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3D printing allows the most realistic perception of the surgical anatomy of congenital

heart diseases without the requirement of physical devices such as a computer screen

or virtual headset. It is useful for surgical decision making and simulation, hands-on

surgical training (HOST) and cardiovascular morphology teaching. 3D-printed models

allow easy understanding of surgical morphology and preoperative surgical simulation.

The most common indications for its clinical use include complex forms of double

outlet right ventricle and transposition of the great arteries, anomalous systemic and

pulmonary venous connections, and heterotaxy. Its utility in congenital heart surgery is

indisputable, although it is hard to “scientifically” prove the impact of its use in surgery

because of many confounding factors that contribute to the surgical outcome. 3D-printed

models are valuable resources for morphology teaching. Educational models can be

produced for almost all different variations of congenital heart diseases, and replicated in

any number. HOST using 3D-printed models enables efficient education of surgeons

in-training. Implementation of the HOST courses in congenital heart surgical training

programs is not an option but an absolute necessity. In conclusion, 3D printing is entering

the stage of maturation in its use for congenital heart surgery. It is now time for imagers

and surgeons to find how to effectively utilize 3D printing and how to improve the quality

of the products for improved patient outcomes and impact of education and training.

Keywords: congenital heart surgery, 3D modeling, 3D printing, hands-on surgical training, surgical simulation,

education

INTRODUCTION

Congenital heart diseases (CHDs) are structural heart diseases that are characterized by
extremely wide anatomical variations and complexity with a number of individual pathologic
entities that are only rarely encountered in practice. CHDs usually require surgical treatment
or catheter-based intervention that requires proper understanding of three-dimensional (3D)
surgical anatomy. Understanding of these complex structures requires both 2D and 3D imaging.
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While 2D imaging is for exploration of the composition of
a 3D structure, 3D imaging is for intuitive understanding
of a structure’s shape. The more complex the structure, the
higher the need for 3D demonstration. This can be represented
on a computer screen, in a simulated environment (i.e.,
virtual/augmented or mixed reality) or through physical
3D-printed models. Among these three paradigms of 3D
demonstration, 3D printing allows the most realistic perception
of the pathology without the requirement of devices such as a
computer screen or virtual headset. The tactile properties of
3D-printed models enhance understanding of the anatomy
with clarity and unambiguity, minimizing the risks of
misinterpretation and miscommunication. In addition, the
models provide an opportunity for hands-on simulation of
surgical or interventional procedures, which is not available on
the other platforms.

In the last two decades, 3D printing has become practically
applicable and valuable for congenital heart surgery (1–9). In this
review article, we focus our discussion on current applications,
limitations and the future direction of 3D printing in congenital
heart surgery. The techniques for 3D modeling and printing are
well-presented elsewhere (1, 10, 11).

APPLICABLE IMAGING MODALITIES

Contrast-enhanced computed tomography (CT) and magnetic
resonance (MR) angiograms provide the 3D image data that
are best suited for 3D modeling and printing owing to
excellent contrast and spatial resolutions. For the best quality
of images and 3D printing, imaging should be performed with
electrocardiographic (ECG) gating and breath-holding (for CT)
or respiration navigation (for MR). As cardiac surgery is usually
performed with cardioplegia, ECG-gating is preferred to target
end diastole. When ECG-gating or breath-holding/respiration
navigation is not applicable, non-ECG-gated imaging during
quiet respiration is acceptable with the detail compromised.
CT provides a high spatial resolution ranging between 0.5 and
0.65mm, while the spatial resolution of MR is limited to 1–
2mm. In both CT and MR, homogeneous opacification of the
cardiac structures is important as postprocessing for 3D printing
relies primarily on thresholding based on signal intensity.
Although MR requires a long imaging time, homogeneity
of contrast enhancement is easier to achieve at MR than
at CT. CT images reconstructed from rotational angiograms
obtained during cardiac catheterization are also applicable for 3D
printing (12). 3D echocardiography is an excellent tool for 3D
visualization of cardiovascular structures on a computer screen
(13). However, ultrasound imaging is inherently associated with
strong artifacts from air and bone, which hampers utilization of
echocardiograms for 3D printing. Furthermore, the field of view
at echocardiography is limited to the availability of the window
for sound propagation. Therefore, echocardiogram-based 3D
printing has been limited mostly to demonstration of cardiac
valves and guidance for device closures (13–15). The strengths of
CT or MR and echocardiograms can be integrated for so-called
hybrid 3D printing (16).

