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ASBSTRACT

‘This paper addresses the mathematics for using monocular model-based vision to find
the 3-D positions of circular and spherical model features, and, for the circular case,
orientations as well. Monocular model-based vision here refers to the use of a single
projective image of modeled objects to. solve for the 3-D positions and orientations of
the objects in the scene. ‘The mathematics for solving 3-dimensional position and
orientation of the object from matched model and image points/lines features are well
known. However, no known paper addresses spherical features and very:few papers
‘address the mathematics involving circular model features. This paper describes 2
“novel closed-formed solution for the 3-D position and orientation of a circular features
and the 3-D position of a spherical feature. The number of solutions for the circular
case is found to be two in general, but there is only one solution when the surface nor-
mal-of the circular feature passes through the center of projection. . There is only one
solution for the circular case. Advantages of this method are: (1) Handles spherical
“as well as circular features. (2) Closed-form solution. (3) Gives only the necessary
number of solutions (no redundant solutions). (4) Simple mathematics involving 3-D.
analytic Geometry. (5) Geometrically intuitive. .=~ ) e T

INTRODUCTION

Moln'(‘)‘cular_\_riisvion can be used to ﬁnd 3-D position and orientation of 'ani‘dvbjg(';t‘ if
the object ‘model is known. Most of the mathematics developed for _recovering the
object position from' a monocular image is based on point features [Fischler,

: Ganap'athyi, ‘Haralick a,b, Shiu, Wolf]. If the correspondence between image point . :

features and model point features are known, viewpoint recovery mathematics can be
use to find the 3-D position and 6rientati§n of the object position. In model-based
monocular applications, this correspondence is hot;’known initially. However, ;heurisé
. ‘tics are used to hypothesize the correspondence between the image features and the
) model features. : The correspondence hypothesis can be used to calculate the object

bbSitib_n.. The hypothesis is verified by projecting the 'Ihodel_ at the calculated position’ |

onto the image plane and compare it with the input image.. If it closely resemible the
image, the hypoth'esis; is taken as the result. Otherwise, further hypotheses will be
~ generated until one is verified to be true. The mathematics based on line features has
“also been developed [Lowe] and is similar to that of using point features. : R
, Viewpoint recovery mathematics for point and line features 'cannOtb be applied to -
'objegts~dominafted' by circular and spherical features, because either there é,ré no ver-
“tices or lines present in the image,' or the vertices or lines in the image does not have
v corresp0ndi>ng‘.vertice‘s or lines in the 3-D object model. Eicam'plé Q'f ‘the first case is
the}im‘age of a ball; it-does not have points or lines. Example of the second case is the
- image of a circular cylinder; it has four vertices and two straight lihes' but none of



: them have any correspondrng vertlces or l1nes in the 3 D object model Thus, spec1al
v1ewp01nt recovery’ mathematlcs is- needed to be developed for. c1rcular and spherlcal_‘
features. The avallablhty of such mathematics allows the recogmtlon and locatlon of
3-D obJects domlnated by c1rcular and elllptlcal features from a s1ngle perspectlve o
1mage s o : : : o

There is no prev1ous work for the v1ewpo1nt determmatlon of spherlcal features’
that the authors know of. However, there areé some previous “work related to the
v1ewpomt determlnatlon for a. circular feature. Haralick et.-al. [Harahck a,b]
developed v1ewp01nt determmatlon mathematlcs for second- degree curves Although
_ their method is more general in the Sense that it handles second degree curves and not. -
just c1rcles, it has ‘the drawbacks that it is 1terat1ve, that -an 1mt1al estimation is
" required, that the number of poss1ble solutlons are not glven, and that no geometrlc' h
3 _1nterpretatlon is glven It is also not clear how the - iterative solutlons Wlll performb
“when the method trles to find all the 6 degrees of freedom of the c1rcular feature whlle
- the clrcle can only be fixed to 5 degrees of freedom because of its rotatlonal sym-—
‘ ‘metry Mulgaonkar [Mulgaonkar] ‘gave an 1terat1ve solutlon to determlne the
" ,v1ewpomt of a circular feature. Marimont [Marlmont] presented a closed-form solu-'
» tlon for the c1rcular feature. However, his method is mathematlcally more complex.
: »than thls paper ’s approach His paper is based on linear algebra rather than 3-D ana-
Tytic geometry, resultmg in solutlons that are not geometrlcally 1ntu1t1ve Marlmont s
"method gives 8 solutlons 4 of them’ are behind the cammera and 4 of them are in front
of the camera. ‘The solutlons are redundant because he stated that out of the 4 solu— -

tions in front of the camera, there are 2 distinct ones. (In fact, theré | may belor?2

distinct solutions. If the surface normal of the circular feature passes through the -
center of prOJectlon, there is only one solution. Otherw1se there are two solutlons)
- Lastly, Marlmont S method does not allow spherlcal features ' '

v We have developed a closed-form method for v1ewpomt determ1nat1on for. not
' "only clrcular features, but also for spherical features. The method is based on the. for-
mation of a second degree cone havmg the center of prOJectlon (camera focal pomt)
vertex and. passing through the elllpse on the 1mage ‘plane.: Because 3-D: analytlc
geometry isinvolved, the solution is geometrlcally intuitive. - Tt also uses simpler
o "mathematlcs compared to Marlmont’s method [Marlmont] and 1t does not glve redun—v v

e 'dant solutlons

Sectlon 2 d1scusses not only why - the pro_]ectlon of 3—D c1rcular and spherlcal
. -features onto the image plane are -ellipses, it gives. the mathematlcs to find the image .

