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Abstract. 3D mask spoofing attack has been one of the main challenges
in face recognition. Among existing methods, texture-based approaches
show powerful abilities and achieve encouraging results on 3D mask face
anti-spoofing. However, these approaches may not be robust enough in
application scenarios and could fail to detect imposters with hyper-real
masks. In this paper, we propose a novel approach to 3D mask face anti-
spoofing from a new perspective, by analysing heartbeat signal through
remote Photoplethysmography (rPPG). We develop a novel local rPPG
correlation model to extract discriminative local heartbeat signal pat-
terns so that an imposter can better be detected regardless of the mater-
ial and quality of the mask. To further exploit the characteristic of rPPG
distribution on real faces, we learn a confidence map through heartbeat
signal strength to weight local rPPG correlation pattern for classifica-
tion. Experiments on both public and self-collected datasets validate that
the proposed method achieves promising results under intra and cross
dataset scenario.

Keywords: Face anti-spoofing · 3D mask attack · Remote photo-
plethysmography

1 Introduction

Face recognition has been widely employed in a variety of applications. Like any
other biometric modality [1,2], a critical concern in face recognition is to detect
spoofing attack. In the past decade, photos and videos are two popular media of
carrying out spoofing attacks and varieties of face anti-spoofing algorithms have
been proposed [1–12] and encouraging results have been obtained. Recently, with
the rapid development of 3D reconstruction and material technologies, 3D mask
attack becomes a new challenge to face recognition since affordable off-the-shelf
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(a) Genuine Face (b) Masked Face

Fig. 1. Effect of remote photoplethysmography (rPPG) on normal unmasked face (a),
and masked face (b). (a) shows rPPG on a genuine face: Sufficient light penetrate
the semi-transparent skin tissue and interact with blood vessels. rPPG signal can go
through skin and be detected by RGB camera. (b) depicts rPPG on a masked face:
The mask material blocks large portion of the light that the skin should absorb. Light
source needs to penetrate a layer of painted plastic and a layer of skin before interacting
with the blood. Remain rPPG signals will be too weak to be detected

masks1 have been shown to be able to spoof existing face recognition system [13].
Unlike the success in traditional photo or video based face anti-spoofing, very
few methods have been proposed to address 3D mask face anti-spoofing. To the
best of our knowledge, most existing face anti-spoofing methods are not able to
tackle this new attack since 3D masks have similar appearance and geometry
properties as live faces.

Texture-based methods are the few effective approaches that has been eval-
uated on 3D mask attack problem [13]. Experimental results demonstrate their
strong discriminative ability on 3DMAD and Morpho datasets with different
classifiers [13]. Through the concatenation of different LBP settings, Multi-Scale
LBP can effectively capture the subtle texture difference between genuine and
masked faces and achieves 99.4 % AUC on 3DMAD dataset [13]. Although the
results are promising, the problem of the cross-dataset (where training and test-
ing data are selected from different datasets) scenario remains open. From the
application perspective, it is essential for a face anti-spoofing method to be effec-
tive and robust to different mask types and video qualities. In fact, as reported
in [14,15], texture based methods mentioned in [9,13,16] cannot be well gen-
eralized under inter-test (cross-dataset) protocol [14]. This is because of the
over-fitting problem due to its intrinsic data-driven nature [15]. Also, since the
texture-based methods rely on the appearance difference between 3D masks and
genuine faces, it may not work for the super realistic masks that have impercep-
tible difference with the genuine face, e.g., prosthetics makeup.

