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Abstract

Understanding and diagnosing plant responses to

stress will benefit greatly from three-dimensional (3D)

measurement and analysis of plant properties because

plant responses are strongly related to their 3D struc-

tures. Light detection and ranging (lidar) has recently

emerged as a powerful tool for direct 3D measurement

of plant structure. Here the use of 3D lidar imaging to

estimate plant properties such as canopy height,

canopy structure, carbon stock, and species is dem-

onstrated, and plant growth and shape responses are

assessed by reviewing the development of lidar sys-

tems and their applications from the leaf level to

canopy remote sensing. In addition, the recent creation

of accurate 3D lidar images combined with natural

colour, chlorophyll fluorescence, photochemical re-

flectance index, and leaf temperature images is dem-

onstrated, thereby providing information on responses

of pigments, photosynthesis, transpiration, stomatal

opening, and shape to environmental stresses; these

data can be integrated with 3D images of the plants

using computer graphics techniques. Future lidar

applications that provide more accurate dynamic esti-

mation of various plant properties should improve our

understanding of plant responses to stress and of

interactions between plants and their environment.

Moreover, combining 3D lidar with other passive and

active imaging techniques will potentially improve the

accuracy of airborne and satellite remote sensing,

and make it possible to analyse 3D information on

ecophysiological responses and levels of various

substances in agricultural and ecological applications

and in observations of the global biosphere.
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Introduction

Passive and active imaging techniques have come into

widespread use for plant analysis at the subcellular level, the

whole-plant level, and the ecosystem and remote-sensing

levels (Mayers, 1983; Hashimoto et al., 1990; Hobbs and

Mooney, 1990; Omasa, 1990, 2006; Häder, 1992, 2000;

Lichtenthaler et al., 1996;Ustin et al., 1999;Buschmannet al.,

2000; Govindjee and Nedbal, 2000; Lefsky et al., 2002b;

Omasa et al., 2002a, 2005, 2006; Jones, 2004; Oxborough,

2004; Papageorgiou and Govindjee, 2004; Zarco-Tejada

et al., 2004; Chaerle et al., 2005; Kolber et al., 2005; Schurr

et al., 2006). One recent trend in imaging techniques is the

adoption of three-dimensional (3D) imaging.

The 3D structure of leaves and plants plays an important

role in sustaining plant functions such as photosynthesis and

transpiration and in determining the suitability of different

habitats for various species. Therefore, it is necessary to

obtain 3D information to improve understanding of plant

functioning and habitats. The 3D information can also serve

as a good indicator of plant stress and improve understand-

ing of stress responses. For example, stresses such as a water

* To whom correspondence should be addressed. E-mail: aomasa@mail.ecc.u-tokyo.ac.jp

Abbreviations: CHP, canopy height profile; DBH, diameter at breast height; DCHM, digital canopy-height model; DEM, digital elevation model; DTM, digital

terrain model; FP-mode, first-pulse mode; GPP, gross primary production; GPS, global positioning system; IMU, internal measurement unit;

InSAR, interferometric synthetic-aperture radar; LAD, leaf area density; LAI, leaf area index; lidar, light detection and ranging; LIF, laser-induced

fluorescence; LIFT, laser-induced fluorescence transient; LP-mode, last-pulse mode; NPP, net primary production; PPFD, photosynthetic photon flux

density; PRI, photochemical reflectance index; RMSE, root-mean-square error; SAR, synthetic-aperture radar; VCP, voxel-based canopy profiling.

ª The Author [2006]. Published by Oxford University Press [on behalf of the Society for Experimental Biology]. All rights reserved.

For Permissions, please e-mail: journals.permissions@oxfordjournals.org

Journal of Experimental Botany, Vol. 58, No. 4, pp. 881–898, 2007

Imaging Stress Responses in Plants Special Issue

doi:10.1093/jxb/erl142 Advance Access publication 9 October, 2006



deficit and severe heat can change the shape andmorphology

of individual plants. On a large scale, environmental changes

can induce extensive plant responses, such as changes in

forest growth, species composition and global carbon

cycling. These responses also involve changes in the 3D

structure of plants and vegetation canopies. Therefore, 3D

plant analysis is indispensable for understanding responses

of ecosystems and individual plants.

Methods for 3D imaging are divided broadly into

two types: passive and active. Passive methods include

stereovision and shape-from-x (where x represents focus,

shading, texture, contour, and other parameters) algorithms.

In particular, stereovision has been used in a wide range of

scientific research and industrial applications. It allows

3D reconstruction of an object based on the use of

geometrical rules of perspective and based on the difference

between two or more images of objects taken from

different positions. Although some studies have reported

the application of stereovision with small plants (He et al.,

2003; Andersen et al., 2005) and field crops (Ivanov et al.,

1994, 1995), plants are a difficult target for stereovision

because they have complex structures; leaves have a range

of shapes and textures, and create discontinuities (i.e. they

may hide each other). Mismatches between the correspond-

ing points in different images (the so-called ‘correspon-

dence problem’) and self-occlusion within an object remain

major problems in stereovision, and increase with in-

creasing complexity of plant shape. Dynamic stereo is

another trend in stereovision, in which motion is used to

provide a more reliable 3D reconstruction (Negahdaripour

et al., 1995; Brooks et al., 1998). In one example of this

approach, Schurr et al. (2001) employed a single camera

that they moved continuously from one stereo position to

another. They simplified the correspondence problem by

tracking each pixel throughout the acquired image se-

quence and used this improved information to calculate the

3D position of the leaf surface. However, it is difficult to

handle the large amount of data from multiple frames

generated by this technique. Airborne or satellite-based

stereoscopic methods have been widely used for large-scale

terrestrial and forest observations (Gong et al., 2002;

Zomer et al., 2002; Hay et al., 2004; Eckert et al., 2005).

Although their accuracy has been improved by using

sensors with high spatial resolution (Sheng et al., 2001;

Toutin, 2004), the resolution and accuracy (several metres)

remain insufficient for obtaining detailed 3D information

for vegetation. In addition, image quality is affected by

sunlight and weather conditions. Shape-from-x algorithms

are not commonly used compared with stereovision

because of limitations in the technique. For example, a

shape-from-focus algorithm proved to be suitable for use

with a light microscope, but was limited to use at short

distances (within 20–30 m) with a 3D camera (Omasa,

2000, 2006). The use of such passive methods is limited

to objects with clearly defined and fine-grained texture.

