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b y  M o n o c u la r  M o d e l-B a s e d  V is io n

Y .C .Shiu and Shaheen A hm ad

School of Electrical Engineering, Purdue U niversity, 
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A B S T R A C T

T his paper addresses the m athem atics for using m onocular m odel-based vision  to  find 

the 3-D positions of circular and spherical m odel features, and, for the circular case, 
orientations as w ell. M onocular m odel-based vision  here refers to  the use o f  a single  

projective im age of m odeled objects to  solve for the 3-D positions and orientations of  

the objects in the scene. The m athem atics for solving 3-dim ensional position  and  

orientation  of the object from m atched m odel and im age p o in ts/lin es features are w ell 
known. However, no known paper addresses spherical features arid very few papers 

address the m athem atics involving circular m odel features. T his paper describes a  

novel closed-form ed solution for the 3-D position and orientation  of a circular features  

and the 3-D position o f a spherical feature. The num ber of solutions for the circular  

case is found to  be tw o in general, but there is only one solution  when the surface nor­
m al of the circular feature passes through the center o f projection. There is  only one 

solution for the circular case. A dvantages o f th is m ethod are: (1) Handles spherical
as w ell as circular features. (2) Closed-form  solution. (3) G ives only the nec essary  

number of solutions (no redundant solutions). (4) Sim ple m athem atics involving 3-D  

analytic G eom etry. (5) G eom etrically in tu itive .

IN T R O D U C T IO N

M onocular vision  can be used to  find 3-D position  and orientation o f an object if  

the object m odel is known. M ost of the m athem atics developed for recovering the  

object position from a m onocular im age is based on point features [Fischler, 

G anapathy, Haraliek a,b, Shiu, W o lf]. I f  the correspondence betw een im age point 

features and m odel point features are known, view point recovery m athem atics can be 

use to  find the 3-D position and orientation of the object position. In m odel-based  

m onocular applications, th is correspondence is not known in itia lly . However, heuris­

tics are used to  hypothesize the correspondence betw een the im age features and the  

m odel features. The correspondence hypothesis can be used to  calculate the object 

position. The hypothesis is verified by projecting the m odel at the calculated position  

onto the im age plane and com pare it  w ith  the input im age. If it  closely reseriible the  

im age, the hypothesis is taken as the result. Otherwise. further hypotheses w ill be  

generated until one is verified to  be true. The mathematics* based ori line features has 

also been developed [Lowe] and is sim ilar to  th at o f using point features.

V iew p o in trecb v ery m a th em a ticsfo rp o in ta n d lir ie fea tu resca n n o tb ea p p lied to

objects dom inated by circular and spherical features, because either there are no ver­

tices or lines present in the im age, or the vertices or lines in the im age does not have  

corresponding vertices or lines in the 3-D object m odel. Exam ple of the first case is 

the im age o f a ball; it  does not have points or lines. E xam ple of the second case is the  

im age o f a circular cylinder; it  has four vertices and tw o stra ight lines but none o f



them  have any corresponding vertices or lines in the 3-D object model. Thus, special 

view point recovery m athem atics is needed to be developed for circular and spherical 

features. The availability of such m athem atics allows the recognition and location of 

3-D objects dom inated by circular and elliptical features from a single perspective  

im age.

There is no previous work for the view point determ ination of spherical features  

th a t the authors know of. However, there are som e previous work related to  the  

view point determ ination for a circular feature. Haralick et. al. [Haralick a,b] 

developed view point determ ination m athem atics for second-degree curves. A lthough  

their m ethod is more general in the sense th at it  handles second degree curves and n o t  

ju st xircles, it has the drawbacks th at it is iterative, th a t an initial estim ation  is 

required, th at the number of possible solutions are not given, and th at no geom etric  

interpretation is given. It is also not clear how the iterative solutions w ill perform  

when the m ethod tries to find all the 6 degrees of freedom of the circular feature while  

the circle can only be fixed to  5 degrees of freedom because of its  rotational sym ­

m etry. Mulgaonkar [Mulgaonkar] gave an iterative solution to determ ine the  

view point of a circular feature. M arim ont [Marimont] presented a closed-form  solu­

tion  for the circular feature. However, his m ethod is m ath em atica llym ore complex  

than th is paper’s approach. His paper is based on linear algebra rather than 3-D ana­

ly tic  geom etry, resulting in solutions that are not geom etrically intu itive. M arim ont5S 

m ethod gives 8 solutions: 4 of them  are behind the camera and 4 o f them  are in front 

of the cam era. The solutions are redundant because he stated  th at out of the 4 solu­

tions in front of the camera, there are 2 d istinct ones. (In fact, there m ay be I or 2 

distinct solutions. K the surface norm al of the circular feature passes through the  

center o f projection, there is only one solution. Otherwise there are tw o solutions.) 

Lastly, M arim ont’s m ethod does not allow spherical features.

W e have developed a closed-form  m ethod for view point determ ination for not  

only circular features, but also for spherical features. The m ethod is based on the for­

m ation  of a second degree cone having the center of projection (cam era focal point) as 

vertex and passing through the ellipse on the im age plane. Because 3-D analytic  

geom etry is involved, the solution is geom etrically in tu itive. It also uses sim pler 

m athem atics compared to  M arim ont’s m ethod [Marimont] and it does not give redun­

dant solutions.

Section 2 discusses not only why the projection of 3-D circular and spherical 

features onto the im age plane are ellipses, it  gives the m athem atics to  find the im age  

ellipse given the 3-D position of a circular or spherical feature. Section 3 discusses the  

m athem atics for view point determ ination given the ellipse on the im age plane and the  

radius of the m odel circular or spherical feature.



2 P R O J E C T IO N  O F  C IR C U L A R  A N D  SP H E R IC A L  F E A T U R E S  O N T O  

T H E  IM A G E  P L A N E

There are tw o reasons to  study the projection of circular and spherical features  

onto the im age plane: (I) T o understand the form ation of the im age ellipse. (2) 'Fo 

find the equation of the im age ellipse for sim ulation needs. W e will first address the  

case of a circular feature. Then the spherical case w ill be discussed.

