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Abs t r ac t .  This paper presents a study about the 3D layout of some 
particular graphs. These graphs are finite teachability graphs of com- 
municating processes. Some interesting semantical information which is 
present in the graph, such as concurrency, non-determinism, and mem- 
bership of actions to processes are explicitly used in the layout. We start 
with the study of deterministic processes and give a conical representa- 
tion which satisfies our requirements. Then we extrapolate our layout for 
non-deterministic processes. 

1 I n t r o d u c t i o n  

As graphs are used in most  areas of computer  science, one is often interested 
in viewing these graphs on a screen or a sheet of paper. This has led to a 
great amount  of work (see for example [DBET] for a bibliography on the subject 
and [DBEdF*93]). Algorithms for drawing graphs often use general heuristics 
(for example minimization of the number  of edge crossings). There is also some 
drawings which use the semantical information contained in part icular  graphs. 
This is the case for hierarchical drawing of some acyclic graphs [STTS1]. 

In this paper we study the drawing of reachability graphs. These are rooted 
labeled graphs representing the whole behavior of distributed programs.  A vertex 
represents a reachable global state of the program and a path  from the root is 
labeled by a possible sequence of actions. A reachability graph carries some 
semantical information about  the concurrency and non-determinism of pairs of 
actions. Viewing this information on a graphical representation is impor tan t  
to understand the behavior of the program. Some practical requirements have 
guided our choices for the representation. We want to draw the graph on-line 
i.e. while it is constructed and without affecting the already drawn part .  When 
a new global state is constructed, its location in the layout depends only on 
locations of already constructed states. We also want to generate coordinates in 
3 dimensions, as existing 3D tools allow to manipulate  the graphs using rotations, 
projections and zooming. Finally, we want to separate states i.e. for two different 
states, we want to generate different 3D coordinates. Of course we are limited 
by the number of points on a screen. But if states have different coordinates in 
IR 3, using a zooming facility and rotations, we can distinguish them in 2D. 
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To our knowledge, there was no algorithm satisfying our requirements. There 
already exists visualization tools for the analysis of distributed program, but they 
focus on the exchange of messages in distributed programs or draw reachability 
graphs using general graph drawing algorithms. 

The paper  starts with the definition of a model of communicat ing processes 
and their reachability graphs. We distinguish two sub-classes of systems of com- 
municating processes, deterministic and deterministic acyclic systems, corre- 
sponding to real applications which are shortly explained and motivated.  We 
propose a first representation for deterministic acyclic systems which is straight- 
forwardly extended to deterministic systems. We then explain how we have 
adapted the representation to general reachability graphs. 

1.1 R e a e h a b i l i t y  G r a p h s  

Our representation can be applied to several known models of communicat ing 
processes, but for explanatory reasons we will focus on the model of finite state 
machines communicat ing through FIFO channels (CFSM for short). Though it 
is a simple model, it serves as a basis for several specification languages like 
Estelle [ISO89] and SDL [CCI87]. 

A CFSM system is a finite set {P1 , . . . ,  Pn} of processes. To each pair (Pi, Pj) 
is associated a FIFO channel fi,j and a finite set Mi,j of messages that  Pi can 
send to Pj. Each process Pi is modeled by an au tomaton  < Qi,Ai,T~, q0, > 
where Qi is a finite set of ni states, q0, E Q~ is the initial state, Ai is a finite set 
of actions, T~ C Qi • Ai x Qi is the set of transitions. An action ai is either an 
internal action (r) ,  a sending - m  of a message m E Mi,j into fl,j or a reception 
+ m  of a message rn E Mj,i from fj,i. 

The semantics that  we consider is interleaving: if several actions of distinct 
processes are locally fireable, all possible interleavings must be considered as 
possible global behaviors. Moreover, we must  also consider the non deterministic 
choice between local actions. This allows to consider the whole behavior of the 
system as a labeled transition system S = <  Q, A, T, So > where: 

- Q = Q1 • . . .  x Qi • Mi,2 • . . .  x Mn,n-1. A global state S E Q is com- 
posed of an n-uple of local states E(S)  = <  E I ( S ) , . . . , E , ~ ( S )  > and a 
(n 2 - n)-tuple C(S)  = <  Cl ,2 (S) , . . .  CI,,~(S), . . .  C,~,,_I(S) > of FIFO chan- 
nels contents. So = <  q0 , , . . . ,  q0N, 0 , . . . 0  > is the initial global state, 

- A = A1U. . .WAN: an action of the system is an action of one of the processes, 
- T C Q • A • Q is the transition relation. Let S and S I be two global states 

and ai E A~ be an action of Pi. The triple t = (S, hi, S') is in T if and only 
if (Ei(S) ,  hi, EI(S ' ) )  6 Ti and 