Active methods are not limited to specific surface

textures because they are designed to generate wavelengths

of electromagnetic radiation (rather than relying on ref-

lected or emitted ambient radiation) that are suitable for the

specific type of 3D measurement. Synthetic-aperture radar

(SAR) is a form of active sensor that allows measurement

of the physical characteristics of the ground surface using

microwaves during all weather conditions, as well as during

the day and night. In particular, interferometric synthetic-

aperture radar (InSAR) has been applied for determining

the height of vegetation canopies (Hagberg et al., 1995;

Askne et al., 1997; Papathanassiou and Cloude, 2001;

Kellndorfer et al., 2004). InSAR can estimate ground

elevations based on phase differences in images acquired

from different locations. However, the complexity of

the scattering process within vegetation makes it difficult

to separate physical forest parameters based on the inter-

ferometric data (Papathanassiou and Cloude, 2001). Fur-

thermore, the method is useful for large-scale observation,

but its accuracy is of the order of several metres and is thus

insufficient to provide a detailed description of the 3D

structure of plants.

Recently, light detection and ranging (lidar) using laser

scanners has emerged as a powerful active sensing tool for

direct 3D measurement of plant shapes and canopy

structures. Lidar can obtain accurate 3D information for

plants by measuring the distance between the sensor and

a target. The scales of application have ranged from small

plants to forest stands. Numerous studies have shown the

usefulness of lidar for the estimation of 3D plant properties

(Næsset, 1997; Means et al., 1999; Omasa et al., 2000,

2002b; Hyyppä et al., 2001; Lefsky et al., 2002b; Næsset

et al., 2004; Yu et al., 2004; Reutebuch et al., 2005).

However, the potential of lidar has not yet been fully

exploited for monitoring plant responses to stress.

In the present paper, recent research on lidar imaging is

reviewed, including aerial remote sensing for 3D measure-

ments of plant shape and canopy structure, and then the

potential of lidar for monitoring plant responses to stress is

described. A demonstration is also provided of the potential

of composite imaging that combines lidar data with data

provided by other imaging techniques.

Development of lidar systems

Lidar is also called a ‘laser radar’, ‘laser scanner’, ‘laser

profiler’, ‘range finder’, or ‘laser ranger’. Recently, it has

been used as a novel active sensing tool for 3D measure-

ment of plant shapes and canopy structures. Lidar can ac-

curately measure the distance between the sensor and a

target based on the elapsed time between the emission and

return of laser pulses (the ‘time of flight’ method) or based

on trigonometry (the ‘optical probe’ or ‘light section’

methods). The accuracies of airborne and ground-based

lidar systems are typically ;0.1–1 m and ;0.05–10 cm,
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respectively, so lidar can replace conventional passive

methods for 3D measurement. Lidar systems are divided

into several categories according to their characteristics.

Early studies of non-scanning airborne lidar systems

Airborne lidar systems were initially developed for bathy-

metric work (Hickman and Hogg, 1969; Hoge et al., 1980).

In the 1980s, lidar systems were applied in topographic

mapping. Krabill et al. (1984) used an airborne lidar system

to map the topography of a watershed near Memphis,

Tennessee. Schreier et al. (1984) determined, in a terrain

mapping study in Canada, that 95% of all laser terrain

elevations were within 1.8 m of photogrammetrically

derived values. In this application, vegetation was regarded

as an obstruction and a source of noise when terrain ele-

vations were calculated based on laser profiles. After the

mid-1980s, lidar was also used for the determination of

vegetation canopy heights. Nelson et al. (1984) utilized

lidar on a heavily forested hardwood site in Pennsylvania

to show that changes in the laser canopy profile corres-

ponded to changes in canopy density. They found that the

mean tree height estimates were within 60 cm of the

photogrammetric values, but that the laser estimates were

more precise. Some biophysical properties of forests, such

as gross merchantable timber volume and biomass, have

been estimated from lidar-derived tree heights (Maclean

and Krabill, 1986; Nelson et al., 1988). These experiments

showed that lidar can be a useful tool for estimating forest

properties.

Airborne small-footprint scanning lidar systems

Lidar systems in the 1980s were non-scanning types, and

only a single line of data directly beneath the aircraft could

be obtained as a cross-sectional profile. The systems thus

had limitations for covering wide areas. In the mid-1990s,

airborne-scanning lidar became available and this technol-

ogy was applied for topographic terrain mapping and forest

measurements (Flood and Gutelius, 1997; Næsset, 1997;

Hyyppä and Inkinen, 1999; Omasa et al., 2000). Scanning

systems can sweep a swath of terrain by means of lateral

deflection of the emitted laser beams during forward

movement of the aircraft. Consequently, a large area can

be scanned as a series of swaths. The footprint diameter (i.e.

the diameter of the laser beam on the ground) is relatively

small, typically;10–30 cm. The position of the laser beam

on the ground can be determined with an absolute accuracy

of <0.5 m and a relative accuracy of 0.15 m (Omasa et al.,

2000) by recording the movements of an aircraft and its

lidar instrument using ground-based and aerial global

positioning system (GPS) receivers and an aerial internal

measurement unit (IMU). The range resolution and accu-

racy of the lidar system are within 1 cm and 15 cm, res-

pectively. The lidar system functions as a discrete-return

recording device, since it only receives a single return

signal or a small number of return signals from the ground.

Figure 1 shows a schematic diagram of 3D measurement

using a lidar system. The illustrated helicopter-borne lidar

system has two receiving modes (Fig. 1A): a first-pulse

mode (FP-mode), in which the first returned pulses are

received, and a last-pulse mode (LP-mode), in which the

last returned pulses are received.

In the 1990s, the density of laser pulses provided by

ordinary small-footprint airborne scanning lidar systems

was less than several pulses m�2 on the ground, with a

pulse repetition frequency of 1–25 kHz. Recent advan-

ces in lidar technology have increased this value to >10

pulses m�2 with a pulse repetition frequency of up to 100

kHz. Moreover, the density can be increased several-fold

using slower flight speeds (e.g. using helicopters rather

than airplanes to carry the scanning lidar). These systems

can provide high-resolution images of individual trees.

Several studies have shown the ability of lidar systems to

provide measurements of individual trees (Hyyppä and

Inkinen, 1999; Omasa et al., 2000, 2003; Hyyppä et al.,

2001; Brandtberg et al., 2003; Holmgren and Persson,

2004; Næsset et al., 2004; Yu et al., 2004; Reutebuch

et al., 2005).

Airborne large-footprint scanning lidar systems

Airborne lidars with a large footprint and a large scan width

have been developed for a target of forest remote sensing on

large scales and from satellites (Blair et al., 1999; Lefsky

et al., 1999b, 2002b; Means et al., 1999; Drake et al.,

2002). These systems scan with a large footprint, typically

;10–25 m in diameter, and are obtained from a higher

altitude, resulting in more complete sampling of the canopy

and a wider image swath. The system includes a waveform-

recording device that digitizes the power level of the entire

return laser signal and captures both the vertical distribution

of the backscatter of laser illumination from all canopy

elements (both foliar and woody) and reflection from the

ground. The range resolution and accuracy are both ;10

cm (Blair and Hofton, 1999). The position of the laser beam

on the ground can be determined to within 5–10 m (Means

et al., 1999).