2.1 PRO J E C T IO N  O F  C IR C U L A R  F E A T U R E

In Figure 2.1.1, w e have shown tw o coordinate fram es. The cam era fram e x-y-z  

is a 3 dim ensibnal fram e w ith  the origin as the projection center and has its .;z-axis 

pbintihg to  the direction it  is pointed. The im age fram e u-v is a 2 dim ensional fram e  

w ith  the u and v axes parallel to  the x  and y  axes of the cam era frame, respectively. 

F r o m  sim ilar triangles shown in  Figure 2.1.1, we can relate the 3-D coordinates (x,y,z) 

to  the im age coordinate (u,v) as follows:

U
fpx

Z

v =  ^ p ,  '

where f0 is the focal length of the cam era. In reality, im age coordinates are given in 

pixels instead of units used in th e  3-D world. M oreover, the origin used by the vision  

system  may not lie on the z-axis. The raw im age coordinate in pixels m u st be scaled  

in both the x  and y  directions and translated. This problem  is addressed by papers 

dealing w ith  cam era calibration. See [Tsai, G anapathy, Shiu]. For the rest of this  

paper, w ithout loss of generality, w e assum e that cam era calibration has already been  

perform ed and the im age coordinate is already converted to  the correct form .

The position and orientation of a circular feature in 3D is com pletely specified by  

the coordinates of its  center and the surface norm al vector. W e w ill adopt a conven­

tion  th at points the surfaces norm al from the circle tow ards the direction where the

circle is visible. Exam ples are shown in Figure 2.1.2.

The m ethod is briefly outlined as follows: W e form a cone having the projection  

center as vertex and which joins the vertex to  every point on the circle whose center  

position and surface norm al is given. Then w e intersect the cone w ith  th e  im age  

plane by solving tw o sim ultaneous equations given by the cone and the plane.

In order to  find the equation of the cone easily, w e w ill use a new coordinate  

fram e x'—y'—z' having its origin the sam e as the camera fram e x-y-z and its  z'—axis 

parallel to  the surface norm al of the circle, see Figure 2.1.3. W e w ill first find the  

equation o f the cone w ith  respect to  x '-y  — z', from which w e can find the equation  

w ith  respect to  x-y-z by sim ple coordinate transform ation. Given the above 

specification for x '-y '-z ' fram e, the orientation of the fram e is not unique but has a 

degree o f freedom about the z'—axis.



We w ill present a m ethod to  find an X1- J 1-Z i fram e th at satisfies the given con­

straints and which works for all possible orientation of the circular feature. Let the  

direction o f the circular curvature be (vx,vy,vz)T. Let the following hom ogeneous  

transform ation m atrix represent the x'—y'—z' relative to  the x-y-z frame.

nX °x aX
0

aZ 0<V
O O

(2.1.3)

aX

ay
= .

vy
az V2

Since (ax,ay,az)T can be interpreted as the direction of the z 5-axis w ith  respect to x-y-z  

fram e [Paul] and since it  has to be parallel to the norm al vector of the circle,

(2.1.4)

The X 5 and y } axes can be arbitrarily picked as long as they are orthogonal to  z ’-axis  

and orthogonal to  each other. W e w ill select first th e y ’ direction. The x'-axis can 

then be found by taking the cross product of the vectors representing the y \  and 

axes. T he orthogonality constraint between the z ’ and y ’ axes results in

axox+ayoy+azoz= 0 - (2.1.5)

From  th is equation, w e can express (ox,oy,oz)T as a linear com bination o f tw o known  

vectors. For exam ple, from Equation 2.1.5, ox =  (oyay—ozaz)/ax. Thus,

; “ az ■

0X aX aX

; V-r.. ■■ °y =* °y I +Oz O

■ • . O2 O I

(2 . 1.6)

Here, we can arbitrarily choose oy and oz, and ox is fixed from the equation in term s of  

oy and Oz - Sim ilarly, w e can fix oy or oz, resulting in the following tw o equations:

(2.1.7)
0 X

° y =  °X

“ a x

+ ° z

O

- a Z

• a y

■■■■■;' ■■■ ■ : : -  "
° z

O
.

I

a n d
"■

' ' .. \ •' ■■ ■■; \  . . ' . ,  . ; . r .-I

■ : V ' ~ :■
o x I O

■■ . ; . '■■■ ■■.; ‘ ■ ■
Oy =  Ox O + ° y T

. ; . . ' - : • ' . . ■ • Oz —aX ~ a y

.
aZ ;

( 2 . 1.8)

W e w ill use the following rule to  assign values to (ox,oy,oz) to  avoid dividing by zero or



near zero.

If I ax I >  I ^  I >  | a, | , w e w ill use Equation 2.1.6 and set o2 to  zero, resulting in

~ H

Ox
I '

ax

I°y -- . •

0 Z

\ / ^

0

(24-9)

If I ay I >  I a X  I >  I az I , we will use Equation 2.1.7 and set o2 to zero, resulting in

. V • > Y  ■ ’ I
°x

I “ a x

v; : ; ->Y -  V ^ Y  ^ Y - .  . :
°y

H
Oz

\ / >  V 0

(2 . 1 . 10)

If I az I >  I ax I >  I ay | , w e w ill use Equation 2.1.8 and set oy to zero, resulting in

; ■■ . . Ox
I ■

I

G■ \  • . °y

■Y.. ; : . • °z \ / i + 4
“ ax

Y-Y' Y V  V aZ

(2 .1.11)

To find (nx,ny,nz), we take a cross product of the y ’ and z ’ axis, resulting in:

11X Oya2-EyO2

ny = aX0Z-0XaZ

 ̂ : v: ; ; ■■ . nz Oxay— ExOy

(2.1.12)

Now w e w ill find the equation o f the cone based on x'~y'—z' axis: W e m ust first 

find the new coordinate of the circle center. If the circle center is (x0,y0,z0)T relative to  

x-y-z, theii its position (x'0,y'0,z'0)T relative to  x '-y '-z t is

(2 .143)

The geom etry of the problem  is shown in Figure 2.1.4. Since the z' axis is parallel to  

the norm al ^vector of the circle, the plane of the circle m ust Jbe parallel to  the 3c'—y' 

plane. Let us set up a new coordinate fram e x"—y"—z" having the sam e orientation as 

x'—y'—z' but whose original is a t (0,0,z'0) relative to  x'—y'—z'. T his fram e o f reference is 

shown in Figure 2.1.4. The equation of the circle w ith  respect to  x',-y " -z "  is

