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T.Nakata, N.Takahashi, K.Fujiwara and Y.Shiraki 

Dept. of Electrical Engineering, Okayama Univ., 
Okayama 700, Japan 

ABSTRACT 

3-D special elements called the "gap element", the 
"expanding element" and the "shielding element" have 
been conceived for discretizing narrow gaps in an iron 
core, the long legs of a transformer core and the thin 
shielding plates. The concept of the 3-D special 
element and its finite element formulation are 
described. The special elements are applied to a few 
models and the effects of these elements on accuracy 
and CPU time are discussed. It is shown that CPU time 
can be reduced by using the special elements. 

1. INTRODUCTION 

We have already developed the "gap element[l,2]", 
which has energy but no area, for 2-D magnetic field 
analysis. As this element has no area, it is very easy 
to put new gaps into desired positions in the mesh, to 
remove them or to modify the gap lengths freely. 
Moreover, the "expanding element [ 31" and "shielding 
element[3]" have also been developed for analyzing 2-D 
magnetic fields in a transformer core and 2-D eddy 
currents in a thin conducting plate respectively. 

In this paper, these special elements are expanded 
to the case of 3-D magnetic field analysis using the 
A- @ method[41. 

2. SPECIAL ELEMENTS 

When the gap length D in a magnetic core is very 
short, it can be assumed that the flux is perpendicular 
to the gap between high permeability materials as shown 
in Fig.l(a). Such a region Vs can be subdivided by, 
for example, 2-D quadrilateral elements as shown in 
Fig.l(d) instead of conventional 3-D elements such as 
hexahedral elements. The leg of the transformer core 
of which the length D is long and the flux is parallel 
to the leg(Fig.l(b)), and the conducting plate of which 
the thickness D is small(Fig.l(c)) can also be 
represented by quadrilateral elements(Fig.l(d)). Such 
additional 2-D elements are referred to as the "gap 
element", the "expanding element" and the "shielding 
element" respectively. The "special element" is a 
general name for these elements. The special element 
has no volume, but has nearly the same energy as the 
gap, leg and conducting plate shown in Figs.l(a), (b) 
and (c). 

The special element has the following advantages: 
As the special element has no volume, it is easy to 
put new gaps, legs or conducting plates in desired 
positions in the mesh or to remove them. 
As the modification of the length D is also easy, 
the influence of D on the magnetic characteristics 
can be examined easily by using the special 
element. 
When the special element is used, the ill- 
conditioning of the coefficient matrix due to 
narrow gaps and thin conducting plates can bp 
avoided. Therefore, the CPU time using the special 
element can ty reduced when compared with that 
using the flat conventional element, because the 
number of iterations of the ICCG method[5] is 
decreased. 

(a) region with a gap (b) region with a leg 

(c) region with a conducting plate (d) special element 
Fig. 1 Idea of various 3-D special elements. 

3. DISTRIBUTIONS OF POTENTIALS IN SPECIAL ELEMENTS 

The x- and y-components of the flux density B are 
given by the following equations[6]: 

% x =  aAz/ a y -  ~ A Y J  a z  ( 1  1 
BY= dAx/ a z  - aAz/ a x  ( 2 )  

where Ax, Ay and Az are the x-, y- and a-components of 
the magnetic vector potential A. 

As the vector potential A in the regions Vs shown 
in Figs.l(a) to (c) is constant in the z-direction, the 
following equation can be obtained: 

aA/ a z  = 0 ( 3  1 
As the x- and y-components Bx and By are both equal to 
zero, the following equation can be obtained from 
Eqs.(l) to (3): 

aAz/  ax= aAz /  a y =  0 ( 4 )  
From Eqs.(3) and (4). Az is constant in the region Vs. 
Thus, Az is assumed to be zero as follows: 

Az= 0 ( 5  
As the shielding element is to be used in the eddy 

current analysis, the distribution of the electric 
scalar potential qj as well as the vector potential A 
should be investigated. The z-component Jez of the 
eddy current density J e  can be given by [SI 