TABLE 1 | Applications of 3D printing in congenital heart surgery.

Clinical

• Surgical decision making and planning

• Surgical simulation

• Computer-aided design of surgical baffles and patches

Educational

• Hands-on surgical training (HOST)

• Congenital heart morphology teaching

• Patient and family education

Acquired DICOM (Digital Imaging and COmmunication in
Medicine) data are processed for 3D modeling using threshold-
based segmentation and additional manual editing (1–4). The
segmented DICOM data are then converted to the STL
(Stereolithography or Standard Tessellation Language) or other
file format for 3D modeling and printing.

CURRENT APPLICATIONS

Applications of 3D printing in congenital heart surgery can be
divided into the clinical applications for surgical decision making
and planning, preoperative surgical simulation and computer-
aided design of the required patches and baffles, and the
applications for education and surgical skill training (Table 1).

Surgical Decision Making and Planning
A choice between biventricular and univentricular repairs in
complex CHDs is frequently a binary decision that determines
the ultimate fate of the patient’s health (17, 18). The decision
requires precise understanding of: (1) the feasibility of separation
of the systemic and venous flows within the limited space of
cardiac chambers, (2) establishment of patent ventricular outflow
tracts, ideally, with competent valves, and (3) construction of
unobstructed pulmonary arteries and aorta/aortic arch.While the
decision could be reached with 2D images alone, 3D imaging
facilitates understanding of the surgical anatomy in complex
cases (7–9, 18). While 3D modeling of the blood pool provides
an excellent overview of the pathology, 3D endocardial surface
imaging reproduces the surgical scenes of the opened cardiac
cavities (Figure 1) (1, 11).

Double outlet right ventricle (DORV) is by far the most
common referral indication for 3D printing (11, 19–23). DORV
is not a single pathologic entity but a collective term for
various malformations with a unifying feature of origin of more
than half of both arterial trunks from the right ventricle (24).
Although there are more common forms of DORV such as
those with a ventricular septal defect (VSD) in strictly subaortic
or subpulmonary location, a number of cases show non-classic
features. Naming a VSD as remote in DORV may discourage
surgeons to proceed with a biventricular repair. However,
biventricular repair can be an achievable goal in a significant
number of DORVs with a remote VSD (25). 3D-printed models
are very helpful for optimal pre-operative decision making in
these cases. Similarly, complex forms of transposition of the great
arteries are often referred for 3D printing to assess the feasibility
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FIGURE 1 | 3D modeling of cast (left-hand panels) and endocardial surface anatomy (middle and right-hand panels) for double outlet right ventricle with a

subpulmonary ventricular septal defect (VSD). A cast is modeled from CT images by signal intensity-based thresholding for contrast-enhanced blood pool. By

hollowing the cast model toward outside, a negative of the cast is produced to replicate the endocardial surface anatomy. The endocardial surface represents true

anatomy, while the outer surface does not. The sites of attachments of the cardiac valve leaflets are marked as ridges and the graphically designed leaflets and chords

are added for reference. Ao, aorta; LAA, left atrial appendage; LAO, left anterior oblique; LV, left ventricle; OS, outlet septum; PT, pulmonary trunk; RV, right ventricle;

SVC, superior vena cava.

of options such as intraventricular baffling of the VSD to an
arterial valve, a Nikaido procedure, or double-root translocation
(26–28). Complex systemic and/or pulmonary venous anatomy is
another frequent referral indication. Examples include persistent
left superior vena cava with unroofed coronary sinus (so-called
Raghib syndrome), sinus venosus type atrial septal defect, and
complex venous anatomy in heterotaxy in which intraatrial or
extracardiac baffling of an anomalous vein is required (Figure 2)
(29–33). Usefulness of 3D printing is not limited to the examples
listed above but is applicable in any situation where the decision
cannot be confidently made with 2D imaging findings alone.

