulation in the axial direction can be total, which might 
be critical for the trapping of smaller particles (<500 nm) or atoms [20].  Most recently, 
multiple optical beams have been generated and combined using discrete optical components 
to create extended optical lattices for particle sorting [21], which may have an advantage over 
earlier sorting schemes using the Fourier configuration [22]. 

2. Optical trap design 
To analyze optical lattices, we look at their plane wave components in k -space and then 
Fourier transform to obtain the optical fields in real space.  Within k -space, every 
monochromatic plane wave component lies on the surface of a sphere and can be described by 
a radial and axial wave vector, such that, 

0k = r
2k + z

2k                                                             (1) 

where kr  is the radial and kz  is the axial wave vector. 

For beams falling within the paraxial limit the value of kz is hence given by 

0
2

0 2kkkk rz −≅                                                      (2) 

For a trapped array of objects, the desired optical field is a 3D distribution of local 
intensity maxima throughout the sample volume.  We chose to create a hexagonal lattice,  
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Fig. 1. Illustration of four different plane wave configurations that form hexagonal lattice 
structures. Each configuration is described by its k-space representation  (left column), by a 
transverse cut (center column) and an axial cut (right column) of the intensity distribution each 
taken through a lattice vector direction.  (a) The simplest configuration of three waves in k-
space, which results in a sinusoidal transverse intensity pattern and a uniform axial profile.  (b) 
A 6-wave configuration giving sharper peaks with small sidelobes transversely and similarly a 
uniform axial profile.  (c) A 12-wave configuration formed by adding the second k-space 
harmonic of the fundamental hexagon, which increases the peak intensity of the traps but the 
does not eliminate the sidelobes.  Having a second value of kz results in a sinusoidal modulation 
in the axial intensity.  (d) Our experimental configuration with 18 waves containing three 
values of kz, giving the sharpest peaks and virtually eliminating the transverse sidelobes.  The 
three values of kz, make the Talbot image revival more complicated and give a larger axial 
periodicity.  All intensity plots have been scaled so that there is equal power in each 
configuration.  The transverse periodicity in (a), (b), (c), and (d) is 8 ; the axial periodicity in 
(c) is 32 , while the axial periodicity in (d) is 94 . 
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which in its most simple form requires three interfering waves whose spatial frequency 
components lie on the vertices of an equilateral triangle.  The resulting interference pattern 
has a sinusoidal modulation of its intensity along the lattice vector directions.  Incorporating 
additional beams can make these maxima better defined but more importantly, can introduce 
an axial intensity modulation such that these maxima become localized in 3D, forming a 3D 
rather than a 2D trapping potential. 

Figure 1 details the transverse and axial intensity sections of the interference pattern for 
four different plane-wave configurations, all of which produce hexagonal lattices.  In all cases 
the sections were chosen so that they passed through the points of peak intensity.  The 
intensity distributions in Fig. 1 are calculated using infinite extent plane waves, which give an 
approximation to the optical field in the regions close to the optical axis and the image plane, 
and were shown to be consistent with the experimental results. Two-dimensional arrays of 
particles have been formed in configurations similar to that shown in Fig 1(a) [2], but this 
geometry gives no axial intensity modulation, therefore 3D trapping is not possible.  By 
including additional waves in the interference pattern, the sharpness and peak values of each 
maximum are increased, as shown in Fig. 1.  The axial interference pattern can also be 
modulated to form a sinusoidal pattern [Fig. 1(c)], or a sharp-peaked quasi-periodic pattern 
[Fig. 1(d)].  For the experiment described in this paper, we used the configuration of Fig. 1(d) 
because it has the sharpest maxima both transversely (with minimal sidelobes) and axially.  
The six beams of the inner hexagon have the same magnitude of radial wavevector, kr (1) .  
The six outer beams at the corners of the outer hexagon have radial wavevectors kr (3) = 2kr (1), 
whilst the six beams at the mid points of the outer hexagon have radial wavevectors 
kr (2) = 3kr (1). 

Our hexagonal array of traps is effectively an image with lateral periodicity.  Such images 
are known to reform in the near-field, at periodic distances of propagation; known as the 
Talbot effect [23-26].  This effect is best known in relation to periodic gratings where, in the 
near-field, the image of the grating in the x-y plane is repeated at periodic intervals of z.  As a 
special implementation of the Talbot effect, our interference pattern exhibits similar behavior. 

