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1 Introduction and summary

Supersymmetric localization leads to a dramatic simplification of the calculation of sphere

partition functions (and some other observables) by reducing the infinite dimensional path

integral to a finite dimensional matrix model [1, 2] This matrix model can then be solved

(sometimes) by a variety of old and new techniques to yield exact results. A particular

application of this is to check dualities — two theories which are equivalent (or flow to the

same IR fixed point) should have the same partition function.

In practice, it is often very hard to solve the matrix models exactly, so dualities are

checked by comparing the matrix models of the two theories and using integral identities to

relate them. The first beautiful realization of this is in the Alday-Gaiotto-Tachikawa (AGT)

correspondence, where the matrix models evaluating the partition functions of 4d N = 2

theories were shown to be essentially identical to correlation functions of Liouville theory

as expressed via the conformal bootstrap in a specific channel. S-duality in 4d was then

related to the associativity of the OPE in Liouville, which is manifested by complicated

integral identities for the fusion and braiding matrices [3–8].

Here we study 3d supersymmetric theories, which have several types of dualities, of

which we will consider mirror symmetry and its SL(2,Z) extension [9–14]. Indeed one

may use integral identities (in the simplest case just the Fourier transform of the sech

function) [15] to show that the matrix models for certain mirror pairs are equivalent. But

is there a way to simplify the calculation such that we can rely on a known duality of a

model equivalent to the matrix model to get the answer without any work, as in the case

of AGT?

Indeed for necklace quiver theories with at least N = 3 supersymmetry (and one copy of

each bifundamental field) there is a simple realization of the matrix model in terms of a gas

of non-interacting fermions in 1d with a complicated Hamiltonian [16]. The purpose of this
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note is to point out that the Hamiltonians of pairs of N = 4 mirror theories are related by a

linear canonical transformation.1 Furthermore we show that the transformations between

three known mirror theories close to SL(2,Z), which is natural to identify with the S-duality

group of type IIB, where the three theories have Hanany-Witten brane realizations.2

In order to demonstrate this we generalize the Fermi-gas formalism of Mariño and

Putrov to theories with nonzero Fayet-Iliopoulos (FI) parameters as well as mass terms for

the bi-fundamental fields. This is presented in section 2 where we focus for simplicity on a

two-node circular quiver.

In section 3 we then present the action of mirror symmetry on the density operator of

the Fermi-gas (the exponential of the Hamiltonian). We also outline the generalization to

arbitrary circular quivers. The generalization of this formalism to D-quivers and theories

with symplectic gauge group will be presented in [18].

In the appendix we proceed to evaluate the partition function of the two-node quiver

(and its mirrors). This was done for the theory without FI terms and bifundamental

masses in [16], and we here verify that the calculation can be carried through also with

these parameters turned on. The resulting expressions are not modified much and one can

still express them in terms of an Airy function.

2 Fermi-gas formalism with masses and FI-terms

In this section we review the Fermi-gas formulation [16] of the matrix model of 3d super-

symmetric field theories and generalize it to a particular N = 4 theory that includes all of

the ingredients we will require for our study of mirror symmetry in the following section.

This is a two node quiver guage theory with gauge group U(N) × U(N). Each node has

a Chern Simons (CS) term with levels k and −k. There is a single matter hypermultiplet

transforming in the fundamental representation of each U(N) factor, and two matter hy-

permultiplets transforming in the bifundamental and anti-bifundamental representations

of U(N) × U(N). The bifundamental fields have masses m1 and m2 and each node has a

Fayet-Iliopoulos term with parameters ζ1 and ζ2.