Surgical Simulation
Surgical or interventional procedures can be simulated on 3D-
printed models made of soft materials (Figure 2) (11, 29–
31). Commercially available soft materials such as TangoPlus,

Agilus and TissueMatrix (Stratasys, Edina, Minnesota, US) are
more pliable than human myocardial and endocardial tissues.
Most surgeons find that suturing is more difficult on models
than on human tissue. However, incision and suturing can be
simulated on the models with caution. The surgeons have the
opportunity to practice the intended surgical procedure on the
models printed from the patient’s own image data if they are
not experienced in or familiar with the procedure. 3D-printed
models can be used for simulation of minimally invasive surgery
in which the field and angle of view is limited (34). Preoperative
simulation for trainee surgeons is of paramount importance in
order to minimalize any potential risk to patient safety and to
increase their confidence and technical skills associated with
the procedure.

For experienced surgeons, simulation can be beneficial
in cases where there are more than one potential surgical
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FIGURE 2 | 3D-printed surgical simulation model for a patient with so-called Raghib syndrome (unroofed coronary sinus with persistent left superior vena cava). Left

hand panels are frontal views of the 3D-reconstructed cast image (A) and endocardial surface image (B). Green dotted line shows the path of the left superior vena

cava (LSVC) that connects to the roof of the left atrium (LA). Middle and right-hand panels show four surgical options practiced on the 3D-printed models. Option 1,

graft interposition between right (RSVC) and LSVC. Option 2, direct anastomosis of disconnected LSVC to RSVC without graft. Option 3, intraatrial baffling of LSVC

orifice to right atrium (RA) along the roof of the left atrium (LA). Option 4, intraatrial baffling of LSVC orifice to RA along the floor of the LA. The course of the baffle is

marked with white dotted line. Option 3 was chosen for surgical treatment (29).

approach to treating the defect. Usually these complex
decisions are made based on the surgeon’s own experience
and training background as well as by referencing the literature.
For complex cases where the surgical treatment strategy

can be controversial, the surgeon may use 3D models to
simulate different surgical strategies to help refine what
is the best applicable procedure for the given patient’s

anatomy (Figure 2). Furthermore, 3D-printed models can
be used for the development and trial of newly invented

procedures. The predicted anatomical and hemodynamic
results of the simulated surgery can be replicated by 3D

modeling/printing and 4D flow MR imaging or computational

fluid dynamics in order to objectively assess surgical
outcome (35).

Computer-Aided Design of Surgical Baffles
and Patches
Traditionally, patches for septal defect closure, intraventicular
baffles and vascular augmentation patches are trimmed during
surgical procedures. While simple closure patches are easy to
trim, complex patches and baffles require surgeon’s best guess
of the result for appropriate trimming and application. Such
empirical approaches to complex surgical procedures are hard
to be standardized and frequently associated with unsatisfactory
anatomical results (36, 37). The required baffles and patches
can be graphically designed for the patient’s specific anatomy
to predict the surgical results such as patency of the pathway
without obstruction or unfavorably dilated lumen, adequacy of
the volume of the remaining part of the ventricle after application
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FIGURE 3 | Models for patch repair of a ventricular sepal defect (D) with the hole well-exposed (A), with the graphically designed cardiac valve leaflets added (B) and

with the graphically designed cardiac valve leaflets and chordae tendinae added (C).

of a large intraventricular baffle, and spatial relationship between
the baffles/patches and the cardiac valves (11, 38, 39). A
sterilizable template can be graphically designed and 3D printed
to guide trimming of a baffle or patch at surgery.

Hands-On Surgical Training (HOST)
Surgical training for CHDs is challenging and requires a long
training period because of relative rarity of individual lesions
and demanding surgical techniques. Furthermore, intraoperative
training presents a potential risk to patient safety. As a
consequence, surgical trainees have been provided with limited
operative experience in congenital heart surgery. Therefore,
surgical simulation has long been sought to develop surgeons’
technical skills without compromising patient safety (40, 41).
Until recently, available resources for surgical simulation have
been limited to the hearts and vessels of living or sacrificed
animals, pathologic heart specimens and plastic replicas (42).
As these resources rarely represent the pathological anatomy of
CHDs, surgical simulation has been applicable for the procedures
that can be simulated on a normal heart, such as arterial switch,
arterial root translocation and the Ross procedure (43). 3D
printing with soft materials has brought a new opportunity
for the training of various surgical procedures. With improved
imaging technology and widespread utilization of CT and MR,
image data for 3D modeling and printing are readily available
for most CHDs. Furthermore, 3D printing allows reproduction
of any number of models for unlimited availability. Since its
introduction in 2015, Hands-On Surgical Training (HOST)
courses using 3D-printed models have increasingly been popular
among surgeons and trainees in congenital heart surgery (44–
46). Most participants of the HOST courses appreciated the
educational value of the 3D-printed models in improving their
surgical skills. Most of them also strongly agreed that the HOST
courses should be included in the curriculum of CHD surgical
training. The authors’ institution holds monthly HOST sessions
for its own trainees with excellent feedback from both trainees
and proctors (47). This platform also allows surgeons to practice
the procedures with proctor’s supervision via an online format