Ground-based non-scanning lidar systems

Liu (1995) described an example of a non-scanning

ground-based lidar system. The system has a laser source

and detector for measuring distances, a compass for

measuring azimuth angles, and a tilt sensor for measuring

zenith angles. From these measurements, the position of a

target is calculated as orthogonal coordinates. Distance is

measured using the time-of-flight method, and ranging

accuracy is;10 cm. The system is portable, so a major use

of the system (and of comparable non-scanning lidar

systems) is for forest surveys, such as traverses of for-

est stands, stem mapping, and dendrometry (Liu, 1995;
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Peet et al., 1997; Williams et al., 1999). Another use

involves measurements of vertical foliage profiles using

a ground-based lidar system with the beam direction set

vertically and the operator manually repositioning the lidar

head by walking through the forest (Radtke and Bolstad,

2001; Parker et al., 2004).

Ground-based scanning lidar systems

In ground-based scanning lidar systems, rotating or oscil-

lating mirrors within the lidar head or built-in stepping

motors automate the horizontal and vertical scanning.

These systems can record the configuration of whole plants

and foliage structures as a 3D ‘point-cloud image’ by mer-

ging lidar data measured from different positions (Fig. 1B).

In stand-scale measurement from a distance >10 m, the

time-of-flight method is most often available, and provides

a ranging accuracy of ;1 cm (Omasa et al., 2002b; Urano

and Omasa, 2003). However, the ranging accuracy is

insufficient to capture foliage and leaf shapes precisely.

The phase-shift detection method (Vanderbilt, 1985) and

the optical-probe method (Shirai, 1972) are more suitable

for precise measurements from <10 m. In the former

method, the system modulates the amplitude of the laser

beam and converts the difference in the phases of the

modulation in the sent and received laser beams into a

distance value. In the latter method, a laser beam is pro-

jected on an object to create a small spot, and the beam is

detected by a photo-detector placed at a certain distance

from the laser source but outside the line connecting the

laser source and target. The laser spot, laser source, and

detector thus form a triangle, and the distance to the object

can be calculated by means of trigonometry. For example,

one system that uses the optical-probe method can measure

foliage and leaf shapes with range accuracies of 0.5 mm at

a distance of 3.5 m, and 5 mm at a distance of 10 m under

sunlight using a near-infrared laser with a wavelength of

785 nm (maximum power 30 mW).

Applications

Canopy height

Canopy height is an important variable needed to estimate

the 3D properties of trees. Lidar-derived tree heights can be

used to estimate various biophysical properties of trees

based on allometric relationships between the biophysical

properties and lidar-derived tree heights. In small-footprint

scanning lidar systems with a pulse density of <1 pulse

m�2, underestimation of tree heights was a critical problem

because the pulse density was insufficient to detect the

Fig. 1. A schematic diagram of 3D remote sensing using helicopter-borne and ground-based scanning lidar systems. (A) Data processing in
a helicopter-borne scanning lidar system. (B) Data processing in a ground-based scanning lidar system. FP-mode, first-pulse mode; LP-mode, last-pulse
mode; DEM, digital elevation model; DTM, digital terrain model; DCHM, digital canopy-height model.
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actual tree tops. Næsset (1997) reported that the mean tree

height in coniferous stands derived from airborne lidar with

a pulse density of 0.1 pulses m�2 was underestimated by

4.1–5.5 m compared with ground-measured data. In an

attempt to solve this problem, Næsset divided forest stands

into regular grids with cells of equal size and extracted only

the maximum estimated height value within each cell. The

lidar-derived mean height of stands was then computed as

the arithmetic mean of these cell maxima. This method

decreased the bias in mean tree height to <1.9 m. However,

the area-based approach cannot satisfy the growing demand

for feature extraction based on individual trees.

Small-footprint lidar systems with a high pulse density

provide another solution for underestimation. The high

pulse density increases the probability of laser hits on the

actual tops of the trees and consequently reduces the

magnitude of the underestimation. In a study by Maltamo

et al. (2004b), tree heights of several species of Norway

spruce (Picea abies L. Karst.), Scots pine (Pinus sylvestris

L.), silver birch (Betula pendula Roth.), and downy birch

(Betula pubescens Ehrh.) were estimated at a pulse density

of 10 pulses m�2 (with a pulse repetition frequency of 83

kHz). The underestimation of tree height decreased to;1m.

Omasa et al. (2000, 2003) used a lidar system with a pulse

density of ;30 pulses m�2 to estimate tree height in

Japanese coniferous and broadleaved forests. Their system

increased the pulse density both by using a high pulse

repetition frequency (25 kHz) and by using a helicopter

with low flight speed as the scanning platform. This system

allowed scanning of the entire ground surface, since the

interval between neighbouring footprints was nearly equal

to the footprint diameter. The accuracy of tree height

measurement improved to <47 cm [with a root-mean-square

error (RMSE) of 19 cm] for coniferous trees (five species)

and 40 cm (RMSE=12 cm) for broadleaved trees (six

species). These studies showed that the underestimation of

tree height can be reduced by increasing the pulse density

on the ground. The systems with a high pulse density not

only reduced the underestimation of tree height but also

allowed the production of high-resolution 3D images of each

individual tree. Figure 2 shows 3D images of a woody

canopy and of the terrain (ground surface) obtained by a

helicopter-borne scanning lidar with a high pulse density

(;30 pulses m�2) (Omasa et al., 2000). The image

processing process is illustrated in Fig. 1A. First- and last

pulse-mode digital elevation models (FP-mode DEM,

Fig. 2A; and LP-mode DEM, Fig. 2B) were produced

from lidar data derived by first and last returned pulses,

respectively. The digital terrain model (DTM, Fig. 2C) of

a small valley was estimated with an accuracy of ;15 cm

Fig. 2. 3D false-colour images (Omasa et al., 2000) of a small valley produced using high-resolution helicopter-borne small-footprint scanning lidar
with a high pulse density (;30 pulses m�2) and a 15 mm range accuracy. (A) FP-mode DEM. (B) LP-mode DEM. (C) DTM. (D) DCHM. In the images,
coniferous and broadleaved trees, roads, houses, farmlands, streams, and other features can be seen.
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by interpolating only LP-mode data reaching the ground

surface. The net height of the woody canopy was calculated

to produce a digital canopy-height model (DCHM, Fig. 2D)

by subtracting the DTM elevations from the FP-mode DEM

values.

An approach based on individual trees uses image-

processing techniques to estimate the heights of individual

trees together with tree position and crown area automat-

ically. Several algorithms have been developed for this

purpose, including the watershed algorithm (Hyyppä et al.,

2001), the morphological computer vision method (Persson

et al., 2002), the crown extraction filtering method (Omasa

et al., 2003; details have not yet been published), and the

local maximum method (Popescu et al., 2003; Popescu and

Wynne, 2004). In some studies, basal area, stem volume,

and stem density were regressed against lidar-derived

individual tree heights and crown areas (Hyyppä et al.,

2001; Persson et al., 2002; Omasa et al., 2003; Maltamo

et al., 2004a). However, these algorithms can only be used

with single-stemmed trees such as conifers.