' -elllpse given' the 3- D position of a ‘circular or spherical feature Sectlon 3 d1scusses the :
mathematlcs for v1ewpomt determination given the elllpse on' the 1mage plane and the o
vrad1us of the model c1rcular or spherlcal feature, - : ' : g



2 PROJECTION OF CIRCULAR AND SPHERICAL FEATURES ONTO'
THE IMAGE PLANE

There are two.reasons to study the projection of circular and spherlcal features
onto the image: plane: (1) To understand the formation of the image ellipse. (2) To
find the equation of the image: ellipse for simulation needs We Wlll first address the
case of a circular feature. Then the spherlcal case will be discussed. =~ . :

2.1 PROJECTION OF CIRCULAR FEATURE

"In Flgure 2.1. 1 ‘we have shown two coordinate frames The camera frame x y -z
isa3d dlmenslonal frame with the origin as the projection center and has its z- axis
pointing to’ the dlrectlon itis pomted The image frame u-v is a 2 dimensional frame
“with the u and v axes parallel to the x and y axes of the camera frame, respect1vely
From similar triangles shown in Figure 2.1.1, we can relate the 3-D: coordmates ( ,y,_z) :
to the i image coordmate (u,v) as. follows : ' S

u=—", 21y
. S ‘.__(2-1’2)

Z

‘where {;, is the focal length of the camera. In reality, image. coordinates are g1ven in

pixels instead of un1ts used i 1n ‘the 3-D world. Moreover, the origin used by the vision™ * '

system: may. not lie on the z- -axis. The raw image coordinate in pixels must be scaled
in both the x and 'y d1rect1ons and translated. This problem is addressed by papers

dealing with camera calibration. See [Tsai, Ganapathy, Shiu]. - For the rest of this

paper, without loss of generality, we assume that camera calibration has already been
performed and the image coordinate is already converted to the correct form =

" The position and or1entatlon of a clrcular feature in 3D is completely spec1ﬁed by
the coordinates of its center and the surface normal vector. We will adopt a conven- -
" tion that points the surfaces normal from the circle towards the d1rect10n where the

circle is visible. Examples are shown in Figure 2.1.2.

- The method is br1eﬁy outhned -as follows: We form a cone havmg the prOJectlon
center as vertex and which joins the vertex to every point on the cncle whose center
Vpos1t1on and surface. normal is given. Then we intersect the cone w1th the lmage _

~ plane by solving two 51multaneous equations given by the cone and the plane

‘ ~ In order to find the equation of the cone easily, we w1ll use a new coordmate _
'frame x'—y'—3' having its origin the same as the camera frame x-y-z and its z'—axis -
» ’parallel to the surface normal of the c1rc1e, see Figure 2.1.3.. We W1ll first find ‘the
‘*equatlon of the cone with respect to x'—y'—z', from which we can find the equation
with respect to x-y-z' by simple coordinate transformation. - Given. the above
specification for x'—y'—s' frame, the or1entat1on of the frame is not unique but has a E

- degree of freedom about the z'—axis.



We will present a method to ﬁnd an x'-y g frame that satlsﬁes the glven con- )
_straints and which works. for -all p0551ble orientation of’ the clrcular feature ‘Let ‘the

~ direction of thecircular curvature be (v,v, ,vz)T Let the follow1ng homogeneous_ o

_transformatlon matrlx represent the x'—y'—z relatlve to the X-y-2 frame

g ox_ax_.O » T AT P o
o Imyopay O S Ay
, _ 0 0 0 1‘ ' ‘ v
_v Smce (ax,a.y,az) can. be lnterpreted as the d1rect1on of the z’-axis w1th respect to x-y—
' frame [Paul] and s1nce it has to be parallel to the normal vector of the c1rcle, : '

o
]

- ;‘__'_(2:,_1,.4):_'» '4
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N x|
a. A2

. The x’ and y axes can- be arbltrarlly picked as long as they are orthogonal to z’-axis | -
. and Ol'thogonal to each other. We will select first the y’ direction. The x—axrs can
" “then be found by taking the cross product of the vectors representmg the y and z ! '» _
axes The orthogonahty constralnt between the z’ and y’ axes results in _ S
| e ' v a Ox+ay0y+30—0 o - | (2 1. 5)> : |

. ,From th1s equatlon, we can express (o x,oy,oz) as-a hnear combmatmn of two known E
. ,vectors For example, from Equatlon 2 1.5, o, = (o ay-—oza )/ax Thus, :

. :o>xv - - »a'}( . a’x e o
Claf=al o | (218)
o P R 1 BB B T T e

'Here, we can arbltrarlly choose Oy and 04y and ox is ﬁxed from the equatlon in terms of- . .

"0y and oz Slmllarly, we can fix o, or oz, resultmg in- the followmg two equat1ons

1 [1] o]
B 1 —a, | —a ey L
oy | = oy E o, | — | . '(-,2,.‘,1‘.7) B
o, : ol »
4 | 0 . 1 .
: vandA L
oy =0k -0 v..+°¥ 1 ' _b L RS (218)
a,’ a,

: We w1ll use‘the 'fpuowingf_rﬁle to' assign values to (’ox,oy,okz) to a\?oi_d,_ dividlng‘vb'y: z'ero'or" o



near ZEro.