or to practice independently with pre-recorded training videos to
reference from.

3D-printed models are applicable for training of both
extracardiac and intracardiac procedures. They can also be useful
in training of minimally invasive surgery such as closure of
an atrial septal defect through a lateral thoracotomy. Models
can be designed in various forms depending on the purpose of
the training. Before any procedure is started, an inexperienced
surgeon may want to master the skills for cutting, suturing and
cannulation. Such entry level skills can be easily practiced on
a sheet or tube made of soft material. The surgical procedures
can be practiced in a step-by-step fashion from basic bench
top models to complex surgical models. For instance, models
for patch closure of a VSD can be made in three different
forms: a model with a well-exposed hole, a model with cardiac
valve leaflets added, and a model with chordae tendinae as
well as valve leaflets added (Figure 3). For most intracardiac
procedures, the models are made only for the endocardial surface
anatomy to reduce the time and cost for reproduction. However,
models with full myocardial thickness can be printed using newly
introduced super-soft print material (Tissue Matrix, Stratasys,
Rehovot, Israel). As currently available imaging modalities do
not provide clear definition of the cardiac valve leaflets and
chordae tendinae, graphically designed parts are added to the
image-based model as described elsewhere (Figure 3) (1, 11).
The more sophisticated forms of the model are provided to
an advanced group of surgeons. While most congenital heart
surgical procedures are reproducible using the techniques shown
above, models for cardiac valve surgery and sutureless repair of
pulmonary veins using the patient’s own pericardium are more
difficult to reproduce albeit not impossible. Typically, the models
are mounted on a flat platform with supporting pillars so that
the platform is simply plastered on the table. A model can be
mounted in a chest wall simulator that replicates the environment
and ergonomics of the operating table (Figure 4) (48).

The surgeons’ operative performance on 3D-printed models
can be objectively assessed by using assessment tools such
as the Objective Structured Assessment of Technical Skills
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FIGURE 4 | Operating table-chest wall simulator assembly. The simulator is equipped with suture retention disk, surgical lighting and webcam video-recorder. The

table can be raised and tilted.

(OSATS) with Global Rating Scale (GRS) (49, 50) and the
Hands-On Surgical Training–Congenital Heart Surgery (HOST-
CHS) tool (51–53). The OSATS-GRS is a widely used tool in
surgical simulation that is based on Likert scales for evaluation
of generic skills and procedure-specific checklists but shows
limited reliability and validity at the specialist level (54). The
HOST-CHS tool is a procedure-specific checklist for the key
procedural steps, the importance of which is graded using a
predefined weight. Each step is assessed in a binary manner
for “yes (acceptable)” or “no (unacceptable).” The HOST-
CHS tool has been proven to provide higher intrarater and
interrater reliabilities than conventional OSATS-GRS for arterial
switch operation and Norwood operation (51–53). To assess
the general aspects of the surgical procedures, the checklist
is broken down into holistic categories including procedural
fluency, knowledge of technical aspects of the procedure and
respect for tissue. Furthermore, the procedural time is an
additional separate component to measure as cross-clamp and
cardiopulmonary bypass time is an independent predictor
of the outcome in congenital heart surgery especially in
young children (55–57). Assessment of operative performance
requires video-recording of the procedure. While extracardiac
repairs such as arterial switch operation, supravalvular aortic
stenosis, coarctation repair and Norwood operation can be
recorded without difficulty, intracardiac repairs are difficult
to record unless a major part of the ventricular wall is
removed to expose the surgical scene (Figure 3). Alternatively,
an endoscopic camera can be inserted through a hole in
the apex of the ventricle. Ideally, the recorded procedures
should be evaluated by experienced surgeons, which is often
challenging due to a surgeon’s busy daily schedule. The HOST-
CHS tool enables non-MD raters to assess the surgeons’
procedures with accuracy similar to that of experienced MD
raters (51).