The Talbot effect applies to any image, or light distribution, where a decomposition in 
terms of plane waves gives values of kz  such that ∆kz  between the various beams are rational 
fractions of each other [26].  This being the case, the image in any one plane is repeated in 
subsequent planes for which all the plane wave components are in phase again.  In our 
eighteen-wave configuration we have three values of kr with the ratio of 1: 3 :2 giving, from 
equation 2, two values of ∆kz , with respect to kr (1) , in the ratio of 2:3.  Over the Talbot 
distance, this means that the relative phase change between kr (1)  and kr (2)  is 4 π  and 
between kr (1)  and kr (3)  is 6 π .    The Talbot distance, zTalbot , is hence given by 

 

zTalbot = 2π
∆kz (1,3) − ∆kz (1,2)

                                                   (3) 

Most relevant to our application is that there is not a need to start with all the beams in 
phase.  If the relative phase of the beams is set appropriately, i.e. in a ratio of 2:3, then at a 
particular propagation distance, and periodically with zTalbot  thereafter, the beams will be in–
phase and constructively interfere to give the hexagonal lattice.  Figure 2 shows the optical 
trapping fields obtained experimentally, which over the extent of a Talbot distance centered 
on the image plane, show good agreement with the plane wave model.   
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Fig. 2. The interference patterns produced when (a) all three sets of beams are in phase (∆Φ=0) 
and the image at the half Talbot distance is the phase contrast image, and (b) when the phase is 
set to give the half Talbot image.  In the later instance, the hexagonal trapping pattern is 
recovered after propagation through a fraction of the Talbot distance. 

 

3. Hologram design 
In this work we use a single SLM to create multiple, angularly displaced, plane-waves whose 
relative intensity and phase can be adjusted arbitrarily.  By positioning the SLM near the 
image-plane of the traps, the beams interfere in the trapping plane to create the optical lattice.  
Even though implemented on a phase-only SLM, the algorithm we apply to calculate the 
hologram gives both intensity and phase control of the diffracted beams.  It also produces high 
mode purity and reduced intensity in unwanted diffraction-orders.  By deliberately 
programming the SLM to create the phase-contrast Talbot image of the array and defocusing 
the sample plane by a fractional-Talbot distance to recover the hexagonal lattice, we find that 
we can significantly increase the optical power in the trapping plane. 

In all but a few special cases, when a phase-only SLM is programmed to produce a 
number of optical beams, the additional beams located at intermediate and related positions 
corrupt the desired pattern of optical traps in the Fourier-plane.  When used to create multiple-
beam interference patterns, these additional beams result in reduced contrast and significantly 
degrade the quality of the Talbot image revival.  Recently, an algorithm that gives control 
over both the phase and intensity of the diffracted beams even when using a phase-only SLM 
has been reported [27].  After designing the diffractive optic (hologram) so that the first-order 
diffracted beam has the desired phase structure, the intensity at any point can be attenuated by 
adjusting the efficiency of the blazing in the corresponding region of the hologram. 

Taking the plane of the SLM as the plane of interest, the initial stage in hologram design 
is to specify the desired weights, directions, and relative phases of the interfering beams, and 
calculate the phase distribution of the desired superposition, Φ(x, y)superposition .  This phase 
distribution is then added to the phase distribution of a blazed diffraction grating 
Φ(x,Λ)grating , of period Λ .  The first-order diffracted beam is then angularly separated from 
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the other orders, which are subsequently blocked using a spatial filter.  The intensity 
distribution of the desired superposition is also calculated, I (x, y)superposition , and normalized 
so the maximum intensity is unity.  This intensity distribution, I (x, y)superposition , is applied as 
a multiplicative mask to the phase distribution of the hologram, acting as a selective beam 
attenuator imposing the necessary intensity distribution on the first order diffracted energy.  
Thus the phase pattern applied to the SLM to create the desired hologram is approximated by 
[27]. 

Φ(x, y)holo = π + Φ(x, y) + Φ(x,Λ)( )mod 2π − π( )× sinc2 1− I (x, y)( )π( )                  (4) 
Unfortunately, the overall effect of the mask multiplication (sinc2 term in Eq. 4) is that 

optical energy is diverted into the zero order and removed by a spatial filter, significantly 
reducing the optical efficiency of the hologram.  The addition of further beams into the 
superposition usually increases the range of intensity within the interference pattern, such that 
the subsequent normalization and attenuation process further reduce the efficiency.  In 
applications such as optical tweezers where the overall optical efficiency limits the number of 
traps that can be created using a laser of fixed power, diffraction efficiency is critical.  

 

 
Fig. 3. (a) Intensity distribution of the interfering beams in the image plane of the SLM where 
all the 18 beams are in phase.  (b) A similar distribution when the phase of all 18 beams are set 
to be midway between Talbot images.  It is this image (b), with the addition of a linear phase, 
that forms the multiplicative mask upon which the hologram design is derived. 