■" (x"-x'0)2+(y"-y'0)2=R 2- (2-1.14)

x O X 0
-

n x x O + n y y o + n z z O

. . y 'o —  T - 1 y o = O x X o + O j - y o + O z Z o

z O Zo a x X o + E y y o + a zZ o



The desired cone consists of infinite number of lines each pass through a point on the  

circle. The tw o point form of a line passing through the origin and a point (x",y V 0) 

on the circle has the form ula

(2 .1 .15)
x"—0 yH—0 Zf0-O

from which w e have

x" =
z'rix' z'0y'

and y" (2 .1 .16)

V X
nxx+nyy+nzz

y'
_  ^ p - I

y oxx+oyy+ozz

y . Z axx+ayy+azz

Substituting Equation 2.1.16 in to  Equation 2.1.14 and grouping the x'2, y'2, z'2, xy, yz, 

xz term s, we have

z'o2x '2+z 'o2y '2+ (x 'o2+ y 'o2)*'2- 2 x '0z'0x 'z '- 2 y '0z'0y 'z ' =  0 . (2 .1 ..17)

T his is an equation of the cone specified according to  the xl—y'—z1 coordinate fram e. 

The lack of a constant term  indicates th at the cone passes through the origin. N ext 

w e need to  find the equation of the sam e cone w ith  respect to  the x-y-z frame. This is 

achieved by the following substitu tion  into Equation 2.1.17,

(2 .1 .18)

resulting in a second order equation in term s of x, y , and z. To find the equation of 

ellipse projected on the im age plane (z — f0), we in tersect the cone equation w ith  the  

projection plane z=f0, w hich is equivalent to  setting z to  f0 in the cone equation. The  

resulting second degree equation is obtained by the aid of SMP .[SMPj.: . ; ■

ax2-f-by2+ cxy + d x + ey + f =  0, (2 .1 .19)

where

a =■— ax2R 2+ Ex2X02+ ax2yQ2+ n x2Zo2+ o x2Zo2—2axilxXQZq—2axoxyoZo,

: b =  —ay2R 2H-ay2Xo2+ay2Xo24-ny2Zo2+Oy2ZQ2—2ayiiyXoZo—2ayOyyoZo 

C = 2(—axayR2+axayXo2+axayyo2+oxoyz02—axnyx0Zo—ax6yy0z0—EyIixXoZ0- ayOxy 0z0) —

d =  2f0(—axazR2+axazx02+axazy02+nxnzz02+oxozz02—axnzx0z0—axozy0z0—aznxx0Zo—a2oxy0z0)

e =  2 fo ( -a yazR 2+ a yazx 02+ a yazyo2+ n yn zz02+ o yozZo2- a yn zXoZ0- a yozyoZ o-aznyx 0Z o -a zoyyoZo)

:f =: f02(—az?R 24-az2xQ2-faz2yQ2+ n z2zQ2+ o z2z02—2aznzx0z0—2azozy0z0)

2 ,2  P R O J E C T IO N  O F  SP H E R IC A L  F E A T U R E

In the spherical case, we also have to find the equation of the cone and then  

intersect it  to  the im age plane. In th is case, the cone is alw ays a right circular cone



because of the sym m etry of the sphere.

W e are given the radius of the sphere and the coordinate of its center (x0,y0,z0) 

relative to  the camera fram e x—y—z. The objective is to  find the equation of the  

ellipse projected on the im age plane z=f0.

W e first define a convenient coordinate axis x '-y '-z ' which has the sam e Origin as 

x _ y _ z but its z -a x is  points tow ards (x0,y0,z0). Using the sam e notation  as the circular 

case for the hom ogeneous transform  representing x '-y '-z ', w e have

' V x o 2 - H y  o 2 + z o2

xo>yo>zo] •
(2 .2 . 1)

Once (ax,ayja,) is found, (ox,oy,oz) can be found by Equations 2.1.9-2.1.11. The cross- 

product o f y' and z' axes w ill give (nx,ny,nz), which is given in Equation 2.1.12.

N ext w e w ill find the equation of the cone relative to  the x '-y '-z ' axis. Since the  

axis o f  the cone lines up w ith  z ’ axis, A  cone has equation o f the form  [Salmon]:

* ! 1 + ^ - 4  =  o, : (2 -2 -2)
V 2 V 2 V 2. - - K x - K y K z.

w ; h e r e  the intersection of the cone w ith  the y'z' plane has equations y' =  ±(ky/k z)z', and  

the intersection w ith  the x V  plane has equations x' =  ±(kx/k z)z'. For the case of a right 

circular cone, kx =  ky. Equation 2.2.2 becom es

x '2+  —  y '2—z'2 =  0. (2 .2 .3 )
Yk ^2

*n )

W e can find the ratio —  by sim ple geom etry as shown in Figure 2.2.1. By equaling

v: . -Jv'. k -
the ratios of corresponding sides of the sim ilar triangles, - 1 is found to  be

^ D° R2 where Dn is th e  distance from the origin to  the center of the sphere. Equa-
R  ’ -  ; ■ .. N -  /.-,■■■

tion  2.2.3 becom es

Xo2Fyo2-Hz02 ^  - V j T g W  y(2,_ ^ _ 9 _  n ;

R 2 ' R2

(2.2.4)

The above cone equation is specified w ith  respect to  x '-y '-z '. W e need to  find the  

equation o f the sam e cone w ith  respect to  the cam era frame (x-y-z) by substitu ting  

Equation 2 .1 .1 8  into Equation 2 ,2 .4 .  T o find the equation o f the ellipse projected on  

the im age plane, w e intersect the cone w ith  the plane z=f0 and resulting in th e  ellipse  

equation after sim plification:

ax2+ by2+cxy+dx-t-ey+f =  0. (2 .2 .5 )



where

a;= ( V + ^ i W )  i , 

b = W + y | W l (1_ V )  _  i ;

C ■ (xo2+yo2+ zo2)>
R 2

d =  —
2f0axaz

(xo2+ y 02+ zo2)»
K“

O2+ - .2).

f = ^ ( (x°2+y{ + *“8 )( l - ^ ) - l ) .