The matrix model for this theory is computed via localisation [2]. The result can be

easily derived by applying the rules presented for instance in [15, 19, 20]

Z(N) =
1

(N !)2

∫
dNλ(1)dNλ(2)

∏
i<j 4 sinh2 π(λ

(1)
i − λ

(1)
j ) 4 sinh2 π(λ

(2)
i − λ

(2)
j )∏

i,j 2 coshπ(λ
(1)
i − λ

(2)
j +m1) 2 coshπ(λ

(2)
i − λ

(1)
j +m2)

×
N∏
i=1

e2πiζ1λ
(1)
i +πik(λ

(1)
i )2e2πiζ2λ

(2)
i −πik(λ

(2)
i )2

2 coshπλ
(1)
i 2 coshπλ

(2)
i

. (2.1)

1In the specific case of ABJM theory, this was in fact already noted in [16], but here we prove it more

generally.
2We should mention of course also the 3d-3d relation [17], which is closer in spirit to AGT and realizes

mirror symmetry by geometrical surgery.
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The crucial step in rewriting this expression as a Fermi-gas partition function is the use of

the Cauchy determinant identity∏
i<j(xi − xj)(yi − yj)∏

i,j(xi − yj)
=
∑
σ∈SN

(−1)σ
N∏
i=1

1

(xi − yσ(i))
. (2.2)

Applying this to (2.1) we may write the partition function as

Z(N) =
1

(N !)2

∫
dNλ(1)dNλ(2)

∑
σ1∈SN

(−1)σ1
N∏
i=1

1

2 coshπ(λ
(1)
i − λ

(2)
σ1(i)

+m1)

×
∑
σ2∈SN

(−1)σ2
N∏
i=1

1

2 coshπ(λ
(2)
i − λ

(1)
σ2(i)

+m2)

×
N∏
i=1

e2πiζ1λ
(1)
i +πik(λ

(1)
i )2e2πiζ2λ

(2)
i −πik(λ

(2)
i )2

2 coshπλ
(1)
i 2 coshπλ

(2)
i

.

(2.3)

A relabelling of eigenvalues λ
(2)
i → λ

(2)
σ−1
1 (i) allows us to resolve one of the sums over per-

mutations, pulling out an overall factor of N ! giving

Z(N) =
1

N !

∑
σ∈SN

(−1)σ
∫
dNλ

(1)
i dNλ

(2)
i

N∏
i=1

e2πiζ1λ
(1)
i eiπk(λ

(1)
i )2

2 coshπλ
(1)
i

1

2 coshπ(λ
(1)
i − λ

(2)
i +m1)

× e2πiζ2λ
(2)
i e−iπk(λ

(2)
i )2

2 coshπλ
(2)
i

1

2 coshπ(λ
(2)
i − λ

(1)
σ(i) +m2)

=
1

N !

∑
σ∈SN

(−1)σ
∫
dNλ

(1)
i K

(
λ
(1)
i , λ

(1)
σ(i)

)
. (2.4)

Here we expressed the interaction between the eigenvalues λ
(1)
i in terms of the kernel K,

which can be considered the matrix element of the density operator K̂ defined by

K(q1, q2) = 〈q1| K̂ |q2〉 , K̂ =
e2πiζ1q̂+πikq̂

2

2 coshπq̂

e2πim1p̂

2 coshπp̂

e2πiζ2q̂−πikq̂
2

2 coshπq̂

e2πim2p̂

2 coshπp̂
, (2.5)

where p̂ and q̂ are canonical conjugate variables [q̂, p̂] = i~ with ~ = 1/2π and we have

made use of the elementary identities

f(q̂) |q〉 = f(q) |q〉 (2.6)

e−2πimp̂f(q̂)e2πimp̂ = f(q̂ −m) (2.7)

〈q1|
1

coshπp̂
|q2〉 =

1

coshπ(q1 − q2)
. (2.8)

To study the system in a semiclassical expansion it is useful to represent the operators

in Wigner’s phase space, where the Wigner transform of an operator Â is defined as

AW (q, p) =

∫
dq′
〈
q − q′

2

∣∣∣∣ Â ∣∣∣∣q +
q′

2

〉
eipq

′/~ . (2.9)
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Some important properties are

(ÂB̂)W = AW ? BW , ? = exp

[
i~
2

(←−
∂q
−→
∂p −

−→
∂p
←−
∂q

)]
, Tr(Â) =

∫
dqdp

2π~
AW . (2.10)

For a detailed discussion of the phase space approach to Fermi-gasses see [16] and the

original paper [21]. For a more general review of Wigner’s phase space and also many

original papers see [22].