J e z = - a ( d A z / a t +  a # /  a z )  ( 6 )  
where a is the conductivity. As the.shielding plate is 
very thin, the scalar potential @ can be assumed to be 
constant in the e-direction as follows: 

a @ /  a z  = o ( 7  
From Eqs.(3) and ( 7 ) ,  the following relationships 

between each component of the vector potential A and 
the scalar potential @ at the nodes 1 to 4 and 1' to 
4' in Figs.l(a) to (c) can be assumed: 
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~..... 

except gap 

aau reaion 
number of region 

A i j = A i j ’ ,  @ j =  @ j ’  

( i = x , y , z ,  j = 1 , - - - , 4 , j 1 = l ’ , - - - , 4 ’ )  ( 8  1 
current in the winding is dc. The 3-D magnetic field is 
analyzed neglecting saturation. As the model is 
symmetric, only 1/4 region (-4O<x<140, O<y<60, 

Equations (5) and (81 eliminate the vector O<z<lBOmm) need be analyzed. The number of elements, 
potentials A Z  j , X J  9 AYj’ ,  A z j ’  and etc. are shown in Table 1. 
the scalar potential q3 j p  from the unknowns. 

gap element element 
4928 5150 

150 450 

4. FINITE ELEMENT FORMULATION 

3-D magnetic fields with eddy currents are 
governed by the following equations[4]: 

( 9  1 
a h  ro t (  v r o t A ) =  J o - a ( - + g r a d @ )  
at 

d i v { - o (  aA/ at + g r a d @ ) } = O  ( 1 0 )  

where J O  is the magnetizing current density and v is- 
the reluctivity. The following equations can be 
obtained by Galerkin’s method from Eqs.(S) and (10)[41. 

CPU time (s) 
(D=0.3mm) 

+ m V e N  i a (---+grad aA q3 )dV a t  

ICCG 299 1445 

332 1482 

Gei = [ive ogradN i .  (*+grad @ )dV a t  

( 1 1 )  

( 1 2 )  

where Ni is the interpolation function[6] and V is the 
analyzed region. Subscripts c and e show the regions of 
the windings and the conductors with eddy currents, 
respectively. Assuming that the potentials are constant 
along the flux line as shown in Eq.(8), the weighted 
residuals Goi* and Gei* of Galerkin’s method for the 
special elements are given by 

GOi’ = - D [Is s(gradN i )  x ( v rotA)dS 

+DSSSseNi  a(-+grad@)dS aAs ( 1 3 )  
a t  

Gei’ = D [l seogradN i .  (-+grad a A @ ) d S  ( 1 4 ) a t  
where Ss is the region where the gap and the expanding 
elements are defined. In the case of the gap element, 
the reluctivity v is changed to vo(the reluctivity of 
air). Sse is for the shielding element. As the 
magnetizing current does not flow in the special 
element, 90 is removed from Eq.(13). Equations (13) 
and (14) show that 3-D problem can be reduced to 
2-D problem by applying the special element. If the 
length D is replaced by 1, Eqs.(13) and (14) represent 
the equations for an ordinary 2-D element. The gaps, 
legs and shielding plates can easily be discretized by 
adding Eqs.(l3) and (14) to the usual linear equations 
for the 3-D finite element method. 

When the gap element is applied, both nodes 
1,2,3,4 and 1’,2’,3’,4’ are moved symmetrically to the 
center line between them as shown in Fig.l(d). 
Therefore the length of the iron part has to be 
increased by D. The energy of the increased iron part, 
however, can be neglected because the permeability of 
the iron part is very high compared with that of the 
gap part and the gap length D is short. 

5. EXAMPLES OF APPLICATION 

In order to verify the usefulness of the special 
elements, a few analyses are carried out. In the 
region where the special element is not applied, the 
ordinary 1st-order brick element is used. 

5.1 Gap element 

The accuracy of the gap element is investigated by 
using the model with a gap as shown in Fig.2. The 

Z 

A core(ps=1ooo) 

Y 

P P  
Fig. 