To address the aforementioned limitations, we propose a novel approach to
3D mask face anti-spoofing from a new perspective, by using heart rate signal

1 www.thatsmyface.com.

www.thatsmyface.com
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as a more intrinsic cue for mask detection. Photoplethysmography (PPG), as
one of the general ways for heart rate monitoring, could be used to detect this
intrinsic liveness information. However, we can hardly adapt it into existing
systems since PPG extracts heartbeat from color variation of blood through
pulse oximeter in an contact way. In recent years, based on the same principle,
researches find that the vital signal can be detected remotely through web-
camera [17]. This new technique is named as remote Photoplethysmography
(rPPG) [18]. Due to the non-contact property, rPPG could be a possible solution
for the 3D mask face anti-spoofing problem [19]. The principle is presented in
Fig. 1. rPPG detects vascular blood flow based on the absorption and reflection
of light passing through human skin. For a genuine face, although part of the
light is reflected or absorbed by the semi-transparent human skin, heartbeat
signal can still be detected from the subtle blood color variation. For a masked
face in Fig. 1(b), the light source needs to penetrate a layer of painted plastic
and a layer of skin before interacting with the blood. Such a small amount of
energy results in a very noisy rPPG signal, if not impossible, to detect the blood
volume flow.

Based on this principle, we propose to use rPPG for 3D mask face anti-
spoofing. An intuitive solution is to extract the global heartbeat signal through
rPPG from face video as the vital sign. Theoretically, heartbeat should show
high amplitude on a genuine face and very low amplitude on a masked face.
However, the global method may not be able to achieve good performance since
interference like poor video quality, low exposure condition, light change or head
motion may conceal the subtle heart rate signal and introduce false rejection
error (see Sect. 3 for detailed analysis). Moreover, the global solution lacks spa-
tial information which may lead false accept error since rPPG signal may still be
obtained on partially masked face. As such, we propose to use rPPG from local
perspective. Existing studies indicate that rPPG signal strength varies along
local face region [20]. Forehead and cheek with dense capillary vessels can pro-
vide stronger and clearer rPPG signals than other areas. Meanwhile, based on
our observation, the local rPPG strength forms a stable spatial pattern along
different subjects. Therefore, the local rPPG signals could be used to form a
discriminative pattern for 3D mask detection.

In summary, the contributions of this paper are listed below:

– We propose to use face rPPG signals as the natural and intrinsic sign for
3D mask face anti-spoofing, which would perform well regardless of mask
appearance quality.

– We develop a novel local rPPG-based face anti-spoofing method to model the
face heart rate pattern through the cross-correlation of local rPPG signals.
With the confidence evaluation of local signals, the genuine faces can be dif-
ferentiated from the masked faces effectively.

The organization of this paper is as follows. We review the related work in
Sect. 2. Then, the principle analysis of our local rPPG-based solution is given in
Sect. 3. After that, we describe the proposed method in Sect. 4 and report the
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experimental results in Sect. 5. Finally, we conclude this paper by drawing a few
remarks in Sect. 6.

2 Related Work

2.1 Face Anti-spoofing

Existing face anti-spoofing methods can be mainly divided into two categories:
appearance based approaches and motion based approaches. As the appearance
of the printed photos and videos may differ from the real faces, texture-based
approaches have been used to detect printed or displayed artifacts and achieve
encouraging results [5,9,12]. Multi-Scale [5] LBP concatenates different LBP
settings and achieves promising performance on 3D mask detection [13]. While
the results are promising in the above methods, recent studies indicate that they
cannot generalize well in the cross-dataset scenario [14,15]. Deep learning based
methods [21] also achieve encouraging results on 3DMAD. But they may also
face the same problem due to the intrinsic data-driven nature. Image distortion
analysis (IDA) based approaches perform well in the cross-dataset scenario [15].
But for 3D mask attack, these methods may not stand as the masked face has
no relation to the video or image quality.

Motion-based approaches use unconscious face motion or human-computer
interaction (HCI) to detect photo and video attacks through user’s response (e.g.,
detect whether the user blinks unconsciously or being instructed to do so [8,9,
22]). These approaches are particularly effective against photo and stationary
screen attacks. However, when facing mask attack exposes eyes or mouth, or
video attack contents face motion, they may not work effectively.