If |a, l > 3, |>1a,], we will use Equation 2.1.6 and set o, to zero, resultmg in

oy a P LA e
oo —L1—| 1| )
0O, 1+—§'y_é

ax

6 1 S )
Oy | = — =1, ST 4 (1)
2 1+ 5 0

a,

If |a,| 2 |ay | > |a, |, we will use Equation 2.1.8 and set o.y: to zero, i‘e’sultir‘lg_' in

oy | =——— 0 |- (2r11)
: - a a : R G
s . 1+ x2
. az .az

To ﬁnd.(nx',ny,'nz'); we take a cross 'produ_ct of the y.’ and z’ akis,"resﬁlting in:

{2 | [oya—ay0,

" _laoon|. S o . (2.1.12)
™ . o é' . _ )

Yy xRy

Now we w1ll find the equatlon of the cone based on x'_y'—z' axis.” We must first -
find the new coordinate of the circle center. If the cm:le center is (xo,yo,zo) relative to
x-y-z, then its posmon (x 0:¥'0,%0)" relative to x'—y'— ; '

X0 Xo '} nxx0+nyyo+nzz0 P =
Pl =T yo| = |owetoyotose | . (2113)
B L1 R LY axxd+ay3’o+a 2 . :

' The geometry of the problem is shown in Figure 2 1.4. Since the 7' axis'is parallel to’

' _'bthe normal vector of ‘the circle, the plane of the c1rcle must be parallel to the x—y, .

' 'plane Let us set up a new coordinate frame x"—y —z” having the same orientation as
- Xy gt but whose orlgmal is at (0,0,7'y) relative to x¥—y'—z'. This frame of rveference is
_ shown‘ 11_1_F1gure 2 1.4. The equation of the circle with respect to x'—y"~s" is

3 (x";x,o)2+(Y',_Y’Q)2=R2- . : ) - .v ) . (2.1.14) )



L

-

v The. desued cone- cons1sts of 1nﬁn1te number of lines each pass through a pornt on the
circle. - ‘The two pomt form of a- line passing through the orlgm and a po1nt (x",y" z'o) o
on the c1rcle has the formula o o e T

.X"TO y'—0  ghp-0' R ( s )

from which we have . .
Z'gX . R 1 Oy

zI

mllm.

.Substltutlng Equat1on 2. 1 16 1nto Equatmn 2. 1 14 and group1ng the xf2, y 22 ; xy, yz,
Xz terms, we have o _ ) o | i
I 2x’2+z’ 2)r'2+( 2+y'02)z’2—2x'[,z’oxz—23/ Oz' y’z' =0, - | (2 1. 17)

v Thrs is an’ equatlon of the cone speclﬁed accordmg to the x—y g coordlnate frame
‘The lack of a constant term 1nd1cates that the cone. passes through ‘the origin.. Next -
- weneed to find the equat1on of the same cone with: respect ‘to the X-y-2. frame Thls 1s
- _ach1eved by the followmg substrtutmn mto Equatlon 2. 1 17 ' :

x| x1 n x+nyy+n z

| : y _ T—l_ v|=lo x40,y 40,3 | » B S v} | (2118)
e AR axx+3'y!/+az : R

resultmg ina second order equatron in terms of x, Y, and z. To ﬁnd ‘the equatlon of
elllpse proJected on'the i image plane (z = 1), we intersect the cone equation with the |
prOJectlon plane z=f,, which is. equlvalent to setting z to fo in the cone equatlon The ‘
§ :'resultrng second degree equatlon is obtained by the a1d of SMP [SMP]

. 2+by2+cxy+dx+ey+f =0, . = (2 1. 19)_‘: .
where o S
S _ a —_a 2R2+ax"’x02+a 2y0 +nx2z02+ox % —2axnxxozo 2axoxyozo, o
b —',—a.},2R2+a,y X242, 202 +0, 2502 +0, 2 —2ayn xozo—ZayoyyOzo 3
e= 2(— 3'yR +a a‘yx02+a'xa'y}'0 +o OyZOZ—axn XoBo—ax0yY %o~ a-ynxxozo ayAXYOZO)
| d= 2f0(—a a; R +a a xo 242, <50 +nxnzzo +oxo zoz—axnzxozo—axozyozo—a n; xozo-—azoxygzo)
€= 2f0(—a.yazR +aya x02+ayazy0 41y D, % %+0,0,20° ayn xozo—ayozyozo—azn xozo—a oyyozo)

f = fo ( az2R2+az2x02+az2Y02+n z024'03 78 —2a'zn xozo—2az°zYozo)

; "2 2 PROJECTION OF SPHERICAL FEATURE

In the spherlcal case; We also’ have to ﬁnd the equatlon of. the cone and then S

k 'mtersect 1t to. the 1mage plane ln this case, the cone is always a rlght c1rcular cone



because of the symmetry of the sphere

o We are glven ‘the radlus of the sphere and the coordlnate of 1ts center (xo,yo,zo)
..relatrve to the camera frame x—y—z. ‘The objectlve is to find the equatlon of the .
: elhpse prolected on the i 1mage plane z—fo

We ﬁrst deﬁne a convenient coord1nate axis. x’—y —3! whlch has the same orlgm as
x—y—z but its z'—axis pomts towards (xo,yo,zo) ‘Using the same ‘notation as ‘the clrcular-'
' case for the homogeneous transform representing x’-—y g, ‘we have SR -
: 3'x". - o T

|2y = [XO)YO’ZO] el o (221)
ay| \/xO2+y02+z0 SRR P

7 .
:Once (ax,ay, a,).is found (ox,oy,o) can be found by Equat1ons 2.1.9-2.1. 11 The cross— -
’product of y and ¢ axes will glve (n x,ny,nz), whlch is given in Equatlon 2. 1 12.