Ground-based scanning lidar can provide more precise

3D images of individual trees with a typical resolution of

0.05–10 cm. 3D images generated from such systems

provide much information about the trees, and each tree

height can be estimated from the image, together with other

variables (Omasa et al., 2002b; Urano and Omasa, 2003).

The problem with operational measurements using ground-

based lidar systems is that the laser beam may be unable to

illuminate all the target trees because parts of some target

trees may be hidden by other trees. To resolve this problem,

target trees can be scanned from several measuring

positions surrounding the target trees, and images acquired

from these several points can be co-registered and merged,

as shown in Fig. 1B (Hopkinson et al., 2004; Yoshimi

et al., 2004; Hosoi et al., 2005). The multiple images

compensate for blind regions in some of the images,

permitting accurate estimation of tree heights.

Canopy structure

Vegetation canopies play important roles in the interaction

between plants and their environment through their effects

on photosynthesis and transpiration. Therefore, changes in

canopy structure can provide a sensitive indicator of

responses to stress and adaptation of plants to their en-

vironment. However, it is still a challenge to measure can-

opy structure accurately due to its complex 3D structure.

Recently, the ability of lidar to provide 3D data has been

applied to the measurement of vertical foliage distribution,

a key mensurational parameter used to represent the 3D

canopy structure.

Magnussen and Boudewyn (1998) demonstrated that the

distribution of canopy surface heights derived from a field

trial of an airborne small-footprint lidar system in a

Douglas-fir [Pseudotsuga menziesii (Mirb.) Franco] forest

was related to the vertical distribution of foliage area. The

vertical distribution of cumulative leaf area index (LAI)

was estimated using the correlation between the height and

foliage area distributions. In the study, the frequency of

laser interception by the canopy was utilized as an index of

foliage area at each height. In another study, gap probability

was used instead of the frequency of interception (Lovell

et al., 2003; Houldcroft et al., 2005). Gap probability is

defined as the probability of non-interception of laser

beams by the canopy. This probability was calculated at

each height by tracing rays between points where the laser

contacted the canopy and the lidar position. The probability

was then related to LAI at each height using an exponential

transformation on the assumption that foliage is randomly

distributed throughout the canopy (Norman and Campbell,

1989; Welles and Norman, 1991). However, there have

been some difficulties in accurately estimating the vertical

foliage distribution using airborne small-footprint lidar

systems. The vertical foliage profiles derived using such

systems showed little response to the middle canopy levels

that are present in actual foliage profiles because the

systems can receive only the first and last returned pulses,

and thus fail to record any reflections between the first and

last returns (Lovell et al., 2003). Furthermore, non-

uniformity in the leaf distribution, changes in beam angle,

and the energy threshold of the returned pulse affect the

accuracy of these estimates (Houldcroft et al., 2005). The

presence of non-photosynthetic tissues (i.e. stem or

branches) would also affect estimation accuracy.

The waveform-recording capability of airborne large-

footprint lidar systems has been used to conduct canopy

height profile (CHP) surveys, which represent the vertical

distribution of canopy components. The CHP can be

calculated by correcting for the effects of shading of upper

foliage by lower foliage on the returned energy profile

using an exponential transformation and the assumption of

a uniform horizontal distribution of foliage (MacArthur

and Horn, 1969; Lefsky et al., 1999a; Means et al., 1999).

Although the CHP values are useful in estimating vertical

canopy profiles over large scales, the accuracy of CHP is

affected by non-uniformity of the horizontal distribution of

actual foliage and the approach is thus less useful on

smaller scales. In addition, the CHP does not represent

the foliage height profile directly because of the effect of

non-photosynthetic tissues within the canopy.

The optical point quadrat method is a method for

roughly estimating vertical foliage profiles from the ground

(MacArthur and Horn, 1969). Themethod is based onmeas-

uring heights to the lowest leaves above a set of sample

points established on the ground beneath the canopy. A

telephoto lens or clinometers with trigonometry was tradi-

tionally used to measure heights to the lowest leaves. A

more modern version of this technique replaces these pieces

of equipment with a non-scanning ground-based lidar

system (Radtke and Bolstad, 2001; Parker et al., 2004).
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Ground-based scanning lidar systems have also been

applied to the gap probability method (Welles and Cohen,

1996; Lovell et al., 2003; Tanaka et al., 2004). A con-

ventional method using gap probability is a popular tech-

nique for ground-based measurement of LAI, in which

sunlight transmission beneath the canopy is measured by

ceptometers (Norman and Campbell, 1989; Welles and

Norman, 1991). Sunlight has been replaced by laser beams

in the lidar equivalent of this technique. Studies based on

the optical point quadrat and gap probability methods have

improved the efficiency of data collection. However, it is

still difficult for these methods to account for the effects of

non-uniformity of the actual foliage distribution and the

presence of non-photosynthetic tissue.

As described above, accurate estimation of the vertical

foliage distribution is still difficult with either airborne or

ground-based lidar systems. Recently, a voxel-based can-

opy profiling method (VCP method), in which the 3D space

is divided into ‘volume elements’ (voxels) that are the 3D

equivalent of the pixels in a two-dimensional (2D) image,

has been developed for estimating vertical foliage profiles

with reduced effects of any non-uniformity in the foliage

distribution and of non-photosynthetic tissue (Hosoi and

Omasa, 2006). An individual bambooleaf oak tree

(Quercus myrsinaefolia Blume; LAI=4.9) was scanned

from four measuring points during both the leaf-on and

leaf-off using high-resolution ground-based scanning lidar,

as shown in Fig. 3A (leaf-on) and 3B (leaf-off), respec-

tively. The laser beam was able to illuminate the tree fully

inside the canopy, as shown by the cross-sectional images

presented in Fig. 4. By subtracting the leaf-off image from

the leaf-on image, non-photosynthetic tissues can be

eliminated from the data. The vertical foliage profile

obtained in this manner was accurately estimated based

on voxels estimated from the lidar-derived point-cloud

data, and is shown in Fig. 5. The mean absolute percentage

error, which was the arithmetic mean of the absolute

percentage error between the actual and predicted (lidar-

derived) value for each height, was 22%. The actual value

of each height was measured by stratified clipping of the

foliage. This method thus appears to be applicable for

monitoring changes in canopy structure, although further

improvement may be necessary and may be challenging

to attain.