In the language of phase space the kernel K̂ (2.5) becomes

KW =
e2πiζ1q+πikq

2

2 coshπq
?
e2πim1p

2 coshπp
?
e2πiζ2q−πikq

2

2 coshπq
?
e2πim2p

2 coshπp
. (2.11)

Clearly the partition function can be determined from the spectrum of K̂ or KW . The

leading classical part comes from replacing the star product with a regular product. In the

appendix we outline the calculation of the partition function, extending [16].

3 Mirror symmetry

In this section we examine the theory studied in the previous section, with vanishing CS

levels (see top quiver in figure 1), where the density function (2.11) becomes

KW =
e2πiζ1q

2 coshπq
?
e2πim1p

2 coshπp
?

e2πiζ2q

2 coshπq
?
e2πim2p

2 coshπp
. (3.1)

It has been known for a long time that this theory has two mirror theories, related in the

IIB brane construction by SL(2,Z) transformations [12]. As we show, the density functions

of these theories are simply related by linear canonical transformations.

3.1 S transformation

The first of the known mirror theories is one with identical matter content but with mass

and FI parameters exchanged [11]

m1 → m̃1 = −ζ1 , m2 → m̃2 = −ζ2 , ζ1 → ζ̃1 = m2 , ζ2 → ζ̃2 = m1 . (3.2)

This is illustrated by the bottom right quiver in figure 1.

At the level of the density function, this gives

K
(S)
W =

e2πim2q

2 coshπq
?
e−2πiζ1p

2 coshπp
?
e2πim1q

2 coshπq
?
e−2πiζ2p

2 coshπp

∼ e−2πiζ1p

2 coshπp
?
e2πim1q

2 coshπq
?
e−2πiζ2p

2 coshπp
?
e2πim2q

2 coshπq
, (3.3)

where the last relation represents equivalence under conjugating by e2πim2q

2 coshπq . We find that

this density is the same as (3.1) under the replacement

p→ q , q → −p . (3.4)
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Figure 1. Quiver diagrams summarising the two node theory we discuss in the text and its two

mirror duals. Each circle represents a U(N) vector multiplet, labelled inside by the CS level k

and outside by the FI parameter. Edges represent hypermultiplets. Those connecting two circles

are bifundamental fields with the mass indicated next to them. The boxes represent U(1) flavor

symmetries of fundamental hypers, which in our examples are massless.

3.2 U transformation

To get the second mirror theory we apply to (3.1) the replacement

p→ p+ q , q → −p . (3.5)

The result is3

K
(U)
W =

e−2πiζ1p

2 coshπp
?

e2πim1(p+q)

2 coshπ(p+ q)
?
e−2πiζ2p

2 coshπp
?

e2πim2(p+q)

2 coshπ(p+ q)

=
e−2πiζ1p

2 coshπp
? e−iπq

2
?
e2πim1p

2 coshπp
? eiπq

2
?
e−2πiζ2p

2 coshπp
? e−iπq

2
?
e2πim2p

2 coshπp
? eiπq

2
.

(3.6)

In the second line we have made use of the identity

e−πiq
2
? f(p) ? eπiq

2
= f(p+ q) . (3.7)

To read off the corresponding quiver theory from (3.6), each eiπ(kq
2+2ζq) term can be associ-

ated to a U(N) node with CS level k and FI parameter ζ, while each e2πimp

2 coshπp comes from a

bifundamental hypermultiplet with mass m. The transformed density operator corresponds

therefore to a circular quiver with four nodes that have alternating Chern-Simons levels

k = ±1 and vanishing FI parameters. The bifundamental multiplets connecting adjacent

nodes have masses {−ζ1,m1,−ζ2,m2}, as in the bottom left diagram of figure 1.

As we discuss in the appendix, the partition function can be expressed in terms of

Tr K̂ l (A.1), which in phase space is given by an integral over p, q (2.10). Since we showed

3Note that the definition of the star product (2.10) is invariant under linear canonical transformations,

and in particular under (3.5).
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that mirror symmetry can be viewed just as a linear canonical transformation, which is

a change of variables with unit Jacobian, it is clear that mirror symmetry preserves the

partition function.