Next we will find the equatlon of the cone relatlve to. the x—y '—g' axis. Slnce the e

: _ams s of the cone l1nes up w1th 2z’ axis, A cone has equatlon of the form [Salmon]

xl2 '2 ,zl2 )

k2+k2 k2 = _’._v_’ S (222)
» 'where the mtersectlon of the cone w1th the y'z’ plane has equatlons y = :J:(ky/kz)z ~and ,
" the mtersectlon w1th the x's! plane has equatlons x = :I:(kx/k )z For the case of a rlght I

3fc1rcular cone, k, = k Equatlon 2 2 2 becomes

R -»kz 12 kz' p2 o Ce e b :
‘ »We can ﬁnd the ratlo h- by s1mple geometry as shown in Flgure 2. 2. 1 By equatmg:

Y

R ' k"z

: »the ratlos of correspondmg sides. of the 51m1lar trlangles, = s found to be_
D02—‘R2 S B L e = . . L. e : . ST o

—v—Rf——.—,where Dyis the dlstance from the origin to the center of the sphere. _.Equ_a_

“tion 2'.2_,3\;Bécomé5", :

The above ‘cone equatlon is speclﬁed w1th respect to x’—y —7. We need to ﬁnd the
| _*equatlon of the same cone with respect to the camera frame (x-y- z) by. substltutmg:
Equatlon 2:1. 18 1nto Equatlon 2.2.4. To find the’ equatlon of the elhpse prOJected on
the i image plane, we 1ntersect the cone with the plane z—fo and resultmg in the elhpse‘v -
.equatlon after 51mpllﬁcatlon ' T C -

'2_|;by2+cxy'—i—dx-h<?y+ff=,- 0. ; ’ | . (225) .‘

s _f_2 =0 | (2 2 4) U



‘ Where ‘
| = (k02.+)1:)22+202)'(1—ax2) -1,
o Do) +§?z°2) (1-2,%) 1,
;c == 2:2% (x02f702+zoé)7 |
d = —%a?—a(xt +Yo +202),
e 2foa a, (Xo +y02 +202)’ v

R2

(x0™+¥0"+207)

=1

(1 az)—l)

3 DETERMINATION OF OBJECT POSITION FROM IMAGE ELLIPSE
We have seen from the last section that both an ellipse and a c1rcle projects an
elhpse onto the image plane In this section, we will discuss’ the mathematlcs to
recover the 3D ob]ect position, given the equation of the prOJected elhpse, the feature
1dent1ty (c1rcular or spherical feature), and the radius of the feature. '

Although we assume the feature: ldentlty is assumed to be given,: 1t 1s useful to
point out that the cone formed by the focal point and the projected ellipse gives a clue
* to whether it is prOJected from a circular or spherical feature.” If the cone is non-
right-circular, the image ellipse must be prOJected from a circular feature If the cone
is nght—cncular, the image ellipse can be projected from elther the a sphere or a cir-
cle. £ o : ' _

Due to- the rotational symmetry of a circular feature, the 3D pOSlthIl and orien- . .
tation of a circle is completely specified by 5 parameters: 3 for the position and 2 for
v the orlentatlon A spherlcal feature only requlres 3 parameters for spec1fy1ng its: 3D
position.. _ Lo '

For a c1rcular feature, There are generally two solutlons but 1ts has only oneb
solution the cone is rlght circular. For the spherical case, there is only one solution.

3.1 CIRCULAR FEATURE

We are glven the ellipse projected from a circular feature of known rad1us and _—

we want to ﬁnd its 3D pos1t10n and orientation. The procedure con31sts of the follow- »

» ing parts
(1) Flnd the equatlon of the cone whlch passes through the elhpse and whlch has the



focal pomt as vertex relatlve to the camera frame _ e
(2) Find a new frame of reference in which the cone has the standard form RN

(3) Find the two planes that intersect the cone in circles havmg the same radlus as the,,

model feature This will result in two sets of solutions for the pos1t10n and normal o

vector of the clrcle : :
(4) Transform the solution back to the original (camera) frame.

«3 1. 1 FINDING THE EQUATION OF THE CONE"

We need to ﬁnd the equation of the cone relatlve to the camera frame Flgure :

B 3 1 1.1 shows the cone passmg through the image elhpse The camera frame of refer-'

ence is x—y—z and the i 1mage frame is u—=v. Let the given equatlon of the i 1mage elllpse :
o be ' '
| au’4+bv —Fcuv+du+ev+f'= - - o o (3111) .

‘ Many methods have been developed to trace an image ellipse and to find its equatlon, '

“see [Tsukune, Shlra1] “We can thus assume the coefficient (a-f) of the ellipse is ‘known.