There are also other approaches based on different cues, which achieve desired
performance under various assumptions [11,23,24]. For example, [24] solves the
problem through spoofing medium shape (context). These methods may not be
able to tackle the mask attack since 3D mask faces have the same geometric
property as real faces. Multi-spectrum analysis may work since it relies on the
fact that the frequency responses of 3D mask faces and real faces are different.
However, it requires specific equipments to capture the invisible light which may
not be economical for a face recognition system.

2.2 Remote Photoplethysmography

rPPG is a new research topic in medical field and only few methods are proposed
in recent years. Verkruysse et al. [17] is one of the early work that evaluates
rPPG under ambient light. Poh et al. [25] and Lewandowska et al. [26] propose
to use blind source separation (BSS) techniques, e.g., independent component
analysis (ICA) and principle component analysis (PCA), to extract rPPG signals
from a face video. Lempe et al. [20] observes that the variation of rPPG is
sensitive to different facial parts. de Haan and Jeanne [18] models the physical
process of rPPG to achieve motion robustness. Li et al. [19] builds a framework
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that contains illumination rectification and motion elimination to achieve good
performance in realistic situations. Recently, matrix completion technique is also
applied to achieve better robustness [27].

3 Why Does Local rPPG Work for 3D Mask Face

Anti-spoofing?

In this section, we explain the reasons why local rPPG works for 3D mask face
anti-spoofing. We first analyse the principle of rPPG signals from live face and
mask, respectively and then demonstrate why local rPPG is effective for mask
attack.

3.1 Analysis of rPPG Signal on Live and Masked Face

As shown in Fig. 1(a), light illuminates capillary vessel and rPPG signal pene-
trates skin to be observed. Thus, the observed signal from a live face ŝl can be
modeled as follows,

ŝl = TsIs + ǫ (1)

where s is the raw rPPG signal from capillary vessels, Ts is the transmittance
of skin and I is the mean intensity of facial skin under ambient light. ǫ is the
environmental noise.

For a masked face shown in Fig. 1(b), the light need to go through the mask
before interacting with capillaries. Also, source rPPG signal need to penetrate
the mask before captured by camera. So, the observed signal ŝm can be repre-
sented as

ŝm = TmTsIms + ǫ

where Tm is the transmittance of mask and Im is the mean intensity of face under
mask. Im can be modeled as Im = TmI. With simple deduction, the observed
signal from the masked face can be represented as

ŝm = T 2
mTsIs + ǫ

= T 2
mŝl + ǫ (2)

Considering the transmittance of existing mask material, the rPPG signal
from a masked face is too weak to be detected, which leads to the feasibility of
our proposed method. Hence, rPPG signal can be detected on genuine face, but
not masked face.

3.2 Local rPPG for 3D Mask Face Anti-spoofing

Based on the analysis in Sect. 3.1, 3D masked faces can be distinguished from real
faces by analysing rPPG signals extracted from the global face. Unfortunately,
the global rPPG signals could be too weak to be detected in real application
scenario. From Eq. 1, ŝl is proportional to the intensity I. As shown in Fig. 1(a),
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rPPG signals are weak (around ±2 variations for a 8-bit color camera [28]) since
only a small portion of light can transmit to blood vessels as quite amount of light
energy is reflected or absorbed by human skin. Hence, poor video quality such
as inadequate exposure will weaken ŝl and increase the difficulty of detection.
Also, rPPG is sensitive to illumination change since it is based on subtle heart-
beat-related color variation of the ROI during a specific time interval. Face
motion may also conceal the rPPG signal by introducing imprecise tracking or
skin angle change [18]. Meanwhile, when a subject is under single light source,
head motion may also cause intensity changes on face. This is because facial
structure, e.g., hair or nose, will cast shadow on skin region and motion will
change its area thereby influence the intensity. Therefore, we can conclude that
many interference like video quality, light change or head motion may conceal
the subtle heart rate signal. In other words, false rejection error will be made
since we may not be able to detect vital sign on genuine face. Moreover, for
partially covered mask, vital signal can still be obtained from the exposed part,
such as cheek and forehead [17], which may contribute strong heart rate signal
and be regarded as a liveness evidence which leads to the failure on face anti-
spoofing. As such, even if global rPPG signal is detected from a subject, we
cannot directly regard the one as a genuine face.