It has recently been demonstrated that species can be

classified using 3D lidar data with a pulse density of 5.2–12

pulses m�2. Brandtberg et al. (2003) scanned several leaf-

off deciduous trees and extracted the vertical structure of

the branches of each species using airborne small-footprint

lidar. The absence of leaves in the canopy facilitated

penetration by the laser beam in the deciduous forest so

that the vertical structure of the branches could be more

clearly extracted. Based on a lidar-derived height distribu-

tion and the proportion of laser return from the branches,

the authors performed linear discriminant analysis on each

individual tree for classification. Although the classification

accuracy was only 60%, the potential of the lidar data to

classify species was nonetheless apparent in this early

work. Similarly, Holmgren and Persson (2004) demon-

strated that airborne small-footprint lidar could distinguish

between Norway spruce and Scots pine under leaf-on

conditions. The lidar-derived variables used in this study

were the proportion of laser returns, measurements of

height distribution, canopy geometry, and intensity of

returned pulses. Linear and quadratic discriminant analyses

were performed on these lidar-derived variables for each

individual tree. The results showed a 95% ability to

distinguish between the two species correctly. Although

these two studies focused on species classification, future

works may allow this approach not only to classify species

but also to estimate quantitatively the biophysical proper-

ties of each species.

Carbon stocks

Increases in atmospheric CO2 concentration and climate

changes vary the terrestrial carbon cycle and forest carbon

stocks (Levy et al., 2004; Law, 2005; Shimizu et al., 2005).

Fig. 3. 3D point-cloud images of an individual bambooleaf oak tree (Quercus myrsinaefolia Blume; LAI=4.9) growing in the field, obtained using
high-resolution ground-based scanning lidar with an 8 mm range accuracy. (A) Leaf-on image. (B) Leaf-off image. Points a–d and a9–d9 represent the
positions of the horizontal cross-sections displayed in Fig. 4.
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Accurate estimation of forest carbon stock capacity is re-

quested by the Kyoto protocol to reduce greenhouse gases

and global warming. It is also crucial for studying the

functioning of forests and in studies of the terrestrial global

carbon budget. In many cases, forest carbon stocks are

estimated from limited site data, and the representativeness

of such data is always uncertain because of the heteroge-

neity of forests. By contrast, remote sensing using passive

optical systems or active radar sensors has allowed

extraordinary advances in the modelling, mapping, and

understanding of ecosystems over larger areas. However,

these approaches have significant limitations in forestry

applications because their sensitivity and accuracy have

repeatedly been shown to decrease as above-ground bio-

mass increases (Waring et al., 1995; Turner et al., 1999).

Airborne and ground-based scanning lidar has provided

novel alternatives for accurate and efficient large-scale

estimation of forest carbon stocks.

Forest carbon stocks are defined as the amount of carbon

per unit area (kg C m�2 or t C ha�1), and also defined as

the amount of carbon per tree (kg C tree�1) for detailed

representation of carbon stocks in each tree. Also, biomass

can be converted into carbon stocks using a conversion

factor based on the carbon content. Estimates of carbon

stock can be regressed against lidar-derived variables. Total

carbon stocks (stem, branches, foliage, and roots) of

individual Japanese cedar [Cryptomeria japonica (L.f.)

D. Don] trees could be mapped using a high-resolution

DEM (Fig. 6) obtained using an airborne small-footprint

lidar system with a high pulse density (;30 pulses m�1),

with the results shown in Fig. 7 (Omasa et al., 2003). Each

tree height was estimated after segmentation of each tree

canopy into individual trees. The carbon stock could then

be estimated for each tree using allometric relationships

between carbon stocks and lidar-derived tree height. The

lidar-derived tree height has also been used for the

estimation of carbon stocks in another study (Lim et al.,

2003). For more heterogeneous forest, such as a forest with

mixed species and ages, the distributions of lidar-derived

canopy heights becomes a good indicator of the vertical

canopy structure and can thus be used to estimate carbon

stocks. Patenaude et al. (2004) estimated above-ground

carbon stocks in mixed deciduous woodlands using the

distributions of lidar-derived canopy heights rather than

lidar-derived heights of dominant trees because the latter

might not reflect the height distribution of a forest with

mixed species and ages.

Means et al. (1999) and Lefsky et al. (1999a, b, 2002a)

have also performed regressions of biomass against the

canopy height derived using large-footprint lidar. Further-

more, data collected using such systems have been used

Fig. 4. Horizontal cross-sectional images of the bambooleaf oak tree
(Quercus myrsinaefolia Blume) at each of the positions (a–d and a9–d9)
shown in Fig. 3. (A) Leaf-on image. (B) Leaf-off image. These images
show that lidar can obtain information within the canopy. Fig. 5. Comparison between lidar-derived and actual profiles of leaf area

density (LAD) of the bambooleaf oak tree (Quercus myrsinaefolia Blume)
shown in Figs 3 and 4. The lidar-derived profile was estimated by means
of a voxel-based canopy profiling method (Hosoi and Omasa, 2006);
the actual profile was measured by stratified clipping of the foliage.
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to estimate the gross primary production (GPP) and net

primary production (NPP) of forests. The former is defined

as the total amount of carbon that is fixed by plant photo-

synthesis in a certain period of time. The latter is defined

as the net amount of primary production after the costs of

plant respiration have been subtracted from GPP. GPP and

NPP can be utilized as indicators of global plant responses.

Kotchenova et al. (2004) used lidar-derived CHPs for

a mixed-deciduous forest, calibrated using the total canopy

field-measured LAIs, as input data for the vertical foliage

distribution and coupled this distribution with models of

GPP. They found that vertical foliage profiles were

significantly correlated with GPP. The study also suggested

that accounting for the actual vertical foliage profile can

increase the accuracy of estimated daily GPP

in photosynthesis models. Lefsky et al. (2005) used integra-

ted lidar and Landsat data sets to characterize NPP over

a spatially extensive set of plots in western Oregon. Stand

age was mapped by means of iterative unsupervised

classification of a multitemporal sequence of Landsat TM

images (Cohen et al., 2002). NPP was then calculated as the

average increment in lidar-estimated biomass during stand

development. Both studies demonstrated the ability of

lidar-based remote sensing to assess global-scale plant

responses.

In ground-based scanning lidar systems, information on

the underparts of trees becomes available. Based on this

information, lidar-derived diameters at breast height

(DBHs) can be used to estimate carbon stocks. Hopkinson

et al. (2004) estimated the DBHs of trees in a red pine

(Pinus resinosa Ait.) plantation and in a mixed deciduous

stand dominated by sugar maple (Acer saccharum Marsh.)

by selecting all lidar points between a height of 1.25 m and

1.75 m above the lowest point, then fitting a cylinder to the

points. In this study, the authors measured the trees within

a plot from several measuring points, thereby minimizing

the number of blind regions (i.e. areas in which tree stems

were obscured by other trees) and facilitating the extraction

of DBH values. However, it is often difficult to scan all

trees from several points in dense forest. Omasa et al.

(2002b) scanned the stems in a Japanese larch (Larix

leptolepis Gordon) forest with dense undergrowth (Fig. 8)

from only one point, then estimated the stem diameter of

each observable tree at a measurable height. The DBH of

each tree was estimated accurately from the stem diameter

at the measurable height using the relationship between

stem diameter at specific height and DBH that was obtained

from ground-truthing data. Although the DBHs of some

trees within the surveyed area could not be estimated

because of obstruction by dense undergrowth or other trees,

this method nonetheless demonstrated the adaptability of

ground-based lidar under difficult measuring conditions.