�9 a~ = - r n  E Ai (output of m from Pi to Pj through fi ,j) and 
vk  r i, E,:(s ' )  = Ek(S) ,  = C AS).m, 

and V(k, l) # ( i , j ) ,  Ck3(S')  = Ck,t(S) 
�9 a = + m  E Ai (input of m in Pi from fj,i) and 

vk  # i, = Ek(S) ,  1) = Cj, (S) 
and V(k, l) # (j, i), Ck3(S')  = Ck3(S) 

�9 if a = ri E Ai (internal action in Pi) and 
Vk # i, Ek(S ' )  = Ek(S)  and C(S)  = C(S ' )  



27 

If  (S, ai, S ~) is in T we say that  ai is fireable in S and leads to S ~ and write 
S a S~. Let S and S ~ in Q and a l , . . . ,  an a sequence of actions in A, we will 

~l 1 . . . a  n 

write S )* S ~ and say that  S ~ is reachable from S if there exists some states 
$1 = S ,S~, . . .S ,~ ,Sn+a = S' such that  Vk E { 1 . . . n } ,  Sk a k  Sk+l. A state is 
reachable if it is reachable from So. The whole behavior of a transition system 
S can be described as a directed (possibly infinite) labeled tree. The root is 
labeled with the initial state So, vertices are labeled with reachable states, and 
edges are labeled with fireable actions. The teachability graph is obtained from 
this tree by merging vertices labeled with identical states. This graph is possibly 
infinite as FIFO channels are unbounded. But we will restrict our s tudy to finite 
reachability graphs by bounding channel contents. 

2 T h e  D e t e r m i n i s t i c  C a s e  

We say that  a process Pi is deterministic if for each state qi E Qi there is at most  
one transition (qi, ai, q~). There is no local choices between actions. The system is 
deterministic if all processes are deterministic. In this case, the transition system 
has the following property: 
D i a m o n d  p r o p e r t y :  I f  ai and aj are two different actions fireable in S and 

S -% S1, S a_~ $2, then ai is fireable in $2 and aj is fireable in $1 and both lead 
to the same state S I. 
Proofs are given in the full paper [J J94]. The diamond property can then be 
extended to sequences of actions: 
G e n e r a l i z e d  d i a m o n d  p r o p e r t y :  I f  u and v are two different sequences of 

actions fireable zn S and S --+* S1, S ---** $2, then v \ u is fireable in $1 and u \ v 
is fireable zn ,~'2 and both lead to the same state ,_~. 
The sequence u \ v zs obtazned from u by removing the actions of the greatest 
subsequenee of v whwh is also a subsequenee of u. 

2.1 R e p r e s e n t a t i o n  in  n D i m e n s i o n s  f o r  A c y c l i c  P r o c e s s e s  

Here we consider systems of acyclic communicat ing finite state a u t o m a t a  with 
no local choices. We find such systems in the analysis of finite execution traces of 
distributed programs.  An observer process collects events t ime-s tamped with a 
logical clock and reconstruct the causal ordering of events. The set of total  order- 
ings compatible with the observed causal ordering is represented by the lattice 
of consistent cuts which is distributive (see [D JR93, J J JR94] for more details). 
The observed behavior of each process can be seen as an acyclic au tomaton  with 
no choice and the lattice as the teachability graph. 

I f  processes are acyclic, the teachability graph is also acyclic and we show 
in this paragraph that  it can be embedded into an n dimensional grid: vertices 
have integer coordinates and edges joining those vertices are parallel to the axis. 

L e m m a  2.1 Let u and v be two sequences fircable zn So and leading to states S 
and X'. Then S = S' r  Vi [ 1 . . . h i ,  Ipro/ (u)l = Iproi (v)l, where proi (u) 
is the projection of u on A, and Iproji(u)l its length. 
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The proof comes from the generalized diamond property and the fact that 
p r o j i ( u )  = p r o j i ( v )  r Iproj~(u)l = Iproj i (u) l .  

Let (u-~,. . . ,  u---~) be an orthonormal basis of IR '~. For each i E { 1 , . . . ,  n}, 

we assign the vector ~ to process Pi. Let S be a state reachable from So by 
the sequence u and f ( S ) =  S'~=llproj~(u)lu-7. By lemma 2.1, f is an injective 
mapping from the set of reachable states to IN n. If S ~ is reachable from S by 
the firing of an action a~ of process P~, then f ( S ' )  = f ( S )  + -C~. Thus the edge 

corresponding to the firing of action ai is parallel to the ~-~/. 