Congenital Heart Morphology Teaching
Proper understanding of the pathological features of a wide
variety of congenital heart diseases is fundamentally important
in the accurate diagnosis and surgical treatment of patients.
Traditionally, congenital heart morphology teaching has heavily
relied on observation of pathologic specimens removed from
deceased patients or at cardiac transplantation. However,
pathologic specimens are rare resources that are available
in the limited number of institutions where specimens have
been collected from the old era of high surgical mortalities.
While old specimens are deteriorating with time, the sources
of new specimens have increasingly been scarce due to ever
improving surgical outcomes as well as ethical and legal
issues related to retaining human bodies or body parts for
educational purposes (58). 3D-printed replicas of congenital
heart diseases are extremely valuable educational resources
as almost all variations of congenital heart diseases can be
reproduced in any number (Figure 5) (59). In contrast to
pathologic specimens that can be cut in a limited number of
sectional planes, 3D-printed models can be reproduced in any
number of cutting planes as well as its entirety for comprehensive
demonstration of the complex anatomy. However, representation
of thin or small structures such as cardiac valves and chordae
tendinae are not satisfactory with currently available imaging
and printing technologies. By compensating the weaknesses and
limited availability of cardiac specimens, 3D-printedmodels have
emerged as valuable resources for the education of congenital
heart morphology (60–66).

Patient and Family Education
3D-printed models of either the patient’s own heart or other
individuals’ with a similar pathology are very helpful for patient
counseling (Figure 6) (66). With the physical replicas of the
heart on hands, the patients and families can understand the
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FIGURE 5 | Examples of surgical simulation models for atrioventricular septal defect repair (AVSD), arterial switch operation for transposition of the great arteries (TGA)

and Norwood operation for hypoplastic left heart syndrome (HLHS). Only the endocardial surface anatomy is represented with a wall thickness of 0.9–1.2mm.

explanation easily with high level of confidence and are readily
engaged in the discussion.

CURRENT LIMITATIONS AND FUTURE
DIRECTION

This information is summarised in Table 2. Despite its utilization
for almost two decades, it has been claimed that there has not
been enough “scientific” evidence of the usefulness of 3D printing
in CHDs (4, 5). Ideally a randomized trial is required. However,
the comparison of the surgical outcomes between the groups
with and without 3D-printed models is extremely challenging.
Such a study would require a large number of patients with CHD
due to the rarity and high variability seen in these patients. It is
very difficult to scientifically prove the impact of 3D printing in
patient management as there are numerous other compounding
factors that contribute to patient’s outcome. The use of 3D-
printed models certainly affects the quality of surgical procedure,
cross-clamp time, length of stay in intensive care unit and
hospital, required manpower and costs for treatment, each of
which would not appear significant individually but may add
up to be collectively significant. What matters at this maturing

stage of 3D printing is: (1) how to standardize the service, (2)
how to maintain quality control of the development and printing
process, and (3) how to reduce the costs to an acceptable range.

3D printing is an inefficient method of building a 3D object
as it requires deposition of thin layers of print material(s), layer
upon layer. Using polyjet technology, it takes up to 15 h to print a
high-quality model of an adult heart size. The print materials that
allow surgical procedures are relatively expensive. Furthermore,
post-processing of image data requires the knowledge and hands
of experienced specialists as well as expensive software. It is
often a painstaking long process. Therefore, a high cost is a
major limitation of 3D printing, while it has not yet been
recognized as a standard service for reimbursement by the
government or insurance companies in most countries. The
cost for post-processing software, 3D printing equipment and
printing materials will be reduced with increasing utilization
of the service as well as technological improvement such as
printing time.

Although most surgical procedures are applicable on the
models printed with currently available soft materials, further
improvements in the materials’ physical properties such as
elasticity and strength is required. The addition of fiber-like
structures to the model may improve the strength as well as
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FIGURE 6 | A set of 3D-printed models used for explanation of transposition of the great arteries and arterial switch operation. Ao, aorta; LV, left ventricle; PT,

pulmonary trunk; RA, right atrium; RV, right ventricle; SVC, superior vena cava.

the elasticity of the models. Further efforts should be made to
simulate the different physical characteristics of cardiac valves,
endocardium and pericardium as well as myocardium.