Lidar-derived DBH can be converted into the carbon stock

of each tree using allometric relationships between DBH

and the carbon stock. The above-ground carbon stock of

each larch tree in Fig. 8 was mapped (Fig. 9) and was

correlated with the lidar-derived DBH (R2=0.96), resulting

in a 2.7% error in the average carbon stock (kg C m�2) of

larch trees within 30 m from the lidar position (Omasa

et al., 2002b). Urano and Omasa (2003) applied this

method to estimate the carbon stocks of stems, branches,

leaves, and roots of Japanese cedars with an RMSE of 11.5

kg C tree�1 (total carbon stock=56.1–528.2 kg C tree�1).

The use of ground-based scanning lidar thus permits

accurate and cost-effective estimation of individual tree

carbon stock, and would therefore be applicable for the

repeated measurements used in the studies of carbon stock

monitoring.

Plant growth and shape changes

Plant growth is affected by various biotic stresses, such as

diseases and insects, as well as by abiotic (environmental)

stresses. Furthermore, global-scale plant growth has been

shown to be affected by global climate change (Myneni

et al., 1997; Menzel and Fabian, 1999; Andalo et al., 2005).

Recently, plant growth at the forest-stand level has been

monitored using airborne small-footprint lidar. Yu et al.

(2004) measured individual trees between 1998 and 2000

Fig. 6. 3D view of a DCHM obtained for a Japanese cedar (Cryptomeria
japonica (L. f.) D. Don) forest using a helicopter-borne small-footprint
scanning lidar system with 15 cm range accuracy (Omasa et al., 2003).
The mesh of the DCHM was produced with a very high resolution
(10 cm).

Fig. 7. Estimated total carbon stocks (stem, branches, foliage, and roots;
kg C tree�1) for each individual tree shown in Fig. 6 (Omasa et al., 2003).
Each polygon represents the total carbon stock of a single tree and covers
the area occupied by the tree’s canopy.
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to monitor the growth of deciduous forests using small-

footprint lidar with a sample density of 10 pulses m�2.

They developed a tree-to-tree matching algorithm to com-

pare individual trees between survey dates. The growth of

each tree was extracted by subtracting the tree height

obtained in 1998 from the height measured in 2000 based

on the matching results. The growth of the whole stand or in

the individual plots (;25330 m2) was obtained using the

mean height difference for all matched trees. The accuracy

of the estimated height growth was;5 cm at the stand level

and ;10–15 cm at the plot level. To monitor forest growth

in a large area, Naesset and Gobakken (2005) used a small-

footprint lidar system with a sampling density of 0.9–1.2

pulses m�2 in 1999 and 2001. Mean tree height, basal area,

and stem volume were regressed against several lidar-

derived variables (i.e. height percentiles, mean and maxi-

mum heights, coefficients of variation of the heights, and

canopy density at different heights above the ground) based

on the 1999 and 2001 lidar data. Forest growth was as-

sumed to be solely responsible for the difference between

the estimated biophysical variables in 2001 and 1999.

Although the precision of the study was low, the study

demonstrated the potential of this approach for monitoring

plant growth over large areas.

Crops and vegetables grow much faster than forest trees,

thus their growth rate becomes a sensitive and direct

indicator of stress. Using high-precision ground-based

scanning lidar, the growth of these plants can be depicted

as a 3D shape change. Figure 10 shows an example of 3D

growth monitoring for a small aubergine (Solanum melon-

gena L.) seedling obtained using the above-mentioned

optical probe-based scanning lidar, with a range accuracy of

0.5 mm at a distance of 3.5 m. Natural colour information

was added to the images by means of a texture-mapping

method (Heckbert, 1986; Haeberli and Segal, 1993; Soucy

et al., 1996; Omasa, 2000). As shown in Fig. 10, the lidar

could clearly capture plant growth from 34 (Fig. 10A) to 52

d (Fig 10.C) after seeding by capturing the 3D expansion

of leaves and stems and changes in the natural colour

and texture of the plant elements.

Some stresses, such as water deficiency or severe heat,

induce conformational responses in plants, such as leaf

inclination, rolling, and wilting. Although 2D image

analysis has been used for monitoring the responses to

Fig. 8. False-colour image of a Japanese larch (Larix leptolepis Gordon) forest measured using a ground-based scanning lidar system with 8 mm range
accuracy (Omasa et al., 2002b). Numerical values in the colour scale represent the distance from the lidar system.

Fig. 9. Estimated above-ground carbon stock (kg C tree�1) and stand
position of each Japanese larch (Larix leptolepis Gordon) tree shown in
Fig. 8. The x- and y-axes represent the horizontal plane in Fig. 8, and the
origin represents the lidar position.
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such plant stresses (Kurata and Yan, 1996; Kacira et al.,

2002; Foucher et al., 2004), it is difficult to monitor the

shape responses fully solely by means of 2D imaging.

Figure 11 shows an attempt at 3D monitoring of the shape

response of a tomato (Lycopersicum esculentum Mill.)

plant to water stress using the optical probe-based scanning

lidar approach described above. The shape change (wilting)

was clearly captured. The shape response to water stress is

as sensitive an indicator as changes in stomatal response

(Fujino et al., 2002).

Physiological responses and substances in leaves

Spectral analyses of reflection, radiation, and fluorescence

from leaves have been widely used for imaging to detect

photosynthesis, transpiration, stomatal response, and sub-

stances in the leaves (Omasa, 1990, 2002; Wessman, 1990;

Omasa and Croxdale, 1992; Ustin et al., 1999; Buschmann

et al., 2000; Govindjee and Nedbal, 2000; Kim et al.,

2002; Omasa and Takayama 2002; Osmond and Park,

2002; Jones, 2004; Papageorgiou and Govindjee, 2004;

Zarco-Tejada et al., 2004; Chaerle et al., 2005). Recent

developments in this area of research are introduced in the

Focus Papers in this issue. However, the majority of such

research has been limited to 2D imaging. Mapping spectral

images to an accurate 3D lidar image using computer

graphics techniques such as texture mapping for natural

colour images, as shown in Fig. 10, makes it possible to

combine 3D images with biotic and physiological in-

formation. The composite image may provide more

effective information for detecting and understanding 3D

plant responses to stress.