In sum, we propose to adopt local rPPG signals for 3D mask face anti-
spoofing. Existing studies indicate that strength of rPPG signals vary along
local face regions [17,20]. Flat regions such as forehead and cheek with dense
capillary vessels can provide stronger and clearer rPPG signals than other areas.
Also, through observation of numbers of subjects, we found that the local rPPG
signal strength forms a stable pattern for different people. In other words, the
local rPPG signals could be used to form a discriminative and robust pattern
for 3D mask detection.

4 Proposed Method

Based on the analysis in Sect. 3, we propose a novel 3D mask face anti-spoofing
approach by exploiting the characteristic of local rPPG extracted from 3D mask
faces and real faces.

4.1 Overview

The overview of the proposed method is presented in Fig. 2, which contains four
main components: (1) local rPPG extraction, (2) local rPPG correlation model-
ing, (3) confidence map learning and (4) classification. First, to avoid imperfect
boundary from facial motion, face landmarks are detected [29] so as to divide
a face into a number of local regions (see Sect. 5.1 for implementation details).
Then, local rPPG signals are extracted from these local face regions. To make
the extracted rPPG signals robust to head motion and noise, we adopt de Haan
and Jeanne method [18] as the rPPG sensor on local face regions. In training
stage, the local heartbeat signal patterns are extracted through the proposed
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Fig. 2. Block diagram of the proposed method. Four main components are included:
(1) local rPPG extraction, (2) local rPPG correlation modeling, (3) confidence map
learning and (4) classification. From input face video, local rPPG signals are extracted
from the local regions selected along landmarks. After that, the proposed local rPPG
correlation model extract discriminative local heartbeat signal pattern through cross-
correlation of input signals. In training stage, local rPPG confidence map is learned
and transformed into metric to measure the local rPPG correlation pattern. Finally,
local rPPG correlation pattern and confidence metric is fed into classifier.

local rPPG correlation model. At the same time, we use training subjects to
learn the local rPPG confidence map and transform it into distance metric for
classification. In testing stage, when a test face is presented to the system, local
rPPG correlation features are also extracted from the testing subjects. Finally,
result is obtained through the classification.

4.2 Local rPPG Correlation Model

Given the local rPPG signal [s1, s2, . . . , sN ]⊺, we could model the local rPPG
pattern by directly extracting the features of signal, such as the signal-to-noise
ratio (SNR), maximum amplitude, or power spectrum density (PSD). Then, the
final decision could be made by feeding the extracted features into a classifier.
However, this intuitive model can not generalize well because of the following
reasons: (1) The rPPG amplitude varies in different region with different people.
The intuitive solution may not be able to adapt the signal amplitude variation
along different subjects. (2) rPPG strength varies along video quality under
cross-dataset scenario. It means the classifier may over-fit on high quality video
contains clear rPPG signal. When encountering genuine testing samples from
unseen low quality video, the vital sign may not be strong enough so that the
classifier may regard it as mask.

Recall the rPPG principle is measuring human pulse rate through the blood
flow variation caused by heart beat. It indicates that, for a sample subject,
rPPG signals from different local regions should have similar shape with very
small difference. To the best of our knowledge, this small retardation is likely
because that the blood speed and vessels length from heart to local region has
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small difference. It implies that, local rPPG signals should have great consis-
tency on genuine face. While for masked face, they should have small frequency
similarity and periodicity since the vital signals are blocked and the remaining
signal mainly contains environmental noise. Therefore, we model the local rPPG
pattern through the union of similarity of all the possible combination as follow:

x =
⋃

i,j=1,...,N
i�j

ρ(si, sj) (3)

where ρ(si, sj) measures the similarity between two signals si and sj , and the
union

⋃

is the concatenation operator. To measure the similarity between two
signals with periodic frequencies, we define the similarity ρ(si, sj) as the maxi-
mum value of the cross-correlation spectrum of two local rPPG signals

ρ(si, sj) = max |F{si ⋆ sj}| (4)

where F is the Fourier transform and ⋆ is the cross-correlation operator. The
resulting local rPPG correlation pattern is a C(N, 2) + N dimensional feature.