Each pomt (u ,v)-on the image ellipse becomes a line of the cone through (u,v +£o) and
(0,0,0), where f, is.the focal length of the camera. The two pomt form of such a hne ls' B
. _(x—O)/(u—O) (y— ) (v—O) (= 0)/(f0—0) Whlch results in ' S

Z

Substltutmg Equatlon 3. 1 1.2 1nto Equatlon 3.1.1.1 and rearranglng, ‘we have the B
“equation of the cone in terms of the coefficients of the i 1mage elhpse (a-f) and the focal R
length (fo): ) , . ) L
et Ax2+By2+cxy+sz+Eyz+Fz2 0. (3'._'1.,1.3). -
where A= aff, B=bi C = cff, D= dfy, B=efp, F =1 L
3.1.2 FINDING THE NEW REFERENCE FRAME AND CHARACTERI—H '
vZATION OF THE CONE

Next we will find a new frame of reference x'—y'—z' in wh1ch the cone have a stan- o

dard form. Since the cone has its vertex at the orlgm of the camera frame x-y—z, the - -

new reference frame x’-y’-z’ have the same origin as the camera frame." Thus, . the' '

'homogeneous transform representing the new frame'is a pure ‘rotational matrlx ‘Let o
(3x3) represents the rotat1onal partsof-the transform matrix. ‘Then the ﬁrst second o

and third columns of P must be the dlrectlons of the ¥/, y', and #' axes relative to x—y—r{: 3
Zy respectlvely [Paul] The matrix P can also be viewed as a’ transformatlon matrle}, :
such that if (x ,y,z)T is the coordinate of a pomt in space relative to x- y-z and (< ,y JB

o

is the coordlnate of | the same point relative to x'—y'—2/, then (x,¥2 ) = P(x y z')T - e

| Equatlon 3.1. 1 3 can be expressed in terms of a quadratlc form Q [Noble]

AR I
v A ‘Q D
. : 2 2| :
[xy z] Q |y|[ =0, where Q= rY ‘B Py : (3.121)
- z B ' v ER T
| DE g
12 2



10

_  We Wlll now show (m a way srmllar to [Noble] that if P is a dlagonahzmg.
- matrix for Q, or, P'QP= D1ag(>\l,>\2, 3), then Equation 3 1.1.3 w1ll be standardlzed'
by substrtutmg (x,y, 7 by P(y,e)T, which is equlvalent to a change of reference
frame to the one represented by P. After the substltutron, the dot product form of
the ~ original cone . equatmn <[x,y,z] ,Q[x ,y,z]T> =0 becomes
<P[x,y,2]" QP [xy! aT> =00 “Since multipling vectors on both sides of the dot pro-
duct by an: orthogonal matr1x ‘does not change the value of the dot product, we can.
multlply both sides of the dot product by P!, resulting ~in
<[x',y ,3 ’]T P- 1QP[x' y' #|™> =0, and <[ 'y |, ALy e]T> = 0. This can bé:written as

>\x'2+>\2y'2+x3z'2—0' T (312‘2)

Compare thls equatlon to that of an cone with its axis ahgned w1th the z ax1s [Sal—
mon]: s

+ = 0. v 3.1.2.3

kx2 k2 k2 R ( )

From Equatlons 3 1.1.2-3, we can see that k,, ky, k is related to bW >\2, and Ag. Notlcev
that Equa.tlon 3.1.1.2 is still valid if ), s, and s are replaced by ¢ ), ¢ X, and ¢ )\3,
where ¢ .is any constant. Similarly, Equation 3.1.1.3 is valid if k,, ky, and k,
replaced by 7k, n 'ky, and 7 k,, where 7 is any constant. Thus, a multiplying constant
is needed in the followmg equatlons relatlng kx, ky, k, and the ergenvalues of Q.

k. p\/m _ky pm k, pm,_ S }“_;._(3124)
where p is any real constant. The constant « is unimportant, it is the ratio kykyk,
that determlnes the shape of the cone.” As shown in Flgure 3.1.2.1, ‘if we intersect the
cone of Equatlon 3.1.2.3 with a plane normal to the cone axis (2’ -ax1s) the intersec- -
tion will be an ellipse on the intersecting plane and the ma_]or axis of the ellipse will »
line up with either the x’ or the y’ axis. It is also known from 3D analytic geometry
[Salmon] ‘that if the distance between the plane and ‘the vertex of the cone is kz, then g
the lengths of the elhpses axes must be 2k, and 2k : ‘ ‘

-~ To summarlze, the followmgs must be true for P= [e1e2e3]
(1) P'QP=A=Diag(M\\oshs)- |
: (2)p represent a'right-handed coordmated frame x-y’-z’. . 7
(3) The z’-axis (e;) is the same as the cone axis. Moreover, the pos1t1ve d1rect10n is
chosen such that the z’-axis points in the direction the camera is pointing to. = -
(4 ) 4) We follow a conventlon for the assignment of \; and X, such that |X,;|> | Xe ], 80
“that if we intersect the cone with a plane parallel to the x-y’ plane, the ma_]or axis of

- _the resultmg ellipse w1ll be parallel to the y’-axis.

Lo To find P, we first find the eigenvalues and normalized elgenvectors of Q by a
‘comp_uter program (such as the devesf subroutlne from the IMSL- mathematlcal_ .
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library [[MSL] ). Let f1y #o, and pg be the calculated. elgenvalues and let fl, f,, and fy
be the corresponding normalized e1genvectors The difference between the set
{11,053} and the set {X;;\s,) 3} is that they are not ordered in the same. way. “The
differences between. the set { £,,f,,f;} and the set {ejese;} are both in the ordermg
(which is the same orderlng as for the e1genvalues) and in the scallng factor of +1.
‘We will discuss how. to assigm Ay, Mgy and Xz frorn the calculated elgenvalues Jyy poy and
jts S0 that cr1ter1a (3) and (4) are satisfied. Once the calculated eigenvalues {yl,u2,/z3}
~are ordered to form {\;\g\s}, the same ordering can be applied to the calculated
~ eigenvectors { fl,fz,fg} to form {e;,ese;}. The signs of £, f2, and f; will also have to be