For example, changes in 3D composite images of natural

colour, chlorophyll a fluorescence intensity (‘P’ at the peak

of the Kautsky effect), photochemical reflectance index

(PRI), and leaf temperature of a sunflower (Helianthus

annuus L.) plant in response to treatment with the herbicide

glufosinate-ammonium (Basta) are shown in Figs 12 and

13. Basta is the most popular commercially available foliar

herbicide used for weed control in many genetically

engineered crops that have resistance to the herbicide

(Lea and Ridley, 1989). Visible injury was not observed

during the experiment. Natural colour is an indicator of

the concentration of photosynthetic pigments such as

Fig. 10. Monitoring of aubergine (Solanum melongena L.) growth using high-resolution optical probe-based scanning lidar with a range accuracy
of 0.5 mm at a distance of 3.5 m. Natural colour textural information was added to each lidar-derived image using a texture-mapping technique. A, B, and
C are images of the aubergines at 34, 42, and 52 d after seeding, respectively. Growth conditions were 12 h of daylight with a photosynthetic photon
flux density (PPFD) of 300 lmol m�2 s�1, day/night temperatures and relative humidities of 26/22 8C and 40/60%, respectively.

Fig. 11. Changes in the 3D shape of a tomato (Lycopersicon
esculentum Mill.) plant in response to water stress obtained using optical
probe-based scanning lidar with a 0.5 mm range accuracy. The upper and
lower figures are top and side views, respectively. The water potentials of
the plant in images A, B, and C were about �0.4, �0.7, and �1.5 MPa,
respectively. The water deficit was caused by eliminating the water
supply to the plant pot. Leaf inclination clearly changes as the water
potential decreases. Growth conditions were the same as those described
in Fig. 10.
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Fig. 12. Changes in 3D composite images of (A) the natural colour of a sunflower (Helianthus annuus L.) plant, (B) of chlorophyll (Chl.) a fluorescence
intensity (‘P’ at the peak of the Kautsky effect), and (C) of the photochemical reflectance index (PRI) before (top row) and after (bottom row) treatment
with glufosinate-ammonium (Basta) herbicide. The original 3D images were measured using an optical probe-based scanning lidar with 0.5 mm range
accuracy. The composite images were obtained using a texture-mapping technique that mapped the natural colour, chlorophyll a fluorescence intensity,
and PRI images to each 3D image. Broken lines show the part of the leaf to which the herbicide was applied. The upper images were measured;180 min
before the herbicide treatment and the lower ones were recorded;570 min after the treatment. PPFD for fluorescence measurement (Omasa et al., 1987)
was 250 lmol m�2 s�1. Temperature and relative humidity were 25 8C and 50%, respectively. Growth conditions were the same as those described
in Fig. 10.

Fig. 13. Changes in 3D composite images of (A) leaf temperature and (B) PRI of the same plant shown in Fig. 12. The upper images were obtained just
before the treatment and the lower ones were obtained 90 min after the treatment. Light was provided at a PPFD of 450 lmol m�2 s�1 from 180 min
before the treatment, and stomata were mostly open by the time of the treatment. Temperature and relative humidity were 25 8C and 50%, respectively.
Growth conditions were the same as those described in Fig. 10.
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chlorophylls and carotenoids. Chlorophyll fluorescence,

the first transient (OJIP) of a dark-adapted leaf, reflects

the successive reduction of the electron acceptor pool

in photosystem II (QA, the one-electron acceptor-bound

plastoquinone; QB, the two-electron acceptor-bound plasto-

quinone; and mobile plastoquinone molecules), and ‘P’

may reflect the peak concentration of QA
�, QB

2�, and

plastoquinone PQH2 (Govindjee, 2004). PRI has a negative

correlation with the de-epoxidation state of the xanthophyll

cycle from violaxanthin to zeaxanthin (Gamon et al., 1992;

Peñuelas et al., 1997; Evain et al., 2004) and it is calculated

using the equation (R531–R570)/(R531+R570), where Rk is the

reflectance at a wavelength of k nm. Leaf temperature

provides a measure of stomatal response, transpiration,

absorption of CO2 (photosynthesis), and absorption of air

pollutants under constant thermal environments (Jones,

1983, 2004; Omasa, 1990, 2002).

Figure 12 represents 3D composite images of the natural

colour, chlorophyll fluorescence intensity at ‘P’, and PRI

before treatment with Basta on the central part of a leaf

(broken lines in the figure) and at 570 min after the

treatment. The active ingredient of Basta is glufosinate,

which inhibits the activity of glutamine synthetase, which

is essential for the removal of toxic ammonia produced

by plant metabolism (Lea and Ridley, 1989). The applic-

ation of glufosinate increases levels of ammonia in the plant

tissues, and this reaction stops photosynthesis and causes

mortality within a few days (Lea and Ridley, 1989). In Fig.

12, the natural colour and PRI images show little change,

but a large change is evident in fluorescence intensity

because of photosynthetic inhibition by 570 min after the

treatment. Changes are also evident in other young leaves

that had not been treated; the reason for these changes is not

clear. Figure 13 shows 3D composite images of leaf

temperature and PRI just before the treatment and 90 min

after the treatment. Because illumination was provided

starting at 180 min before the treatment, stomata had mostly

opened before the treatment. The treatment caused stomatal

closure and a temperature increase in the treated area.

However, leaf temperature outside the treated area contin-

ued to decrease because of transpirational cooling permitted

by the open stomata. As in Fig. 12, PRI at 90 min after the

treatment showed little change from the pretreatment

values. The difference in the spatial responses to Basta

treatment was confirmed by simultaneous 3D imaging of

natural colour, chlorophyll fluorescence, PRI, and leaf

temperature.

Foliar chlorophyll contents are strongly related to the

photosynthetic ability of plants. Leaf spectral reflectance

is one means of assessing the contents of different chloro-

phylls. For example, chlorophyll a content was estimated

(R2=0.90) using the ratio of reflectance at 550 and 900 nm

(Omasa and Aiga, 1987). The change in red edge, which is

the region of the reflectance curve from 690 to 740 nm, also

depends on the chlorophyll content (Curran et al., 1990;

Jago et al., 1999). These analyses have been used to detect

plant injuries that result from nutrient deficiency, air

pollution, and other biotic and abiotic stresses that can

cause changes in the chlorophyll content (Omasa and Aiga,

1987; Wessman, 1990; Ustin et al., 1999). Recent advances

in hyperspectral imaging have provided additional useful

information on physiological and ecophysiological reactions

and on levels of various substances in plants (Wessman,

1990; Ustin et al., 1999; Zarco-Tejada et al., 2004). Thus,

it may be possible to construct 3D composite images that

include additional useful information by means of computer

graphics. The spectral characteristics of plants have also been

coupled with their 3D structure. Integrated analyses of

spectral reflectance images and 3D lidar images provide

more precise estimation of structural, physiological, and

ecophysiological indices and levels of various substances in

plants in wide-area imaging such as remote sensing. For

example, Blackburn (2002) integrated an airborne multi-

spectral sensor with an airborne small-footprint lidar system

to estimate forest chlorophyll contents. Combining the 3D

tree structure derived from the lidar image with the multi-

spectral image improved the strength of the relationship be-

tween chlorophyll content per unit of leaf mass and the

wavelength position of the red edge to R2=0.85 for the

coniferous stands.