Note that the signal s is not a feature vector. So we cannot simply using
Euclidean distance to measure the similarity ρ between si and sj . Thus, we
design to simultaneously find out the periodicity and measure its frequency sim-
ilarity. By doing the cross-correlation operation in Eq. 4, we could filter out the
shared heartbeat related frequency and abate the random noise. Meanwhile,
signals extracted from local masked face regions will suppress with each other
because they are random noise and do not share the same periodic frequency.
Therefore, 3D mask can be effectively detected since the local rPPG correlation
pattern x will show a stable distribution on liveness face but not for masked
face.

4.3 Learning Local rPPG Confidence Map

Given the local rPPG signal [s1, s2, ...sN ], the local rPPG correlation pattern can
be discriminative under well controlled conditions. However, when encountering
poor video quality, e.g., low exposure rate, the performance may drop since
rPPG signals may be too weak and concealed by noise. Recall the principle
(analysed in Sect. 3) that rPPG signal strength varies along local face region
with a stable spatial distribution, we could boost the discriminative ability of
x by emphasizing the robust regions which contain strong heartbeat signal and
weaken the unreliable regions which contain less heartbeat signals or are fragile
under interferences. To this end, we propose to learn the confidence map of local
rPPG signals through the signal quality from training subjects.

Given J training subjects, considering a learning function y, which maps the
signal quality to a real value, such that the average quality is maximized, i.e.,

arg max
y

J
∑

j=1

y(g(sj ,ej)) (5)
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where g(sj ,ej) measures the signal quality of sj given its “ground truth” heart
rate signal ej . As analysed in [28], the quality measure g can be defined by

g(sj ,ej) =

∑fHR+r
fHR−r

ŝ
j(f)

∑

ŝ
j(f) −

∑fHR+r
fHR−r

ŝ
j(f)

(6)

Here, we denote |F{sj}|, the module of the Fourier transform of sj , as ŝ
j . fHR

is the spectrum peak frequency which represents the subject heart rate defined
in Eq. 7. r is the error toleration.

fHR = arg max
f

F{ej} (7)

To simplify the problem, we let y be a linear function, i.e.y(g(., .)) =
〈p, g(., .)〉. Parameter p = [p1, . . . , pN ] could be regarded as the confidence vec-
tor which represents the patterns of signal strengths corresponding to N local
face regions. Hence, the optimization problem can be written as follow

arg max
p

J
∑

j=1

〈p, g(sj ,ej)〉 (8)

To normalize the confidence p = [p1, . . . , pN ] across all local face regions, we add
a constraint to ensure that ‖p‖ ≤ 1.

In order to solve Eq. 8, we also need to obtain the “ground truth” ej for
the measurement of g(sj ,ej). Inspired by [20,30], we approximate ej through
PCA decomposition given signal S = [s1, s2, ...sN ]⊺ (si is centralized) and the
corresponding confidence p. Thus, the covariance matrix can be written as Σ =
S⊺PS, where P = diag(p2

i ). By applying standard PCA to Σ, we can reconstruct

Ê = [ê1, . . . , êN ]⊺ by Ê = SΦΦ⊺ where Φ is the eigenvectors correspond to the
largest k eigenvalues that preserve α percent of the variance. Note that since S

is constrained between a reasonable HR range in the rPPG extraction stage, e

will also share the same property. Finally, we approximate e by

e =
1

N

N
∑

i=1

êi (9)

Considering the estimation of ej involves the inter-dependence between con-
fidence p and signals S, it may not be suitable to solve the objective function
directly, with linear programming. Therefore, we apply an iterative approach, as
summarized in Algorithm 1, to solve it by alternatively updating p and e. At
iteration t, we first update ej(t) with the confidence p(t − 1), and then update
confidence p(t) with the updated “ground truth” ej(t). When the convergence
threshold δ is reached, we get the output confidence map p.