2.2 3D Layout for Acyclic Processes  

If n > 3 we must find a mapping from IN n to lR 3 which transforms the represen- 
tation in n dimensions to a 3D representation. In addition to the on-line facility, 
the separability of states and the fact that  we draw in 3 dimensions, we would 
like that the representation satisfied some constraints: 

1. layer by layer construction: a state can be reachable by several sequences 
of actions (by commutation of independent actions) with same length. This 
gives a parti t ion of states according to the length of the sequences from the 
root, easily obtained by a breadth first traversal. We will put all states at 
distance k from the root in the plane of equation z = k in IR 3. 

2. assignment of one direction per process: this allows to recognize that an 
action belongs to a given process. 

3. same length to all edges: with the preceding condition, diamonds will be 
represented by lozenges. 

Following these constraints, we have to find a family (~-~t,..., ~-~n) of vectors 

with same norm, one for each process, with ~/  = (xi, Yi, 1) which insures the 
separability of states. 

The initial state So is put at coordinate (0,0,0) in IR 3. Let S and S I be two 
states of the same layer reachable from So respectively by sequences w and v 
(with same length). For each i, w (resp. v) contains the di (resp. ei) first actions 

of Pi. Then S o S  = ~=ld~u'~ and S o S  ~ = ~n=le~u--~" with Zn=ldi  = ,U~=lei. 

States are separated if they satisfy So;~ = S o S  ~ r S = S ~. 
We only have to separate states of the same layer, thus this is equivalent to: 

V(di)i=l,n, (ei) i=l,n e IN n s.t. Zn=ldi  = Zn=lei  

z n  l di-~i n = ~-- ~ = l e i U i  ~ Vi, di = ei 
n " ' +  o r V ( f i ) i = l , n  E 2 Z  n s.t. S~=l f i  = 0 ,  S ~ = l f i u i  = 0 ~ Vi, f i  = 0  

We can strengthen this property if we consider that  Vi, f i  E ff~ the set of 
rational numbers, and that we distinguish vertices on their x coordinate. We 

2 This gives: choose - 1  < xi < 1 and y, = q-V/i - -  x i .  
V(ci)i=l,n EQ n s.t.S.~=lci : O, S~=lCiXi : 0 ~ Vi, ci : 0 

We show that this is satisfied if we take xi = t i for any t E IR t ranscendenta l  
in ~ and satisfying Itl < 1 (see [Bou81]). t is transcendental if there exists no 
polynomial with rational coefficients of which t is a root. For example t = +l/~r 
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or -t-1/e. Let P n ( X )  = ~ = l C i  X i  with Yi, ci Eff~ �9 As t cannot be a root of pn, 
we have Pn(t)  = Zn=lcit  i = 0 ~ Yi, Ci = O. 

Though the separability is theoretically satisfied, it is not practical because, 
as It l < 1, t i --* 0 when i ~ (x). Our practical solution is the following (where 
D ( x )  is the decimal part of x): 

X 1 - - ~  D(e) ,  Yl = 
xi = ( - 1 ) i - l . D ( X i - l . e ) ,  Yi = ( - - 1 ) ( i - l ) d i v 2 . ~ - ~ i ,  Vi E { 2 . . . n }  

In this way, vectors (xi ,  Yi) are distributed alternatively on the 4 sectors of 
the unit circle. The separability property is proved in the full paper. 

The family of vectors ~ = (xi ,  Yi, 1) for i = 1 . . .  n is independent by linear 
combination with rational coefficients. As for every reachable state S we have 

So5" = S'~=ldiu-~ with Yi, di E IN, and zi = 1 and x~ + y~ = 1 the graph stays 
inside the half-cone defined by (0, 0, 0) and the circle of equations z = 1 and 
x 2 + y  2 = 1. 

Our layout program generates coordinates of vertices and edges in 3D and 
is interfaced with several viewing tools. We can generate different projections 
in 2D and produce Postscript files like in the paper. But we also generate 3D 
coordinates which can be used by Visage, a tool from Technion Haifa, and used 
for the analysis of distributed programs that  allows to fly in 3D in the graph. 

C o m p l e x i t y :  For each state S, the coordinates of a successor state reachable 
by the firing of ai are obtained by adding ui to the coordinates of S. Thus, once 
vectors h~/ have been computed, the layout is linear in the size of the graph. 
Computing the ~ and ordering them can be done in O(n. log(n) )  where n is the 
number of processes. 

Colors :  In order to easily identify processes to which actions belong, we also 
use one color by process. Colors are generated automatically in the red/green/blue 
palette by a continuous function from [1, n] to [0..1] 3. 

E x a m p l e :  We give a simple example below with 4 communicating processes 
(see figure 1). The left hand graph is obtained by a simple 2D layout program 
which places states layer by layer according to their distance to the root. In each 
layer, states are distributed at a constant interval on the width of the page. The 
separability property is satisfied but diamonds are not clearly identified. The 
right hand graph is obtained by our 3D layout program and projected on a 2D 
space. Lozenges in 3D are then projected to parallelograms. 