3.3 SL(2,Z)

It is easy to see that the transformations we used in the previous sections close onto

SL(2,Z). Indeed, defining T = SU we find the defining relations

S2 = −I , (ST )3 = I . (3.8)

More general SL(2,Z) transformations will give density operators with terms of the form

1

coshπ(ap+ bq)
. (3.9)

The cases with a = 0 and b = 1 or a = ±1 and b ∈ Z have a natural interpretation as a

contribution of a fundamental field, or as we have seen in (3.7), from conjugating the usual

1/ coshπp by CS terms. But these manipulations cannot undo expressions one finds from

a general SL(2,Z) transformation of KW . In these more general cases, the transformed

density operator can still be associated to a matrix model, but it cannot be derived from

any known 3d lagrangian.

This is also manifested in the IIB brane realization, where any SL(2,Z) transformation

will lead to some configuration of (p, q) branes. Most of those do not have a known

Lagrangian description [23], but one could associate to them a matrix model [14], which

would indeed lead to the transformed density operator.

3.4 Mirror symmetry for generic circular quiver

The manifestation of mirror symmetry as a canonical transformation naturally generalises

to the entire family of N = 4 circular quivers with an arbitrary number of nodes. Applying

the Fermi-gas formalism, it is easy to see that the density function for such a theory with

n nodes is given by4

KW =
n∏
a=1

?

e2πiζaq

(2 coshπq)Na
?
e2πimap

2 coshπp
, (3.10)

where ζa denotes the FI parameter of the ath node, Na denotes the number of fundamental

matter fields attached to the ath node and ma denotes the mass of the bifundamental field

connecting the ath and (a+ 1)th nodes.

We can now apply the S and U transformations of the previous section, and look to

see if the resulting density functions can again be interpreted as coming from the mirror

gauge theories. Applying the S transformation we get

K
(S)
W =

n∏
a=1

?

e−2πiζap

(2 coshπp)Na
?
e2πimaq

2 coshπq
. (3.11)

4The
∏
? product is defined by ordered star multiplication.

– 6 –



J
H
E
P
0
5
(
2
0
1
5
)
0
0
4

This density function is that of a circular quiver theory with
∑n

a=1Na nodes and n funda-

mental matter fields. The fundamentals are attached to nodes which have FI parameters

ma, and are separated by Na−1 other nodes. The masses of the bifundamentals connecting

them add up to −ζa.5

Applying the U transformation we get

K
(U)
W =

n∏
a=1

?

e−2πiζap

(2 coshπp)Na
?

e2πima(p+q)

2 coshπ(p+ q)

=
n∏
a=1

?

e−2πiζap

(2 coshπp)Na
? e−πiq

2
?
e2πimap

2 coshπp
? eπiq

2
. (3.12)

The mirror theory can be readily read off from this density function as a circular quiver

theory with
∑n

a=1Na+n nodes and no fundamental matter. Each node has Chern-Simons

level k = +1,−1 or 0. Further details concerning the mass parameters and value of

the Chern-Simons level at each node can be read off in much the same way as for the

previous example.

A further generalisation we have not yet considered is to turn on masses for the fun-

damental fields. This corresponds to replacing each of the (2 cosh πq)−Na in (3.10) with a

product of Na terms with masses µi

e2πiζaq ?

Na∏
i=1

?

1

2 coshπ(q + µi)

= e2πiζaq ?

Na∏
i=1

?

(
e2πiµip ?

1

2 coshπq
? e−2πiµip

)

= e−2πiζaµ1e2πiµ1p ?
e2πiζaq

2 coshπq
? e−2πiµ1p ?

Na∏
i=2

?

(
e2πiµip ?

1

2 coshπq
? e−2πiµip

)
.

(3.13)

Where in the second line we chose to associate the FI term to the first fundamental field,

picking up an overall phase.6

Once we apply S or U transformations to (3.13) it becomes clear that these mass terms

become additional FI parameters, as is expected.
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A From density to Airy function

In this appendix we outline the computation of the large N partition function for a theory

with mass and FI parameters. Since the calculation follows closely the method outlined

in [16] we will be rather cursory and refer the reader to [16] for more detail, highlighting

the new features that appear due to the FI and mass parameters.