3 D E T E R M IN A T IO N  O F  O B J E C T  P O S IT IO N  F R O M  IM A G E  E L L IP S E

W e have seen from the last section th at both an ellipse and a circle projects an 

ellipse onto the im age plane. In th is section, wte w ill discuss the m athem atics to  

recover the 3D object position, given the equation of the projected ellipse, the feature  

identity  (circular or spherical feature), and the radius o f the feature.

A lthough we assum e the feature identity  is assum ed to  be given, it is useful to  

point out th at the cone form ed by the focal point and the projected ellipse gives a clue 

to  whether it  is projected from a circular or spherical feature. If the cone is non­

right-circular, the im age ellipse m ust be projected from a circular feature. If the cone 

is right-circular, the im age ellipse can be projected from either the a sphere or a cir­

cle. -

Due to  the rotational sym m etry of a circular feature, the 3D position and orien­

ta tion  of a circle is com pletely specified by 5 parameters: 3 for the position and 2 for 

the orientation. A  spherical feature only requires 3 param eters for specifying its  3D  

position.

For a circular feature, There are generally tw o solutions but its  has only one  

solution the cone is right circular. For the spherical case, there is  only one solution.

3.1  C IR C U L A R  F E A T U R E

W e are given the ellipse projected from a circular feature of known ra d iu sa n d  

w e w ant to  find its  3D position and orientation. The procedure consists o f the follow­

ing parts:

( l )  F ind the equation of the cone which passes through the ellipse and which has the



focal point as vertex relative to  the cam era fram e.

(2) F ind a new fram e o f reference in which the co n e  has the standard form .

(3) F ind the tw o planes th at intersect the cone in circles having the sam e radius as the  

m odel feature. T his w ill result in tw o sets of solutions for the position and noripal 

vector of the circle.

(4) Transform  the solution back to  the original (camera) fram e.

3>1.1 F IN D IN G  T H E  E Q U A T IO N  O F  T H E  C Q N E

W e need to  find the equation of the cone relative to  the cam era fram e. Figure  

3 .1 .1 .1 shows the cone passing through the im age ellipse. The cam era fram e o f refer­

ence is x - y - z  and the im age fram e is u -v .  Let the given equation of the im age ellipse

be v ; v  \

au2+bv24-cuv-Kdu+ev+f == 0. (3 .1.1.1)

M any m ethods have been developed to  trace an im age ellipse and to  find its  equation, 

see [Tsukune, Shirai]. W e can thus assum e the coefficient (a-f) o f the ellipse is known. 

Each point (u,v) on the im age ellipse becom es a line o f the cone through (u,v,f0) and 

(0,0,0), where f0 is the focal length o f the camera. The tw o point form of such a line is 

(x -0 ) /(u -0 )  =  (y -0 )/(v -0 ) -  (z—0)/(f0—0) which results in ;

(3 .1.1.2)fx fy.
U  =  —  ,V  =  "j K  

Z Z

Substitu ting Equation 3 .1 .i-2  in to  Equation 3.1.1.1 and rearranging, we have the  

equation o f the cone in term s of the coefficients of the im age ellipse (a-f) and the focal 

length (f0):

Ax2+By2+Cxy-|-Dxz+Eyz+Fz2 =  0. (3.1,1.3)

where A =  af02, B =  bf02, G =  cf02, D =  df0, E =  ef0, F =  f.

3 .1 .2  F IN D IN G  T H E  N E W  R E F E R E N C E  F R A M E  A N D  C H A R A C T E R I-  

Z A T IQ N  O F  T H E  C O N E

N ext w e w ill find a new fram e o f  reference x ' - y - z '  in w hich the cone have a stan­

dard form . Since the cone has its vertex  at the origin of the cam era fram e x-y>z, the

new reference fram e x - y ’-z ’ have the sam e origin as the .eam«ra-;fr.ame^ .-the-

hom ogeneous transform  representing the new fram e is a pure rotational m atrix, Let 

F(SXS) represents the rotational partsof the transform  m atrix. Then the first, second, 

and third colum ns of P  m ust be the directions o f  the x', y', and z' axes relative to  x-y- 

z, respectively [Paul]. The m atrix P  can also be viewed as a transform ation m atrix  

such th at if  (x,y,z)T is the coordinate o f a point in space relative to  x-y-z and (x',y',z')T 

is the coordinate o f  the sam e point relative to x '-y '-z ', then (x,y,z)T =  P(x',y',z')T. 

Equation 3.1.1.3 can be expressed in term s of a quadratic form  Q [Noble]:

[x y z] Q 0, where Q

. C D

A I T

B
C_

2

D E p  

2 2

(3.1.2.1)



W e w ill now show (in a w ay sim ilar to  [Noble]) th at if P  is a diagonalizing  

m atrix for Q , or, P -1 Q P = =  Diag(XuX2-xS)) then Equation 3 .1 .1 .3  w ill be standardized  

by substitu ting (x,y ,z)T by P (x ',y ',z ')T , which is equivalent to  a change of reference 

fram e to  the one represented by P .  A fter the substitution , the dot product form  o f  

the original cone equation < [x ,y ,z ]T,Q [x ,y ,z]T>  =  0 becom es

< P [x ',y ',z ']T ,Q P [x ',y ',z ']T>  =  0 . Since m ultipling vectors on both sides of the dot pro­

duct by an orthogonal m atrix does not change the value of the dot product, we can 

m ultip ly both sides of the dot product by P ' !, resulting in

<  [xSy'.z'jTp-1 Q P  [x'.y'.z']'1̂  =  0, and < [x ',y ',z ']T,A [x ',y ',z ']T>  =  0. This can be w ritten  as

X,x,2-|-X2y ,"-t-X8z'2 =  0. ( 3 .1 .2 .2 )

Compare th is equation to  th at of an cone w ith  its axis aligned w ith the z ’-axis [Sal­

mon];.

=  0. (3 .1 .2 .3 )— + ^ - — —  =  0.
V 2 Ir 2 k 2.. • / - Kx -y . .