Given the local rPPG confidence map p, We could measure the confidence
of x by computing each dimension’s reliability. Following Eq. 3, we compute the
confidence of x as
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Algorithm 1. Local rPPG confidence learning

Input: Training signals S = [S1, . . . , SJ ], converge threshold δ
Output: local rPPG confidence p

t = 1, p(0) =
√

N/N ;
repeat

for j = 1 to J do

given p(t − 1), apply PCA to Σ = Sj⊺PSj where P = diag(p2

i (t − 1));

reconstruct [êj
1
, . . . , êj

N ]⊺ = SjΦΦ⊺ ;

update ej(t) by computing Eq. 9;

update p(t) by solving Eq. 8 given [e1(t), . . . , eJ(t)];

until |p(t) − p(t − 1)| ≤ δ;
return p(t);

q =
⋃

i,j=1,...,N
i�j

p(si, sj) (10)

Here we assume the confidence of local regions are independent with each other,
so, p(si, sj) = pipj .

Finally, we use SVM with RBF kernel for classification. In order to weaken
the interference of corrupted local rPPG, we employ the joint confidence q to
adjust the distance metric in RBF kernel as RBFq(xi,xj) = e−γDq(xi,xj)

2

,

where Dq(xi,xj) =
√

(xi − xj)⊺Q(xi − xj) and Q = diag(qi).

5 Experiments

In this section, we first discuss the implementation details of the proposed
method. After that, experiment datasets, testing protocol and baseline method
will be introduced. Finally, we demonstrate and analyse the experiment results.

5.1 Implementation Details

Csiro face analysis SDK [29] is employed to detect and track 66 facial landmarks.
In order to divide the face into local ROIs, 4 additional interest points are
generated from the mid-point of landmarks (2, 33), (14 33), (1, 30) and (15,
30) [29]. As shown in Fig. 2, 22 unit ROIs are evenly defined as boxes. Finally,
every 4 unit neighbor ROIs are combined to form 15 overlapped local ROIs
(color boxes in Fig. 2). For rPPG extraction, we set the cutoff frequency as 40–
180 beats/min through a bandpass filter. For local rPPG correlation model, we
generate all the possible 120 (C(N, 2)+N = N !

2!(N−2)! +N , N = 15) combinations

from the 15 local rPPG signals and normalized them. For local rPPG confidence
map, we set the error toleration r = 3 beats/min, convergence threshold δ =
10−3. In the estimation of e, we set the α = 60%. Normally, eigenvectors that
correspond to the largest 3 eigenvalues will be selected.
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Fig. 3. Sample frames from supplementary dataset. The left image is the genuine face,
the middle one is the Thatsmyface mask and the right one is the hyper-real mask from
REAL-F (See Foonote 2)

5.2 Datasets

3DMAD. 3DMAD [13] is a public mask attack dataset built with the 3D masks
from Thatsmyface.com. It contains 17 subjects, 3 sessions and total 255 videos
(76500 frames). Each subject corresponds to 15 videos with 10 live faces and 5
masked faces. Videos are recorded through Kinect and contain color and depth
information in 640*480 resolution. In our experiments, following [13], only the
color information is used for comparison.