 
In our application we can vary the relative phase of three sets of beams, such that the total 

energy diffracted into the first order is maximized.  This maximization occurs for the relative 
phasing which results in the intensity distribution being evenly distributed across the field (i.e. 
not the hexagonal lattice of traps).  This typically occurs when the relative phase is set to give 
an inverse image.  Irrespective of the relative phase of the hexagons, as discussed above, the 
hexagonal lattice is reformed in a near-by plane.  The eighteen-plane wave geometry 
discussed above has a near uniform dark background, which when inverted produces a near 
uniform bright background resulting in an improved diffraction efficiency (see Fig. 3).  
However, despite taking advantage of this additional degree of freedom, the resulting optical 
efficiency of the arrangement is approximately half of that which can be achieved by placing 
the SLM in the Fourier-plane.  The advantage of this algorithm over those based on Fourier-
plane SLM's is that it is non-iterative, i.e. each pixel value is derived directly from equation 
(4) without need for repeated Fourier-transformation or other sophisticated search techniques.  
Irrespective of the number of traps produced, the calculation time for such a hologram at a 
resolution of 512x512 is only a few milliseconds.      
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4. Experimental configuration 
The optical trapping setup was built around a 1.3NA, x100, Zeiss Plan Neofluar oil immersion 
microscope objective in an inverted configuration as shown in Fig. 4. The sample cell was 
mounted on a piezoelectric stage that allowed 100 µm of travel in the x, y and z.  Control of 
the piezoelectric stage  means that once trapped, the array of particles can be moved both 
laterally and axially with respect to the background.   The trapping laser was a frequency 
doubled Nd:YAG with a maximum output power of 1.5W at 532 nm.  The laser output was 
expanded to slightly overfill the active area of the Holoeye LC-R 2500 SLM.  A spatial filter, 
positioned at an intermediate telescope, removed any unwanted diffraction orders.  Taking 
into account the diffraction efficiency of the SLM, the use of a phase hologram algorithm, and 
the losses in the optical system, the laser power in the trapping plane was of the order of 150 
mW, distributed among all the traps. The diffraction efficiency of the SLM with the designed 
hologram was about 40%.  The NA of the outer beams was approximately 0.25, giving a 
hexagonal lattice with a period along the direct lattice vector of approximately 4 microns.  
Setting the phase difference between kr (1)  and kr (2)  at 2.1 radians and between kr (1)  and 
kr (3)  at 3.2 radians means that the trapping plane needs to be defocused by approximately 
7µm to recover the hexagonal trapping lattice. 
 

 
Figure 4: Schematic of the optical tweezers 4f setup. The lens L1, L2, L3 and L4 have focal 
lengths of 100mm, 160mm 140mm and 80mm respectively.  

 
5. Results 
We used the sharply peaked interference fields described in Sec. 2 to trap collections of 
micron-sized particles in planar triangular lattice configurations and later used them to 
translate the array patterns in 3D.  Figure 5 shows three different patterns trapped in the 
hexagonal array. The trapping lattice has approximately 25 trap locations where all 18 of the 
plane waves overlap in the field of view of the microscope objective.  Because the 
experimental set-up gives access to the image plane at an intermediate distance, we can 
selectively load the beads into the lattice by exposing only the necessary traps.   
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Fig. 5. Multiple patterns of 2 µm diameter silica spheres trapped in the hexagonal interference 
pattern.  (a) A 9-sphere array, (b) A 12-sphere arrow pattern array, and (c) a 19-sphere 
hexagonal array. 

Once the beads have been loaded, the crystalline structure is relatively robust owing to 
the 3D intensity gradient of each trap.  Figure 6 shows the transportation of an array of 15 
trapped beads where the sample cell is translated in all three Cartesian directions and the 
crystalline structure stays at the center of the field of view.  Because of the axial intensity 
gradient, the structure can be lifted up and over other non-trapped beads. 
 

 
Fig. 6. A square array structure consisting of 15 2 µm diameter silica spheres trapped in a 
hexagonal interference pattern. (a) The structure is lifted axially by 8µm. (b) Structure is 
moved to the left by 46 µm. (c) Structure then moved in the positive y direction by a total of 
25µm, (d)-(e). Array was then moved right by a total of 52 µm.  (f) Structure then moved in the 
negative y direction by 27 µm,(g), before being lowered by 8 µm back down to its original 
position (h). 
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6. Conclusions 
By combining multiple plane-waves, and utilizing the phase contrast Talbot image, we have 
demonstrated that it is possible to obtain 3D trapping of particles in interferometric optical 
tweezers without the need for counter propagating beams.  By appropriately choosing the 
hologram algorithm, many interfering beams can be produced using a single SLM without 
unduly compromising the overall optical efficiency. 

Within our optical tweezers application, the obscuration of the beams by the trapped 
micron-sized objects means that the Talbot effect in subsequent planes is destroyed and 
multiple planes of objects cannot be trapped in this way.  However, for objects that perturb the 
transmitted light by only a small amount, e.g. atoms, this is not the case. The same 
experimental setup of a single SLM could be applied to generate a 3D lattice where the 
individual planes are simply separated by the Talbot image revival distance.   

Compared to conventional optical tweezers, where the traps are formed in the Fourier-
plane of the SLM, this approach may offer an advantage in the creation of large periodic array 
structures. 
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