From  Equations 3 .1 .1.2-3, w e can see th at kx, ky, kz is related to  X1, X2, and X8. N otice  

that Equation 3.1.1.2 is still valid if X1, X2, and X3 are replaced by ? X1, f X2, and ? X3, 

where >  is any constant; Sim ilarly, Equation 3.1.1.3 is valid if  Tc,, ky, and k, is 

replaced by »? kx, 77 ky, and t] kz, where rj is any constant. Thus, a m ultiplying constant 

is needed in the following equations relating kx, ky, kz and the eigenvalues of Q.

1 ' 1 1 (3.1.2.4)

y r a - ’

= P

where p is any real constant. The constant k  is unim portant, it is the ratio kx:ky:kz 

th at determ ines the shape o f the cone. 4-s shown in Figure 3 .1 .2 .1, if w e intersect the  

cone of Equation 3.1.2.3 w ith  a plane norm al to the cone axis ( z ’-axis), the intersec­

tion w ill be an ellipse on the intersecting plane and th e  major axis of the ellipse w ill 

line up w ith  either the x ’ or the y ’ axis. It is also known from 3D analytic geom etry  

[Salmon] th at if the distance betw een the plane and the vertex of the cone is kz, then  

the lengths of the ellipses axes m ust be 2kx and 2ky.

To sum m arize, the followings m ust be true for P=[C1C2C3]:

( 1 )  P - 1QP=A=Diag(XuX2jX3).

(2) P  represent a right-handed coordinated fram e x ’-y ’-z ’.

(3) The z’-axis (e3) is the sam e as the cone axis. M oreover, the positive direction is 

chosen such th at the z’-axis points in the direction th e  cam era is pointing to .

(4) W e follow  a convention for the assignm ent of X1 and X2 such th at | X1 1 >  j X2 I - so 

th at if w e intersect the cone w ith  a plane parallel to the x ’-y ’ plane, the major axis of  

the resulting ellipse w ill be parallel to  the y ’-axis.

T o find P , we first find the eigenvalues and norm alized eigenvectors of Q by a 

com puter program (such as the devcsf subroutine from the IMSL m athem atical



library [IMSLj-.). Let Mu M2, and Ms be the calculated eigenvalues and let f l5 f2j and f3 

be the corresponding norm alized eigenvectors. The difference between the set 

{mu m2,Ps} and the set (X1jX2jX3) is  th a t they are n ot ordered in the sam e w ay. The  

differences betw een the set { f 1(f2,f3)  and the set Ie ljC2Je3) are both in the ordering  

(which is the sam e ordering as for the eigenvalues) and in the scaling factpr of ±1. 

W e w ill discuss how to  assign X1, X2, and X3 from the calculated eigenvalues Zfij ^2> aud 

Zi3 SO th at criteria (3) and (4) are satisfied. Once the calculated eigenvalues {m i,M2,Ps} 

are ordered to  form IX1jX2jX3), the sam e ordering can be applied to  the calculated  

eigenvectors |  T 1,^ ,f j )  to  form I e ljC2jC3). The signs 'OfTljJf2, and f3 w ill also have to  fie 

changed to satisfy criteria (2) and (3).

T he m ethod for finding P  ( or [eie2e3] ) depends on whether the cone is right- 

circular or not. A  right-circular cone is one th at the intersection betw een the cone and 

a plane norm al to  its axis results in a circle. If a second degree cone is not right- 

circular, the intersection and the plane is an ellipse. A  cone..is; right ciycu)ar;jpr^eji. 

Icx=Icy, which is  equivalent to  X1=X2 (see Equation 3 .1.2.4). Because o f the repetition o f  

eigenvalues, the tw o corresponding eigenvectors C1 and e2 are not unique. T his is 

expected because there are infinite number o f coordinate fram es ( Ie1C2C3] ) in which  

the right-circular cone has standard form s. A ny fram e w hose z-axis (e3) is along the  

cone axis and whose origin is a t the cone vertex w ill have the standard cone equation  

of Equation 3 .I.2 .3 . If there are no repeated eigenvalues, or X1̂ X25A 3, the cone is not 

right circular. In th is case, there is a unique set of real orthonorm al eigenvectors { 

fiT 2»f 3 }> except the ±1 scaling factor.

Now we are ready to  find X3 and e3. Com paring Equation 3.1.2.2 to  Equation  

3.1.2.3, X1 and X2 m ust have the sam e signs and X3 m ust have a different sign. Tfiusj 

w e can find X3 and e3 based on the polarities of the calculated eigenvalues Mu M2, and

Ms- - :: . ; - ' '  ■ - V " - ,  - - ' V -  V . " . V v  :

I X3 =  , . v|;. v (3.1 2.5)

where Md is chosen from th e  calculated eigenvalues Mu /*2 and / i 3 , and z*d fias a different 

sign from the rem aining tw o eigenvalues. The corresponding eigenvector fd m ust be 

along the z-axis of the cone. The positive direction of e3 is  chosen to  satisfy  Criterion

- ' V v - . V ^ V V - . V r  )  v V f i  f i f i
If the dot product f d.(0,0Jl)T >  0, then

' e3 =  fd . (^*12.6)

If f d.(OjOjI)1 <  0, then

e3 =  —f d . (3 .I .2.7)

N otice th at the dot product cannot be zero. O therwise only the side of the circular

feature can be seen. The circle w ill project a fine to  the cam era screen and th is con­

tradicts the assum ption of an elliptical projection.



W hen finding X2 and e2, Criterion (4) m ust be satisfied . Let { W1, w2 } be the  

rem aining eigenvalues from { /q, //2, /*3 } when /zj is deleted, W e also let gj and g2 be  

the tw o eigenvectors corresponding to  W1 and w2.

If I W1 1 <  I W2 I , then

■■■ ' ; V - V  ' ■' - Xg =  CJj j (3.1.2,8)

: ■ -v:, ■ v  - v . v ■ ■ e2 =  gl  • (3.1.2.9)

If I W2 I <  I W1 I , then

. v j ; ; ; V v r ^ r vV ' ; Xg =  ^2 J (3.1.2.9)

M
''

Il

>
°\ (3 .ii2 .1 0 )

If I co2 1 =  I W11 , the cone is right-circular and there are infinite choices for selecting e2. 