2.3 3D L a y o u t  fo r  D e t e r m i n i s t i c  N o n  A cy c l i c  P r o c e s s e s  

When we relax the constraint of non cyclicity we describe systems that can be ob- 
tained when automatically distributing sequential programs in an asynchronous 
environment (see [ACP93]). The layout of their reachability graphs allows to 
measure the level of parallelism for different data distributions. A bottleneck 
in the graph characterizes a strong synchronization of processes whereas a high 
level of parallelism is characterized by a wide graph. 

In this case, the reachability graph can have cycles. The layout is performed 
during a breadth firr construction of the graph. Is is almost the same as in the 
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Fig. 1. Conical 3D layout of the reachability graph of a system of acychc deterministic 
CFSM 

acyclic case except for backward edges (which go from layer k to layer l < k), 
loop edges (which go from a state to itself), horizontal edges (which go from layer 
k to layer k and are not loop edges). Those edges do not follow the direction 
assigned to their process but are identified by the use of other colors. 

3 T h e  N o n  D e t e r m i n i s t i c  C a s e  

Generally communicating processes are non deterministic and can have cycles. 
Non determinism means that  in a process several actions can be fireable in 
the same local state. We say that  they are in conflict. As a consequence the 
diamond property is generally false. Moreover, two sequences composed of the 
same actions in a different ordering may lead to two different states. If actions 
are assigned fixed vectors, those states will have the same coordinates. But this 
contradict the separability of states. However, for pairs of concurrent actions, 
the diamond property is still (locally) true. 

We also want that our representation of general teachability graphs preserves 
the representation of reachability graphs of deterministic processes. 

Our choice is the following. States are still partit ioned layer by layer according 
to their distance from the root. For each process, by static analysis, we parti t ion 
the set of actions by the transitive closure of possible conflict. Let ki be the 
cardinal of the biggest equivalence class of conflicting actions of process Pi and 
N = Z'~=lki.  We compute the N + 1 first vectors by the same mechanism as in 
the deterministic case and order them according to the value of their angle in 
[0, 21r].. Let ~ < ~ 2 . . .  < ~ be those ordered vectors. They are independent 
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in IR 2 by linear combination with rational coefficients. The N + l th vector will 
serve to separate states with same coordinates. The kl vectors {~-~1,..., ~-~k~ } are 

assigned to P1, the k2 following {Vkl+~,... , v ~ - ~ }  to P2, etc . . . un t i l  P~. For 
each process Pi, and in each equivalence class, each action is assigned a vector 
among the ki vectors assigned to Pi (with z coordinate set to 1). In this way 
conflicting actions have close but different directions. 

This does not solve all problems as two different states may  have the same 
location. Thus in each layer, we keep the set of coordinates of already placed 
states. When a new state are computed, its coordinates are compared to already 
computed coordinates. If  they already exist (or are too close to some other 

coordinates), we modify them by adding vg+~ until there is no more conflict. 
In this way, all states are distinguished and the layout still corresponds to our 
requirements. As a consequence, when there are many  conflict on coordinates, 
the graph tends to leave the cone in the direction of VN+~. 

Eff ic iency :  theoretically, the layout algori thm can be expensive because of 
the resolution of conflicts on coordinates. But practically there is not so much 
conflicts. A graph of one hundred states is drawn in less than 1 second. 

E x a m p l e :  Adding an internal action t f rom 0 to 1 in the process P1, we 
have introduced a non deterministic choice between t and - a 2  in the state 0 
of P1 (see figure 2). From the initial state, these two actions are fireable f rom 
the initial s tate and take two different directions in the layout. The diamond 
property is not globally true (t and - a 2  do not commute)  but we can easily 
identify some diamonds in the graph. 

PI P2 P3 P4 

-b4 ~,% " ~ +b4J~ 

Fig. 2. 3D layout of the reachability graph of a non deterministic system 
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4 Conc lus ion  

In this paper  we have defined a layout program for reachability graphs of commu- 
nicating processes. This program is based on the idea that  semantical informa- 
tions as concurrency, non determinism and membership of actions to processes 
are essentiM for the understanding of reachability graphs. I t  is very efficient and 
produces a readable layout for graphs of some tens of states. This allows us to use 
it as a teaching tool to understand reachability graphs. For biggest graphs (with 
some hundreds or thousands states) a visual analysis is more difficult. But as 
our layout is somehow regular, we can still identify some global structure in the 
graph. It is particularly true with deterministic processes. We intensively use it 
to compare different data  distributions in the automat ic  distribution of sequen- 
tial code and to understand lattices of consistent cuts of observed distributed 
executions. 

A c k n o w l e d g m e n t s :  we wish to thank Cyrille Bareau and Benoit Caillaud 
for their help in the design of our drawing algorithm. 
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