Supplementary Dataset. 3DMAD is a well organized dataset that contains
large amount of videos from numerous of masks. But there are still some lim-
itations: (1) Diversity of mask type is small. It only contains the masks from
Thatsmyface.com. (2) All videos are recorded under the same camera setting
through Kinect. To overcome these limitations, we create a supplementary (SUP

for short) dataset to enlarge the diversity of mask types and camera settings.
The SUP dataset contains 120 videos (36000 frames) recorded from 8 subjects.
It includes 2 types of 3D masks: 6 from Thatsmyface.com and 2 from REAL-
F2. Each subject has 10 genuine samples and 5 masked samples. All videos
are recorded through Logeitech C920 web-camera in the resolution of 1280*720.
Each video contains 300 frames and the frame rate is 25 fps. Image samples of
the genuine video and 2 types of masked face videos are shown in Fig. 3. Noticed
that 4 masks are not aligned with genuine subjects in the SUP dataset due to
the budget issue. To our best knowledge, this adjustment will not affect the face
anti-spoofing results since face anti-spoofing could be regarded as a 2-class clas-
sification problem without considering the subjects’ identities. The SUP dataset
will be public available.

By merging the supplementary dataset with the 3DMAD, the combined
dataset (COMB for short) contains 25 subjects, 2 types of masks, and 2 cam-
era settings, which has larger diversity that is close to the application scenario.
Experiments are carried out on the COMB dataset and the SUP dataset.

5.3 Testing Protocols and Baseline Methods

Testing Protocol. We evaluate the effectiveness, and robustness of the pro-
posed method under three protocols: (1) intra-dataset testing protocol, (2) cross-
dataset testing protocol, (3) robustness evaluation.

2 A super realistic 3D mask build from REAL-F: http://real-f.jp.

http://www.thatsmyface.com
http://www.thatsmyface.com
http://www.thatsmyface.com
http://real-f.jp
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For intra-dataset testing protocol, we adopt leave-one-out cross validation
(LOOCV) [13]. Different from [13], subjects in training set and development set
are randomly3 selected to avoid the possible affect of subjects sequence. For the
combined dataset, we choose 8 subjects for training and 16 for development.
For the SUP dataset, we randomly chose 3 subjects as training set and 4 as
development set. To evaluate the influence of high quality masks from REAL-F,
we test the performance by including and excluding the REAL-F masks in both
datasets.

For the cross-dataset protocol, 3DMAD dataset and SUP dataset are
involved. For the setting of training on 3DMAD and testing on SUP (3DMAD

to SUP for short), we randomly select 8 subjects from 3DMAD as training
set and use all subjects from SUP for testing. For training on SUP, testing on
3DMAD (SUP to 3DMAD for short), we randomly select 5 subjects from SUP
as training set and use all in 3DMAD for testing.

In order to evaluate the robustness of the proposed method, we re-do the
experiments under intra and cross testing protocols with different training scales.
To avoid the resemblance affect of live faces and masks [13], we set the training
data scale along subject units. For intra-dataset experiments on COMB dataset
and SUP dataset, the training scales are set to 1 to 8 and 1 to 5, respectively.
For the cross-dataset experiments of 3DMAD to SUP and SUP to 3DMAD, the
training scale are set to 1 to 17 and 1 to 8, respectively.

False Fake Rate (FFR), False Liveness Rate (FLR), Half Total Error Rate
(HTER) [13], ROC, AUC, and EER are employed for evaluation. For intra-
dataset test, HTER is evaluated on testing set and training set. We name them
as HTER dev and HTER test, respectively, for short.

Baseline Method. We select the Multi-Scale LBP [5] which achieves the best
performance on 3DMAD 2D images [13] as the baseline. For a normalized face
image, we extract LBPu2

16,2, LBPu2
8,2 from the entire image and LBPu2

8,1 from the
3 × 3 overlapping regions. Therefore, one 59-bins, one 243-bins and nine 53-bins
histograms feature are generated. We follow [13] on other setting details. Finally,
histograms are concatenated as the final 833-dimensional feature representation.

5.4 Experimental Results

Intra-dataset results are given in Table 1, Fig. 4(a) and (b). We achieve the best
performance on the combined dataset as well as the supplementary dataset,
which justifies the effectiveness of the proposed method. Meanwhile, from
Fig. 4(a) and (b), the proposed method achieves close results no matter with
or without the hyper-real masks from REAL-F. This justifies our analysis in
Sect. 3 that the rPPG-based solution is independent to the mask’s appearance
quality. Note that the MS-LBP drops (e.g., 8.4 % AUC on SUP and 1.3 % AUC
on COMB) when including the hyper-real REAL-F masks in both datasets.