Spectral analysis of steady-state fluorescence in the

region between ultraviolet and red wavelengths (300–

800 nm) has also been used for the detection of internal

responses related to changes in plant pigments, cell

structure, and membranes (Lang et al., 1991; Lichtenthaler

et al., 1996; Buschmann et al., 2000; Kim et al., 2002).

Chlorophyll a fluorescence imaging, which was started by

Omasa et al. (1987) and Daley et al. (1989), has been used

as a powerful tool for non-invasive analysis of photosyn-

thesis. The imaging reveals the distribution of photosyn-

thetic activity within the leaf and permits early detection

of stress before the appearance of visible injury on the

leaf surface (Govindjee and Nedbal, 2000; Omasa and

Takayama, 2002; Osmond and Park, 2002; Papageorgiou

and Govindjee, 2004; Chaerle et al., 2005). Furthermore,

because of the growing demand for large-scale monitoring

of ecosystems in times of global change, the application

of this form of imaging has been expanded from the leaf

to whole plants and even forest stands. In particular, laser-

induced fluorescence (LIF) imaging has been applied for

the determination of substances in whole plants (Edner

et al., 1994; Johansson et al., 1996; Saito et al., 2000)

and photosynthetic activity of whole plants as techniques

of laser-induced fluorescence transients (LIFTs) (Omasa,

1988, 1998; also see Omasa and Takayama, 2002; Kolber

et al., 1998). Recently, more extensive characterization of

photosynthetic properties, such as the efficiency of photo-

synthetic light utilization, the quantum yield of photosyn-

thesis, and the kinetics of photosynthetic electron transport,

has been proposed using LIFT, which is based on the
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principles of fast-repetition fluorescence (Kolber et al.,

1998) for large-scale measurement at a range of 5–30 m

(Ananyev et al., 2005; Kolber et al., 2005).

Leaf temperature is a useful indicator of stomatal

response, transpiration, and absorption of CO2 (photosyn-

thesis) and of air pollutants (Jones, 1983, 2004; Omasa,

1990, 2002; Omasa and Croxdale, 1992) under constant

thermal conditions. In the early 1980s, Omasa et al. (1981a,

b; also see Omasa and Croxdale, 1992) estimated dynamic

responses in leaf images of stomatal resistance (i.e. the

inverse of stomatal conductance), transpiration rate, and

absorption rates of O3, NO2, and SO2 from leaf-temperature

images under a range of values of light intensity, air

temperature, humidity, and air current. Recently, this

technique was applied to simultaneous imaging of stomatal

conductance, non-photochemical quenching, and photo-

chemical yield of photosystem II in intact leaves (Omasa

and Takayama, 2003). However, it is limited to imaging of

a single leaf in a controlled environment. Chaerle et al.

(2003) also applied thermal and chlorophyll fluorescence

imaging for monitoring the effects of phenylurea herbicide

on plant leaves. Further developments are presented in

other Focus Papers in this issue.

Thermal imaging can permit the early detection of plant

stress because stomatal closure occurs before the appear-

ance of visible injury and this phenomenon is revealed by

differences in temperature between stressed and non-

stressed plants (Omasa, 1990, 2002; Jones, 2004). It is

difficult to evaluate stomatal conductance and transpiration

rates of plants under growing conditions in the field using

leaf-temperature images because leaf temperature depends

not only on stomatal opening but also on changeable

thermal conditions such as air temperature, humidity,

radiation, and air current. However, our previous studies

have provided early detection of environmental stress in

individual trees using ground-based or airborne (helicopter-

based) thermal imaging under cloudy, slightly windy, and

steady-state thermal conditions (Omasa and Aiga, 1987;

Omasa et al., 1990, 1993; Omasa, 2002). Jones et al.

(1997) and Jones (1999a, b) proposed a much more user-

friendly approach based on the use of wet and dry reference

surfaces to normalize the temperature of the leaf to account

for changing environmental conditions and applied the

technique to vegetation canopies in the field. Jones (2004)

presents a detailed review of the application of thermal

imaging and infrared sensing in plant physiology and

ecophysiology.

Although fluorescence and thermal images provide use-

ful information on plant stress, they are limited to 2D

images. However, it is possible to create 3D images that

will be more useful for detecting and understanding plant

stress by compositing the 2D images with 3D lidar images,

as shown in Figs 12 and 13. Furthermore, the use of 3D

lidar images in mixel analysis in the 2D images (a mixel is

a pixel whose value is a mixture of the different land cover

radiance values) may improve the analytical results in wide-

area imaging such as the spectral reflectance analysis

described herein.

Concluding remarks and perspectives
for the future

In this paper, a wide range of research on 3D lidar imaging

from the leaf level to remote sensing of landscapes was

reviewed. Numerous studies during the past decade have

shown the applicability of lidar-based remote sensing to

estimate plant properties such as canopy height, canopy

structure, carbon stock, and species. Several studies have

also demonstrated the usefulness of lidar in assessing large-

scale plant growth responses. However, the potential of

3D lidar has not yet been fully exploited for monitoring of

plant responses to stress. Future lidar applications, inclu-

ding more accurate dynamic estimation of plant properties,

will improve our understanding of plant responses to stress

and will improve our knowledge of interactions between

plants and their environment.

The spectral properties of reflection, radiation, and

fluorescence from leaves provide useful information on

physiological responses and levels of various substances in

leaves. However, until recently, most research on imaging

these spectral properties has been limited to 2D imaging.

Current passive imaging techniques such as multi- or

hyperspectral imaging, thermal imaging, and active fluor-

escence imaging techniques can provide a variety of in-

formation on physiological conditions and levels of various

substances in plants, including plant pigments, stomatal

responses, transpiration, photosynthesis, and gas exchange.

Therefore, the composite use of 3D lidar with 2D data

collected using passive and active imaging techniques may

improve the accuracy of airborne and satellite remote

sensing and make it possible to analyse 3D information

on physiological conditions and levels of various substan-

ces in agricultural and ecological applications and global

biosphere observations.

To demonstrate the potential usefulness of composite

imaging techniques, it was shown how accurate lidar

images and optical images of natural colour, chloro-

phyll fluorescence, PRI, and leaf temperature can be

combined to provide information on pigments, photosyn-

thesis, transpiration, stomatal responses, and other factors

at the level of individual plants using computer graphics

techniques. The resulting 3D composite images will in-

creasingly improve our understanding of and ability to

diagnose plant responses to stress. Furthermore, the com-

bination of lidar with other active imaging techniques is

advantageous. In particular, the LIF and LIFT techniques

are active forms of remote sensing that provide estimates

of levels of various substances in leaves and of photo-

synthetic activity. Combination of these active imaging

techniques with lidar may allow 3D estimates of levels
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of various substances and of plant responses at multiple

scales. In the future, composite 3D imaging techniques may

be applied not only to plant science and global obser-

vations, but also to education, precision agriculture, and

forestry.
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