To evaluate (2.4), one notices that it combines to give products of Zl = Tr(KW )l

where the values of l depends only on the conjugacy class of σ. Instead of summing over

all permutations we can sum over conjugacy classes which have ml cycles of length l and

the combinatorics give

Z(N) =
∑
{ml}

′∏
l

(−1)(l−1)mlZmll

ml!lml
, (A.1)

where the primed sum denotes the restriction to sets that satisfy
∑

l lml = N . Following

the usual analysis from statistical mechanics [24] we consider the grand canonical partition

function given by

Ξ(µ) = 1 +
∞∑
N=1

Z(N)eµN = Exp

[
−
∞∑
l=1

(−1)lZle
µl

l

]
. (A.2)

We consider the density function (3.1), and using (2.7), (2.10) rewrite it as7

KW = eπi(m1ζ2− 1
2
ζ1m1− 1

2
ζ2m2)eπi((2ζ1+ζ2)q+m1p) ?

1

2 coshπ(q − m1
2 )

?
1

2 coshπ(p+ ζ2
2 )

?
1

2 coshπ(q + m1
2 )

?
1

2 coshπ(p− ζ2
2 )

? eπi(ζ2q+(m1+2m2)p) .

(A.3)

In order to get a hermetian Hamiltonian below, we specialize to the case

ζ1 = −ζ2 = ζ , m1 = −m2 = m, (A.4)

and conjugate

KW →
(

2 coshπ

(
q− m

2

)) 1
2

? e−πi(mp+ζq) ?KW ? eπi(ζq+mp) ?
1

(2 coshπ(q − m
2 ))

1
2

. (A.5)

This gives the kernel

KW =
e−2πiζm

(2 coshπ(q − m
2 ))

1
2

?
1

2 coshπ(p− ζ
2)

?
1

2 coshπ(q + m
2 )

?
1

2 coshπ(p+ ζ
2)
?

1

(2 coshπ(q − m
2 ))

1
2

. (A.6)

The phase in KW leads to an overall phase (e−2πiζm)N in front of the partition function

and can be removed and reintroduced at the end (A.19).

7It is also possible to rearrange the expressions such that one p is not shifted and the other shifted by ζ2
and one q is not shifted and the other shifted by m1. We choose this more symmetric expression for later

convenience.

– 8 –



J
H
E
P
0
5
(
2
0
1
5
)
0
0
4

Figure 2. Fermi surfaces for E = 20 and masses m = 0 (a) and m = 1 (b). The red lines are the

exact classical Hamiltonians (A.8) and black lines the polygon approximation (A.9). The region

between them is the leading order perturbative correction given in the first line of (A.13).

Following section 4 of [16] we compute the partition function by studying the spectrum

of the one particle Hamiltonian

HW = − log∗KW . (A.7)

To find an expression for HW one must perform a Baker-Campbell-Hausdorff (BCH) expan-

sion of the logarithm in (A.7). Setting ζ = 0,8 the leading classical term in this expansion

is simply

Hcl = log
(

2 coshπ
(
q +

m

2

))
+ log

(
2 coshπ

(
q − m

2

))
+ 2 log(2 coshπp) . (A.8)

For large p, q this is

Hcl ≈ π
∣∣∣q +

m

2

∣∣∣+ π
∣∣∣q − m

2

∣∣∣+ 2π|p| . (A.9)

It is clear that the approximate Hamiltonian is independent of m for |q| > m
2 . In figure 2

we display the exact classical Fermi surface and polygonal approximation for a particular

value of E and with vanishing and non vanishing mass. The only change to the polygon

from turning on the mass is the removal of the two triangles with |p| > E
2π −

m
2 whose

combined area is m2/2.