3 Due to random selection of training data and development data, at least 20 round
are tested and averaged for each experiment.
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This may justify our analysis that the texture-based method may not be dis-
criminative on masks with good appearance quality. As shown in Fig. 3, REAL-
F masks have highly realistic appearance. The face structures of REAL-F are
precisely corresponded. Skin texture is highly restored including the wrinkles,
freckles and visible capillary vessels. Interestingly, comparing with 3DMAD, the
proposed method shows lower performance on high resolution dataset: SUP. We
hypothesize that this is due to the camera setting. In fact, SUP is recorded with
dark background. In order to achieve appropriate global exposure, the camera
automatically adjust the gain setting, and the actual exposure rate is not suffi-
cient to extract clear rPPG signal.

Table 1. Experiment results on COMB and SUP under intra-dataset test protocol.

Combined dataset Supplementary dataset

HTER dev (%) HTER test(%) EER (%) AUC (%) HTER dev (%) HTER test (%) EER AUC(%)

MS-LBP [5] 13.1 ± 6.3 13.8 ± 19.4 13.6 92.8 19.5 ± 11.1 23.0 ± 21.2 22.6 86.8

Proposed 9.2 ± 2.0 9.7 ± 12.6 9.9 95.5 13.5 ± 4.7 14.7 ± 10.9 16.2 91.7
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Fig. 4. ROC curves under intra-dabase and cross-dataset protocal. Note that the legend
TF and RF means Thatsmyface mask and REAL-F mask.

Through the cross-dataset experiment results given in Table 2, Fig. 4(c) and
(d), robustness of the proposed method have been demonstrated. This justi-
fies the great adaptability of the proposed method when encountering different
video qualities. Also, the dramatical performance decline of the MS-LBP may
illustrate the analysis about over-fitting caused weak generalization ability. Note
that training on 3DMAD achieves better performance than training on SUP. This
may also because of the camera setting we discussed in intra-dataset results.

With the different training scale settings, the robustness of our proposed
method has been illustrated. Figure 5 indicates that the proposed method could
achieve good performance with small training data. With 5 subjects, the pro-
posed method could nearly attain the best performance. It is because that, as
analysed in Sect. 4, the local heartbeat pattern has small variance along different
people and thereby is simple and easy to learn. This also justifies the feasibility
of using rPPG as an intrinsic cue for face anti-spoofing.
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Table 2. Experiment results between 3DMAD and SUP under cross-dataset test pro-
tocal.

3DMAD to SUP SUP to 3DMAD

HTER(%) EER (%) AUC (%) HTER EER AUC(%)

MS-LBP [5] 46.5 ± 5.1 49.2 51.0 64.2 ± 16.7 51.6 47.3

Proposed 11.9 ± 2.7 12.3 94.9 17.4 ± 2.4 17.7 91.2
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Fig. 5. Robustness evaluation under intra-dabase and cross-dataset protocal

6 Conclusion and Discussion

In this paper, we propose to use rPPG as an intrinsic liveness cue for 3D
mask face anti-spoofing. With the local rPPG correlation model and confidence
measurement, the 3D mask can be detected effectively. Promising experimental
results justify the feasibility of the proposed approach in combating 3D mask
spoofing attack. Through cross-dataset experiment, the proposed method shows
high potential on having a good generalization ability. The insights of this paper
should have a substantial impact on the development of using rPPG as the
liveness identifications for face anti-spoofing.

Besides, due to the expensive price of 3D mask, we only use 6 Thatsmyface
masks and 2 REAL-F masks to increase the diversities of existing dataset. In
future, more comprehensive analysis need to be evaluated with larger database
which covers more interference and variation in application scenario, e.g., facial
motion and light change.
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