changed to satisfy criteria (2) and (3)-

The method for finding P (or [e1e2e3] ) depends on whether the cone is’ rlght-
c1rcular or not. A right-circular cone is one that the intersection between the cone and
a plane normal to its axis results in a circle. If a second degree cone is not right-
- circular, the. 1ntersect10n and the plane is an ellipse. A cone.is rlght c1rcular when
k=ky, which is equlvalent to A\, =), (see Equation 3.1.2. 4). Because of the repetition of
-"elgenvalues, the two corresponding eigenvectors e, - and e, are not unique. This is
expected because there are infinite number of coordinate frames ( [erezes) ) in which
lthe rlght-clrcular cone, has standard forms. Any frame whose z-axis (e;) is along the -
cone axis and whose orlgln is at the cone vertex will have the standard cone. equation
of Equation 3.1.2.3. If there are no repeated eigenvalues, or Aj#\g#As; the cone is not“
right circular. In this case, there is a unique set of real orthonormal elgenvectors {
fy,55,fs }, except-the +1 scal1ng factor. o

Now we are ready to find X\; and e Comparmg Equatlon 3.1.2.2 to Equatlon .
3.1.2.3, ), and X; must have the same signs and A, must have a different sign. Thus,
we can find X\; and e based on the polarltles of the calculated elgenvalues Fiy ps, and

. Ha. »
Na=fay E R "(3125)
where 4 is chosen from the calculated e1genvalues f1, Mo and pg, and iy has a different

" sign from the remaining two: eigenvalues. The correspondrng eigenvector f; must be
along the z-axis of the cone. The posrtlve d1rect1on of e; is. chosen to satisfy Criterion -

(3)- o : |
_If the dot product £,.(0,0,1)% >‘0’ then | |
'*'fiffdz-l(o,o;_i)T*%"o_,;t.hea-:' L e

S : _e";;, ;_ffd-._- (3 N 27);

'Notlce that the dot product cannot be zero. Otherwise only the 51de of the c1rcular :

~ feature can be seen " The c1rc1e w1ll pI'O_]eCt a llne to the camera screen and this con-"l' e

‘.:tradlcts the assumptlon of an elhptlcal pro_]ectlon
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When finding \, and e,, Criterion (4) must be satisfied. Let { wyy wy } be ‘the k
remaining eigenvalues from { pi, po, 13 } when py is deleted. We also let g, and g, be
the two eigenvectors correspondmg to w; and w,.

O Jey | <o, then | |
' Ny = 0y : L (31.2.8)

| & = ;- o B129)

If ] <]yl then SRR | N
S T .)\2:‘“2". B . o : (3129)
e=g. S (31210)-

If | w2 | = | w1 | , the cone is r1ght-c1rcular and there are 1nﬁn1te choices for’ selectlng €eq.

_ We can select ‘any vector on. the plane spanned by g; and g.- In our implementation,
we arbitrarily select g and Equat1ons 3.1.2.9- 10 are used to find A, and e,.

- Finally, A must be the e1genvalue not yet chosen. e; must be the correspondmg
eigenvector. - However, e, will not be calculated from the remalnmg e1genvector, it
will ‘be calculated by taking the cross—product of e and €s, to ensure the rlght-
handedness requlrement of Cr1terlon (2) ' S

o = ooy T ('3‘.1.2.11’)

Now that ey e,, e; are found, the transformat1on matrix P is found. Also, since
)\1, Noy and X3 are found, ky, ky, ‘and k, can be found by Equation 3.1.2. 3 and the
geometr1cal characterlstlcs of the cone is now known. There are infinite poss1ble
choices for P is not unique if the cone is right-circular, because of one degree of rota-
tional freedom: For the case of the non-right-circular cone, there are two ‘possible
‘ ch01ces, one havmg its x and y axes in the opp051te d1rectlons as the those of the other
choice. '

3.1.3 CIRCULA.R SECTIONS OF THE CONE

After the transformation of frame of reference usmg P, we have the sta.nda.rd
" equation of a cone in the form of Equation 3.1.2.3. The cone is shown in Figure
3.1.2.1, with respect to the P frame (x'—y'—z' frame). The goal is to find all the ways
“to cut the cone such that a circle with the desired model diameter will result. Since
the intersection curves are s1mllar if the sectlomng planes are parallel [Salmon] , we
can divide the task into two parts. First we will find the orientations (surface nor-
’r'nals) of the planes that intersect the cone in circles. Then we ‘will translate the planes -
- along the: cone axis to ﬁnd the circles with the desired diameter. e S

“From [Salmon], there are only 2 plane orientations (surface normals) that will
result in circular sections, see Figure 3.1.3.1. Furthermore, when: k,>k,, the two.
planes of c1rcular section which also passes through the origin can be der1ved from the
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fgllowing e(iuatien :

1,1
k2 k2

0. o .",”"(‘,3-‘1'3'1')

x,z’[ 1 _1_]_2,2
k2 k2
Factorizing the above equation and us1ng Equatlon 3.1.2.4, we have the followmg two_
sectioning planes:: :
A Dal = e e
B'=+ % . L 3.1.3.2)
. . [N |+ s | ' R ‘ ( ) :
Notlce that both sect1on1ng planes passes through the - y-axis, and that the prOJectmns
of the planes to the x’-y’ plane are two lines. These two planes only gives the plane

orientations. for circular sectlons, they do not section the cone in circles with the -

model radius. ln fact they 1ntersect the cone at one po1nt the or1g1n of the x y -z’

vreference frame.