W e can select any vector on the plane spanned by g, and g2. In our im plem entation, 

We arbitrarily select g2 and Equations 3.1.2.9-10 are used to  find X2 and e2.

F inally, X1 m ust be the eigenvalue not y et chosen. e x m ust be the corresponding  

eigenvector. However, C1 w ill not be calculated from the rem aining eigenvector, it  

will be calculated by taking the cross-product of e2 and e3, to  ensure the right- 

handedness requirem ent of Criterion (2).

C1 =  C2Xe3 . (3.1.2.11)

Now th at C1, e2, e3 are found, the transform ation m atrix P  is found. A lso, since  

X1, X2, and X3 are found, kx, ky, and kz can be found by Equation 3.1.2.3 and the  

geom etrical characteristics of the cone is now known. There are infinite possible  

choices for P  is not unique if the cone is right-circular, because o f one degree of rota­

tional freedom. For the case o f the non-right-circular cone, there are tw o possible  

choices, one having its x and y axes in the opposite directions as the those of the other  

choice. .

3 .1 .3  C IR C U L A R  S E C T IO N S  O F  T H E  C O N E

After the transform ation of fram e of reference using P , we have the standard  

equation of a cone in the form  of Eqqation 3 .1.2.3. The cone is shown in Figure  

3 1 .2 .1 , w ith  respect to  the P  frame (x'—y'—z' fram e). The goal is to  find all the w ays  

to  cut the cone such th at a circle w ith  the desired m odel diairieter w ill result. Since 

the intersection curves are sim ilar if the sectioning planes are parallel [Salmon], we 

can divide the task into tw o parts. F irst w e w ill find the orientations (surface nor­

mals) of the planes th at intersect the cone in circles. Then w e w ill translate the planes  

along the cone axis to  find the circles w ith  the desired diam eter.

From  [Salmon], there are only 2 plane orientations (surface norm als) th at w ill 

result in circular sections, see Figure 3 .I .3 .I . Furtherm ore, when ky> k x, the tw o  

planes of circular section which also passes through the origin can be derived from the



following equation:

x'2
k /  ky2 ) ky2 k22

(3 .1 .3.1)

Factorizing the above equation and using Equation 3.1.2.4, we have the follow ing tw o  

sectioning planes:

X1 I -  | X2 | ,

| x 2 | +  | x 3 | x  '
(3.1.3.2)

N otice th at both  sectioning planes passes through the y-axis, and th at the projections  

of the planes to the x ’-y ’ plane are tw o lines. These tw o planes only gives the plane  

orientations for circular sections; they do not section the cone in circles w ith  the  

m odel radius. In fact, they in tersect the cone at one point - the origin o f the x ’-y ’-z ’ 

reference fram e.

W e w ill noTV translate the planes to  obtain circular sections w ith  the correct 

m odel radius. Figure 3 .1 .3 .2  shows the cone and the sectioning planes projected onto  

the x ’-z ’ plane. The equations o f the lines representing the cone can be found by sub­

stitu ting  0 in to  y' in Equation 3.1.2.2 and knowing th at X1 and X3 have Opposite signs.

If w e translate the planes of Equation 3.1.3.2 along the z -a x is  by I, w e can easily cal­

culate th e  radius f  o f  the resulting circle. The translated planes have the equations

v=±;V
I X1 1 — IX2 I

I X2 I + 1X3 I
x' +  I (3.1.3.4)

By sim ilar triangles shown in Figure 3.1.3.2, w e can then find out how  m uch w e have  

to  translate the plane in order to  obtain circular sections of the required m odel radius.

Let s  be the translation  in the z’ direction so th at the planes of Equation  

(3 .1.3.4) w ill have circular sections of m odel radius R  after the translation . W e can  

calculate s by

(3.1.3.5)

T he sym bolic form  of r is half o f the distance between p i  and p2 or betw een q l and 

q2 in Figure 3 .I .3 .2 . The points p i ,  p2, q l and q2 can be calculated by intersecting  

the lines represented by Equation (3.1.3.3) and Equation (3 .1.3.4). The algebraic 

m anipulation is sim pler if it  is carried out using kx, ky, kz, instead o f X1, X2, and X3vIn 

the final answer, ky, ky, kz is  converted back to  X1, X2, and X3. The conversion between  

kx, ky, k2 and Xi,;X2, X3 is m ade b y  using Equation (3.1.2.4).



r
I

IX2I

I Xi I I X3 1 ( I X2 I + 1X3 I ) 

I X1 1 + 1X3 I
(3 1.3.6)

T o find the center points of the tw o m odel circles, w e first find the center points  

o f the sm aller circles w ith  radius r, which are the m idpoint of p i  and p2 and the m id­

point o f q l and q2. In general, these m idpoints are different from p3 and q3. The  

only exception is when the cone is right-circular, in which case the sectioning planes in  

Figure 3.1 .3 .2  becom es one horizontal line. If the center of a sectioned circle of radius  

r is (u,v,w), it  is easy to  show by sim ilar triangles th at the center of the corresponding  

m odel circle w ith  radius R is (s u,s v,s w). W e w ill first find the centers of the tw o sec­

tioning circle w ith  radius r, which are the m idpoints of p i  and p2, and o f q l and q2. 

A gain, the 'symbolic m anipulation is sim plier if it is done using kx, ky, and kz and then  

converting it  back to  X1, X2, and X3. Gnce they are calculated in term s o f  X1, X2, and 

X3, a scalar m ultip lication  by s yields the centers of the sectioned circle o f the m odel 

radius. F inally , w e substitu te Equations (3.1.3.5) and (3.1.3.6) into the results to  find 

the centers of the tw o circles w ith  radius R. One solution for the circle center is:

I X 3I ( I x 1I - I x 2I ) :  

I X11 ( I X1 1 + 1X3 I )

(3.1.3.7)

y'oi =  0 >

, a  /  I x 1 1(1 x 2 | + 1 X3 1)
V  I x j I ( I x 1I ^ i x j I ) -

The second solutions for the circle center is:

x'02 =  - R  

y'o2 -  0 > 

Z*02 =  R

I X11 ( I X1 1 + 1 x 3 | )
(3.1 3.8)

I X1 I ( I X2 + 1X3 I )

I X3 1 ( I X1 1 + 1X3 I )

N otice th a t the tw o solutions are the sam e when X1=X 2, i.e ., when the cone is right- 

circular.