3D printing of cardiac valves and supporting apparatuses
is an important area to explore as valve abnormalities are
not only common but also surgically challenging. Although
accurate replication of the pathology will remain difficult
because of the limitation in 3D imaging of the valve leaflets
and chords that are constantly moving, delicate structures
(67–70), the pathology can be graphically simulated with
computer aided design tools based on the combined
information from echocardiography and CT (31). This
will allow surgical simulation of cardiac valve repair such
as the cone procedure for Ebstein’s malformation of the
tricuspid valve.

The accuracy of anatomical representation in 3D-printed
models will continue to improve with improvement of spatial,
contrast and temporal resolutions of 3D imaging as well as
printing resolution of 3D printers. The evolution of 3D printing
technology will follow a path similar to that of digital paper
printing. The printer will become smaller and cheaper, and
the resolution will become higher. In the future, 3D printers
might become as ubiquitous as digital paper printers are now.

TABLE 2 | Limitations of 3D printing in congenital heart surgery and future

direction.

Limitations

• Insufficient objective evidence of the usefulness of 3D printing in congenital heart

surgery

• Long 3D modeling and printing process

• High cost

• Limited physical properties of print materials for simulation of surgical

procedures

• Difficulty in reproduction of cardiac valves and tension apparatuses

Future direction

• Improvement of spatial and temporal resolution of imaging technology

• Improvement of printing technology such as high-resolution silicone-based

printers and fast printers

• Improvement of physical properties of print materials

• Insurance coverage of 3D printing as standard medical service

• 3D bioprinting

Furthermore, 3D printing capability could be an element of
sophisticated imaging equipment.

3D bioprinting has been an attractive application of 3D
printing as bioprinted tissue may provide the characteristics of
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human tissue with growth potential (6, 71, 72). If the patient’s
own cells are used, a risk of rejection is eliminated. While
traditional methods are based on the 3D printing of scaffolds
that allow incorporation of cells to grow, the modern method
exploits direct 3D printing of living cells and biomaterials or
bioink such as hydrogels and decellularized extracellular matrix
as functional scaffolds. Direct printing enables precise placement
of the required number of cells and volume of biomaterials.
Potential applications of bioprinting range from fabrication of
a simple surgical patch to construction of the whole heart
for transplantation. Nonetheless, bioprinting has not yet been
successful in real patient management. Bioprinting of patient-
specific baffles and patches using the patient’s own stem cells,
preferably sampled at the time of delivery with fetal diagnosis of
the pathology, is practically appealing.

The HOST course for congenital heart surgery using 3D-
printed models has not yet been widely disseminated partly
because of its relatively short history and also due to rather
expensive costs. However, young surgeons’ effective surgical skill
development is worth the current associate cost of the course.
The investment will be recovered indirectly from improved
short and long term outcomes of congenital heart surgeries
performed by well-trained surgeons. The HOST course will
turn out to be affordable, cost-effective program with wide
utilization of the service as well as reduced costs. With further
improvements in the quality and variety of the models and
the development of procedure-specific HOST-CHS assessment
tools for all applicable procedures, HOST courses will contribute
to the improvement and standardization of congenital heart
surgery training and potentially contribute toward surgeons’
certification examinations.

CONCLUSION

3D printing is useful for surgical decisionmaking and simulation,
computer-aided desing of surgical baffles and patches, hands-
on surgical training and cardiovascular morphology teaching for
medical personnel and patients/family. 3D printing is entering
the stage of maturation in its use for congenital heart surgery. It is
now time for imagers and surgeons to find how to uniquely utilize
3D printing and how to improve the quality of the products for
both better patient outcomes and education of CHDmorphology
and surgery. Although it is relatively expensive, the cost can
be recovered indirectly from improvement of patients’ surgical
outcome and quality of life. Furthermore, hands-on surgical
training with 3D-printed models allows efficient education
of surgeons in-training. Implementation of HOST courses in
congenital heart surgical training programs is not an option but
an absolute must.
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