(b) plan view 

2 Analvzedmodel 
(a) front view - with gap element. 

Table 1 Discretization data and CPU time 
item lusing I using ordinary 

- .  I I 

number of nodes I 6072 I 6864 

computer used : NEC supercomputer SX-1E 
(maximum speed: 285MFLOPS) 

Figure 3 shows the effect of the gap length D on 
the error E B  in the flux density. E B  is defined by 

E B = T  B o x  100 ( % )  

where Bg is the average flux density on the plane a-b- 
c-d-a in Fig.2 calculated using the gap element. Bo is 
calculated using a conventional mesh subdivided into 
brick .elements. L is the width of the gap(=20mm). If 
the permissible error is less than 1%, the gap element 
can be used in practice under the condition that the 
ratio D/L is smaller than about 0.04, as shown in 
Fig.3. 

Figure 4 shows the comparison of the CPU time. The 
CPU time is not affected by the gap length D when the 
gap element is used. The CPU time using only 
conventional elements is very much increased as D is 
decreased because the coefficient matrix becomes ill- 
conditioned as D decreases. 

2 r  
conventional 
element 

gap element 

I,,, 8 500 

0 0.025 0.050 
gap length D/L gaplength D/L 

Fig.4 CPU time. Fig. 3 Effect of gap length on 
the e m r  of flux density. 

5.2 Shielding element 

The effects of an aluminum shield on flux and eddy 
current distributions are investigated using the model 
shown in Fig.5. The fields are produced by the 
exciting current at 50 and 200 Hz. The ampere turns of 
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using shielding 
element 

item 
I except 

the coil are set to 3000AT(peak value). The 
conductivities of aluminum and steel are 3.56x1O7 and 
7.51~106S/m respectively, and the relative 
permeability of the steel is assumed to be 1000. A 
quarter model (O<x<500, O<y<500, -150<z<500m) is 
analyzed. The number of elements, etc. are shown in 
Table 2. The CPU time using the shielding element is 
reduced Compared with that using only conventional 
brick elements. This tendency is similar to the case 
of the gap element. 

Figure 6 shows the comparison of the z-component 
Bz of the flux density along the line a-b(y=12.5, 
z=lOnm) shown in Fig.5. The thickness D of the plate is 
equal t o  ]....The flux density is measured using a 
small search coil (diaaeter:3aa, height:0.6mm, 
2Oturns). The effect of the shielding plate on the flux 
density at 200Hz is more remarkable than at 50Hz. 

using ordinary 
element 

aluminum plate ,fff$ (3000AT) 
steel plate 
(crs =lOOo, 

Y 0 X 

(b) plan view 
Fig. 5 Analyzed model with shielding element. 

Table 2 Discretization data and CPU time 

2057 I 2115 
numberof I :Ehg I 
number of nodes 

@=lmm, 
total 1161 

computer used : NEC supercomputer SX-1E 
(maximum speed : 285 MFLOPS) 

A : shielding element 
0 i conventional element } 50Hz 
0 : Conventional element 
A : shielding element 

200 . measured 

0 50 100 150 2p0 
a b x (mm) 

Fig. 6 Distributions of Bz@=lmm). 

Figure 7 shows the effect of the thickness D of 
the shielding plate on the error E J  of the eddy 
current density. 6 is the skin depth. The definition 
of the error E J  is the same as Eq.(15). The eddy 
current density is examined at the point P (x=12.5, 
y=110, z=lmm) in the shielding piate. If the 
permissible error is less than lX, the shielding 
element can be used when D/6<0.11. 

thickness D/6 
Fig. 7 Effects of thickness of the shielding plate 

on the error of eddy current density 
(x=12.5,y=110,z=lmm). 

6. CONCLUSIONS 

The results obtained can be summarized as follows: 
The program taking into account the 3-D special 
elements can be easily modified by adding 2-D 
equations to the ordinary 3-D code. 
The CPU time can be reduced to about 2/3 of that 
needed for the case of using only conventional 
elements. 
The range of application of special elements is 
examined from the standpoint of accuracy. 
It is hoped that the application of 3-D special 

elements will- be expanded,- The expansion of the 
technique described in this paper to edge elements 
will be reported in another paper. 
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