T he surface norm als of the tw o circular features can easily be found using the  

constraints th at it  is  perpendicular to  the circles, it  is a unit vector, and th at the z - 

com ponent m ust be negative. The later constraint ensures th at the convention  th at  

the visible side of the circle is the one indicated by the positive direction of the surface  

norm al. T he surface norm al corresponding to  (x'oDy'oi^oi) is The surface norm al

corresponding to  (x'o2,y'o2>z,o2) is \

V 11

^  I  I X1 1 — IX2 I

I x 1J - I - I x 3 I

(3.1 3.9)



Ax

I X2 | +  I X3 J 

I X1 1 + 1A i

I Ni I ~ ~  I X2 I 

I X1 I + 1 X3 1
(3 .1 .3 .10)

Ay =  0 »

A
* \  /  I x 2 1 + 1 x 3 i 

I V  I +  I X 3  I

The above solutions for the centers and the suface norm als of the circles are 

given relative to  the x ’-y ’-z ’ frame. The transform ation m atrix P  w ill bring them  

back to  the x-y-z frame: [x0i,yoi>zoi]T= P[*loi>y,oi>z,oi]T and [VixlViy,viz]T=  F * ix, v iy, v iz] , 

where 1 = 1 ,2 , and (x0i,yoi,zoi) and (x02,Y021Z02) are the tw o solutions for the circle centers 

and (vlx,vly,vl2) and (v2x,v2y,v2z) are the tw o corresponding surface norm als, all relative  

to  the x-y-z fram e (cam era frame). Recall th at P  is composed of the 3 eigenvectors o f

Q:

©i e2 e3]

eIx e2x e3x 

eIy e2y e3y 

eIz e2z e3z

(3 .1.3 .11)

Expanding P  into its  elem ents, we have the solutions w ith  respect to  the cam era

frame. One solution for the circle center is:

X 0 I =  Cl x R ' ^
I  I X 3  I ( I  X j  I —  I X 2  | )  r » * \  f

J | X i l ( | X , l  +  | X 3 | )  ox  V
I X 1 K I x 2 l + 1 x 3 I T  ; ; ( 3 . 1 . 3 . 1 2 )

I X 3  I ( I X i  I + 1 x 3 1 )

O Il C rt
f

>

/  I X 3 K I X i  - I X 2 1 )  ^  . R v /

/  I x ,  I ( I X i  I + 1 X 3  I )  +  V
I X 1 K I X 2 1 + 1 x 3 1 )  

I ^ 3  I  (  I  I +  I ^ 3 1 )

z o i  “  e i zR ^
/  I x 3 | (  X j  —  X 2 ] )  F

A  I X v I ( I  X 1 1 + I X 3 I ) “ V
- I  I  (  I  ^ 2  I  +  I  I  

I x 3 K I X1 1 + 1 x 3 1 )

The second solution for the circle center is: ' v K v +  '

IX3 I ( IX1 1 — IX2 I )

I X1 1 ( | X1 1 +  I X3 1)

Ix3 K r x 1 I - I X 2 IT

I X1 I ( I X1 1 +  I X3 I )

I X 3K I X 1M X 2 I T  
I X1 1(  I-Xil  + 1 x 3 1)

IX1 ( I X2 I +  IX3 )

IX3 K IX1 1 + 1X3 1)

I X i  | (  I X 2 1 + 1 x 3 1 )  
I X 3 1 (  I X i  I + 1 x 3 | )

I X t | (  I x 2 1 + 1 x 3 1 )
I x 3 1 ( I X 1 1 - 1- 1 X 3 - J - )

(3.1.3.13)
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T h e  s u r f a c e  n o r m a l  c o r r e s p o n d in g  to  [x01,yPi,z0i]T is:

Vlx

v I y

Viz

I I ~  I 2̂ I 

I  ^ l  I  +  I  ^ 3  I

I I ~  I X2 

I  X 1  I +  I ^ 3  I

: I ^l I ~  I X2 [ 

I X 1  |  +  |  X 3  |

I X 2  |  + .  I X 3  I

I X 1  |  +  |  ^ 3  I

I X 2  |  +  |  X 3  |

I  ^ l  I +  I ^ 3  I

I X 2  |  - f  I  X 3  |  

I  X i  |  +  |  X 3  |

T h e  s u r f a c e  n o r m a l  c o r r e s p o n d in g  t o  [x02,y02,z02]T is

(3 .1 .3 .1 4 )

v 2x

V 2 y

V 2z

~ I X j  |  —  [ X 2  |  

I X i  |  +  |  X 3  |

I I ~  I X2 I 

I  ^ l  I +  I  ^ 3  I

I ^l I ~  I X2 I 

I  X 1  |  +  |  X 3  I

I X 2  |  +  [ X 3  |  

I X i  I  +  I X 3  ]

I X 2  I +  I X 3  I 

I X 1  I  + 1 X 3  I

I X 2 1 + 1 x 3 , 1 

I x  11 + 1X 3 I

(3 .1 .3 .1 5 )

F r o m  t h e  a b o v e  e q u a t io n s  f o r  t h e  c e n te r s  a n d  t h e  s u r f a c e  n o r m a l s  fo r  t h e  s o lu t io n s ,  

w e  c a n  see  t h a t  t h e r e  a r e  tw o  s o lu t io n s  in  g e n e r a l .  H o w e v e r ,  w h e n  X 1 = X 2 ,  t h e r e  is o n ly  

o n e  s o lu t io n  b e c a u s e  b o t h  s o lu t io n s  b e c o m e  th e  s a m e . G e o m e t r ic a l ly ,  t h e r e  is o n ly  

o n e  s o lu t io n  if  t h e  s u r f a c e  n o r m a l  o f  t h e  c irc le  p o in t s  t o  fo c a l p o in t  e x a c t ly .