The number of states below the energy E is given by the area enclosed by the curve

H = E. Using the polynomial approximation this is just

n(E) ≈
∫
dqdp θ

(
E − π

∣∣∣q − m

2

∣∣∣− π ∣∣∣q − m

2

∣∣∣− 2π|p|
)

= CE2 − m2

2
, C =

1

2π2
. (A.10)

8The effects of nonzero ζ and nonzero m are completely analogous.
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This expression is only approximate and gets corrected by accounting for the difference

between (A.9) and the exact quantum Hamiltonian (A.7). We do this by modifying the

number of states to

n(E) = CE2 − m2

2
+ n0 + nnp(E) , (A.11)

We outline the calculation of n0 below. The main point is that it does not depend on m. nnp
denote nonperturbative, exponentially supressed corrections at large E,9 but are such that

n(0) = 0. To satisfy this, nnp clearly has to depend on m, but this will have no effect on our

end result where we ignore the nonperturbative terms. The approximation (A.9) is valid

where both p or q are large, and as shown in [16], the quantum corrections to (A.8) (from the

BCH expansion of (A.7)) are also exponentially suppressed there. All the corrections are

therefore associated with regions where either p or q are small, namely around the vertices

of the polygon. We then consider the contributions to n0 from each region separately,

integrating in each case the (perturbative) corrections to the boundary. For instance,

around q ∼ 0, p � 1 the first quantum corrections of the Hamiltonian are given (up to

terms exponentially suppressed in p) by

Hcl → Hcl +
π2

24

(
1

cosh2 π(q + m
2 )
− 2

cosh2 π(q − m
2 )

)
. (A.12)

The difference in the area between the polygon and the quantum corrected Fermi surface

for large E approaches

∫ ∞
−∞

dq

2π

[
π
∣∣∣q +

m

2

∣∣∣+ π
∣∣∣q − m

2

∣∣∣− log 2 coshπ
(
q +

m

2

)
− log 2 coshπ

(
q − m

2

)
− π2

24

(
1

cosh2 π(q + m
2 )
− 2

cosh2 π(q − m
2 )

)]
= − 1

24
.

(A.13)

As advertised, this is independent of m (which can be seen by splitting the integral into

two term with q ±m/2 and shifting the integration variable).

The analog expression around the p = 0, q � 1 vertex is∫ ∞
−∞

dp

2π

(
2π|p| − 2 log 2 coshπp− π2

48 cosh2 πp

)
= − 5

48
. (A.14)

Summing over the contributions from all four regions we get

n0 = 2

(
− 1

24
− 5

48

)
= − 7

24
. (A.15)

It is not hard to see that all the higher order quantum corrections do not modify n0 and

in particular do not depend on m. See the discussion in section 5.3 of [16].

9These also include the so called Wigner-Kirkwood corrections to the formula (A.10), which manifest as

boundary integrals on the Fermi surface and are nonperturbative for the same reason as in [16]
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From n(E) it is easy to calculate the matrix model partition function. The grand

canonical potential, the logarithm of (A.2) is

J(µ) = log Ξ(µ) =

∫ ∞
0

dEρ(E) log(1 + eµ−E) , ρ(E) =
dn(E)

dE
. (A.16)

At large µ this integral reduces to

J(µ) =
C

3
µ3 + µ

(
n0 −

m2

2
+
π2C

3

)
+A+O(µe−µ) . (A.17)

A is a constant that we will not concern ourselves with (it is studied in more detail in [16]

and subsequent papers). From this we can extract the canonical partition function10

Z(N) =
1

2πi

∫ i∞

−i∞
eJ(µ)−µN = C−

1
3 eA Ai

[
C−

1
3

(
N − n0 −

π2C

3
+
m2

2

)]
+O(e−N ) .

(A.18)

It is straight forward to include also the FI parameter ζ. Remembering the extra phase

in (A.6) one finds

Z(N) = C−
1
3 eA−2πiζmN Ai

[
C−

1
3

(
N − n0 −

π2C

3
+
m2 + ζ2

2

)]
. (A.19)

One can treat quite general N = 3 necklace quiver theories in a similar fashion, subject

to the technical constraint that the sum over FI parameters and the sum over bifundamental

masses both vanish. The analog of (A.9) will again be a piecewise linear Hamiltonian

H ≈
∑
i

|aiq + bip+ ci| , (A.20)

The parameters ai and bi are determined by the Chern-Simons terms and ci are due to

mass and FI terms. The volume of the corresponding polygonal Fermi surface is again of

the form

CE2 +B (A.21)

Similar arguments to those made above guarantee that the full ci dependance appears via

a shift B which can be found already in the polygonal approximation.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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