We will now translate the planes to obtam circular sect1ons wrth the correct
"‘model radlus Figure 3. 1.3.2 shows the cone and the sectioning planes prOJected onto.
the x’-z’ plane The equatlons of the lines representlng the cone can be found by sub-
st1tut1ng 0 1nto y' in Equation 3.1.2.2 and knowmg that Ay and \; have oppos1te signs.

x. (3133

If we translate the planes of Equation 3 1.3.2 along the z’- -axis by 1, we can easily cal-
culate the radlus r of the resultlng c1rcle The translated planes have the equations

|>\1|—'|Xz|

mx'+l. SR ’(3.1.3.4)

7=+
By srmllar triangles shown in Flgure 3.1.3.2, we can then find out how much we have
to translate the plane in order to obtain clrcular sections of the requlred model radius.

Let s be the translation in' the z’ direction so that the planes of Equat1on‘
(3.1.3.4) will have circular sections of model radius R after the translation. We can
calculate s by

=2, B A RN T W1 1) B
The symbohc form of r is half of the distance between pl and p2 or between q1 and
©-q2 in Figure 3.1.3. 2. The points pl, p2, ql and g2 can be calculated by 1ntersect1ng

‘the lines represented by Equation (3.1.3.3) and Equation (3.1.3.4). The algebraic

L manlpulatlon is simpler if it is carried out us1ng kx, k,, k,; instead of Ay gy and \z. In

“the final answer, k;, k, k, is converted back to \;, Ay, and >\3 The conversmn between o
ky, ky, k, and Xy, ,,>\2,, Ay is made by using Equation (3_1 2.4). ‘
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r=":'1 : |>\1H>\é|(|>\2|+|>\3|)‘
l>‘2| E , |>\1|+|>\3|

E (3.1‘.3‘.6)

To ﬁnd the center pornts of the two model c1rcles, we first find the center pomts o
. of the smaller circles w1th radius r, which are the midpoint of p1 and p2 and the mid-
point of ql: and 'q2. In general these midpoints are different from p3 and q3. The
only exceptlon is when the cone is right-circular, in which case the sectlonmg planes in
Figure 3.1.3.2 becomes one horizontal line. If the center of a sectioned circle of radius
ris (u ,v,w) it is easy to show by similar triangles that the center of the correspondlng
model circle with radius R is (s u,s v,s w). We will first find the centers of the two sec-
tioning circle with radlus r, which are the mldpomts of pl and p2, and of ql and 2. v
Again, the symbohc manlpulatlon is simplier if it is done using k,;, ky, and k, and then'
‘ ,convertmg it back to \j, Xy, and X3 Once they are calculated in terms of >\1, Noy and
As 2 scalar multlphcatlon by's y1elds the centers of the sectioned circle of the model
radius. Flnally, we substitute Equations (3.1.3.5) and (3 1.3.6) into the results to ﬁnd'
. the centers of the two circles with radlus R. One solution for the circle center is:

|>\3|('|>\1'|‘-‘|‘>\2|)" a

x! -—R . :

o =E\/ BT

Yau=0, »
W TN E

P AL (P EEND

T (N P+ 1xs )

The second solutlons for the c1rcle center 1sE

A/ el T=12]) "ﬂ o A
lo="—R Y - ; » o : - (3.1.3.8)
,~1'\/1x1|,(|x1|+|x3|)’ - BT i

Yoe=0,

X O+ 126 )
|>‘3|(|>\1|+|>‘3|)

Notice that ‘the two solutlons are the same when )\1—-)\2, i.e., when the cone is rlght- :

2,02 = R

' c1rcular

_ The surface normals of the two circular features can easily be found using the:
. constraints that it is perpendicular to the circles, it is a unit vector, and that the z’-
s component must be negatlve The later constraint ensures that the convention: that
‘the visible side of the circle is ‘the one indicated by the positive direction of the surface
normal. -The surface normal correspondmg to (xm,ym,z 01) is The surface normal_
correspondmg to (x ‘025027 02) is '

EEE

—_— A ‘3;1.‘3.9
l,mmsl_’ (3.1.3.9).
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vl}’:O’
¥ "/ EEESY
1 . -
o |'>‘1|’+lv>\3|

ey R
v, = — —_— - (3.1.3.10
e (31310

The above solutlons for the centers and the suface normals of the cn‘cles are
‘given relative to the x’-y’-z’ frame. The transformation matrix P will bring them -
back to the x-y—z frame: [xg;,YouZoi] = P[xol,y ois?o) T ~and [le,vly,vlz] = P,V LT
where i=1,2, “and (Xg1,¥01,%01) a0 (Xoo,Y02:%02) aT€ the two solutions for the circle centers
and (le,vly,vu) and (Vo,,VoyVe,) are the two corresponding surface normals, all relative

‘to the x-y-z frame (camera frame). Recall that P is composed of the 3 eigenvectors of

Q:
» S €1x' €o2x 63x » . . i
F= '[el' e?‘*s]: ey ey eyl (3.1.3.11)
e e elz €y; €34 s .
Ekpanding P into _ite -elements, we have the solutions with respect to the camera .
frame. One solution for the circle center is: N o U

o TR0 =Rl T (T el)
oo m\ /e DN T=Dal) +-e3,xR'\/y' TMaTDsD) o (513.19)

v|>\1|(|>\1|+»|>\3|)v : » |>\3|(|>\1|+|>‘_3|)f

e R |>\3|(|>\1| 21) l>\1l(|>\2|+l>\3|)
o =" lxl(lx|+|x3|) IXa LN+ 126 1)

o T Tal) V|x|(|x2|+|x3|) o
RV A T (T ER TRVl VAN PR (PR PO R

: The second solutlon for the c1rc1e center is:

Tl U= 1% 1) ST (el t s])

- (3.1'.3.13)_ |

| "‘92:_‘61,‘3 V Turisd= i) 7=V i+ D’ -
T A [N le1|(|x2|+|,m)f.'
o 'e,”,R T T+D T VTl

|>3|(|x1|—'|x2|'){ A TR

B 7 ——b‘i—-ezR e €3, ) - . .
s The |x1|(|,xll+l%;3|) W Il U D)
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‘The surface normal corresponding to [xq;,¥01,%0:]" is:
—e |>\ | =[N |>‘2!+|>\3| (3.1.3.14)
B V I+l I .
_e |>\ P =12 |>\2|+|>‘3|
b\ l%|+lk3 Il Dl
Ce |>\ | =12 | ‘t
i V Dul+ sl |+

The surface normal correspondmg t0 [Xgo,¥o2s%02) " 1

. / N =\ N N ‘ o
I | | g | |21+| 3| (3.1-3‘15)
I+ I+ sl : ‘

N W AL S L RN AP Ea
il VAR PR VAN P W
v = e |>\1]“|>\2|_e EESRYY
” . IN ] YRR

From the above equations for the centers and the surface normals for the solutions,
we can see that there are two solutions in general. However, when \;=),, there is only
one solution because both solutions become the same. Geometrically, there-is only
one solution if the surface normal of the circle points to focal point exactly.

3.2 SPHERICAL FEATURE

If we are given the ellipse projected from a spherical feature of known radius R,
we can find the 3D position of its center. This is shown in Figure 3.2.1 The pro-
cedure involved is similar to the case of the circular feature. It consist of the following
parts:

(1) Find the equatlon of the cone that passes through the ellipse and which has the
~ origin as vertex. The resulting cone must be a right-circular cone.

(2) Find a new frame of reference in which the cer_le has the standard form.

(3) Find the position of the spherical feature in the new frame of reference.

(4) Transform the solution back to the original (camera) frame.

Parts (1) and (2) are the done exactly the same way as the circular case and will
not be repeated here. It is important to point out that the resulting cone will always
be right-circular for the spherical case and therefore X, = >\2 and k, =k,. We will
denote )\; and )\, by X, and’ k, and k, by k.. :

Part (3 ) is considerably 51mp1er compared to the equlvalent part for the circular
case. Given a r1ght—c1rcula.r cone, there is only one way that a sphere of radius R can
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fit in.  Figure 3.2.2 shows the g‘eometry of the problem. We want to find out the posi-
tion of the sphere center with respect to the x’-y’- -z’ frame. Because of symmetry,
' both the x’ and y’ components are zero. The z’ component can easily be ca.lculated by
simple trlgonometry ‘

" Let D, be the distance between the center. of the sphere and the origin and let ¢ be the
~angle” between the z’-axis and the any line on the cone that passes through the vertex.
D, = . ' o (8.20)

sinf

But ¢ is determined bj‘r the cone parameters ky, kyy and k. From: the slope of the line

k
_1n Figure 3. 2.2 representlng the cone, it can be determined that tanf = . Drawing
d 2

a rlght-angle triangle w1th one angle be1ng 6 and the opp051te and ad]acent sides being
-k, and kz, the hypotenuse must be \/ k,2+k,% Therefore,

sinf = . (3:2.2)
where k,=k,=k,. . To express the above equation in terms of \;, X\, and Xy, WE Can use -
Equatlon 3.1.2.4 to. replace the k,, k, and k,. ’
el ‘
sinf = . 3.2.3
T+l (8.23)

where A\, =X\;=X\,. ‘Substituting.Equation 3.2.3 into Equation 3.2.1, we have
|>\1 [+ |
| sl

But Dy is just the z’ component of the sphere center The center of the sphere relatlve
to the x’-y’-z’ frame is:

“Dy=R @&@

|>‘1l+|)‘r|

x,0=0) Y'0=0, z'0=R l)‘l
. 3

(3.2.5)

To er(press the solution in terms of the camera frame x-y-i, we transform the the
‘above results by P calculated in part (2): [Xo,¥os%o)T=s P[x'o,¥'0,2'0]". Expanding it, we
have . - : :

T+ Dl
exR' —_—
" Y
XO | X
. Ao+ \ .
Yo| = ey R _L_i_l_l (3.2.6)
| el | |
Zp

e /—'—Ix|+lx| |
Sz l>‘3
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4 CON CLUSION

* We have wrltten a program to find the 3D position and orientation of a circular
feature from the elliptical projection of the feature. The results are correct for all the
test cases, which includes both elliptical and' right-circular cones. We have also
extended this method to spherical features. The complete mathematics for both the
circular case and the spherical case will be recorded in a technlcal report.
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Figure 2.1.2.  The convention that the surface normal points outward from the invisi-
' ble side of the circle to the visible side.
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- Figure 2.2.1.  Finding the ratio k, /'ky in terms of R and Dy
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' Figure 3.1.3.1. The two planes of circular section.
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Figure 3.2.1. Finding the position of a spherical feature from its elliptical projection.
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- Figure 3.2.2. Solution for the spherical feature position.
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