3.2 S P H E R IC A L  F E A T U R E

I f  w e  a r e  g iv e n  t h e  e l l ip s e  p r o je c te d  f r o m  a  s p h e r ic a l  f e a t u r e  o f  k n o w n  r a d iu s  R , 

w e  c a n  f in d  t h e  3D  p o s i t i o n  o f  i t s  c e n te r .  T h i s  is  s h o w n  in  F ig u r e  3 .2 .1  T h e  p r o ­

c e d u re  in v o lv e d  is  s im i la r  t o  t h e  c a se  o f  t h e  c i r c u la r  f e a tu r e .  I t  c o n s is t  o f  t h e  fo llo w in g  

p a r t s :

(1) F in d  t h e  e q u a t io n  o f  t h e  c o n e  t h a t  p a s s e s  t h r o u g h  th e  e l l ip s e  a n d  w h ic h  h a s  t h e  

o r ig in  a s  v e r te x .  T h e  r e s u l t in g  c o n e  m u s t  b e  a  r ig h t - c i r c u la r  co n e .

(2) F in d  a  n e w  f r a m e  o f  r e f e r e n c e  in  w h ic h  t h e  co n e  h a s  t h e  s t a n d a r d  f o r m .

(3) F in d  t h e  p o s i t i o n  o f  t h e  s p h e r ic a l  f e a t u r e  in  t h e  n e w  f r a m e  o f  r e f e r e n c e .

(4) T r a n s f o r m  t h e  s o lu t io n  b a c k  t o  t h e  o r ig in a l  ( c a m e r a )  f r a m e .

P a r t s  ( I )  a n d  (2) a r e  t h e  d o n e  e x a c t ly  th e  s a m e  w a y  a s  t h e  c i r c u la r  c a s e  a n d  w ill 

n o t  b e  r e p e a te d  h e r e .  I t  is  i m p o r t a n t  t o  p o in t  o u t  t h a t  th e  r e s u l t in g  c o n e  w il l a lw a y s  

b e  r ig h t - c i r c u l a r  fo r  t h e  s p h e r ic a l  c a se  a n d  th e r e f o r e  X 1  /  =  X 2  a n d  k x= k y. W e  w ill 

d e n o te  X 1  a n d  X 2  b y  X r ,  a n d  k x a n d  k y b y  k r.

P a r t  (3) is  c o n s id e r a b ly  s im p le r  c o m p a r e d  t o  th e  e q u iv a le n t  p a r t  fo r  t h e  c i r c u la r  

c a se . G iv e n  a  r ig h t - c i r c u l a r  c o n e , t h e r e  is o n ly  o n e  w a y  t h a t  a  s p h e r e  o f  r a d iu s  R  c a n



fit in. Figure 3.2.2 shows the geom etry of the problem . W e w ant to find out the posi­

tion o f the sphere center w ith  respect to the x ’-y ’-z ’ frame. Because of sym m etry, 

both the X 5 and y J com ponents are zero. The z5 com ponent can easily be calculated by 

sim ple trigonom etry.

Let D0 be the distance between the center of the sphere and the origin and let 9 be the  

angle betw een the zr-axis and the any line on the cone th at passes through the vertex.

D0
R

sin#
(3.2.1)

B ut 0 is determ ined by the cone param eters kx, ky, and kz. From  the slope of the line

kx .p. .
in Figure 3.2.2 representing the cone, it can be determ ined th at tan6 =  —  • Drawing  

a right-angle triangle w ith  one angle being 0 and the opposite and adjacent sides being

kx and kz, the hypotenuse m ust be V  kx2+ k z2. Therefore,

sin  0 =  — = r ,  (3 -2 .2 )

V w

where kr==kx=kr  To express the above equation in term s of X1, X2 and X3, w e can use 

Equation 3.1.2.4 to  replace the kx, ky and kz.

sin0 V 1
IX3 I

I X r  I  +  I  X 3  I

where Xr=X^=X2- Substituting Equation 3.2.3 into Equation 3.2.1, we have

D0 =  R1V Xi I + 1 K \

I x 3 I

(3.2.3)

(3.2.4)

B ut D0 is just the z ’ com ponent of the sphere center. The center of the sphere relative  

to  the x ’-y ’-z ’ fram e is:

x'0 =  0, y'0 0 , z;0
I Xi I -f I Xr I 

I X3 I
(3.2.5)

T o express the solution in term s of the cam era fram e x-y-z, we transform  the the  

above results by P  calculated in part (2): [x0,yo,zo]T=vF [x ,o,y;o>z,o]T' Expanding it, w e  

have ■'

x O

To

Z0

I Xj I +  I Xr I 

[X3 I

I Xj l +  I Xr

IX3 I

I Xi I - t  I Xr I

I X 3 I

(3.2.6)
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4 C O N C L U S IO N

W e have w ritten  a program to  find the 3D position and orientation o f a circular 

feature from the elliptical projection of the feature. The results are correct for all the  

test cases, which includes both elliptical and right-circular cones. W e have also  

extended th is m ethod to  spherical features. The com plete m athem atics for both the  

circular case and the spherical case w ill be recorded in a technical report.
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image plane or 
projection planecenter of 

projection _

camera frame x-y-z

Figure 2.1.1. The camera frame x-y-z.

Figure 2.1.2. The convention that the surface normal points outward from the invisi­

ble side of the circle to the visible side.



surface
normal

elliptical projection  
of circular feature

projection j

plane x /

3D circular 

feature

- Y 1-Z 1 frame

camera frame x-y-z

Figure 2.1.3. T h ex '—/ —z' frame, where the z-axis lines up with the surface normal of

the circular feature.

z',zM

Figure 2.1.4. The center of te circular feature relative to the "Xl-Y1-Z 1 frame and the  

Xn- Y 11-Z tl frame.
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■̂ £ure Finding the ratio kz/k y in terms of R and D0



circular 

/  sectionConeformed 

by the image ellipse 

and the origin

image plane

sectioning plane

image

ellipse

Figure 3.2.1. Finding the position and orientation of a circular feature from its ellipti­

cal projection.



plane parallel

top view

Figure 3 .I.2 .I. The elliptical cone

Figure 3.1.3.1. The two planes of circular section



i \

sectioning  

planes that result 

in circles of radius R

planes of 

circular section

-►  x' ►  x'

Figure 3.I.3.2. Finding the two sectioning planes that result in circles w ith radius R.



X

Figure 3.2.1. Finding the position of a spherical feature from its elliptical projection.

Figure 3.2.2. Solution for the spherical feature position.
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