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This paper reviews the past and current trends of three-dimensional (3D) modeling and reconstruction of
plants and trees. These topics have been studied in multiple research fields, including computer vision, graph‐
ics, plant phenotyping, and forestry. This paper, therefore, provides a cross-cutting review. Representations of
plant shape and structure are first summarized, where every method for plant modeling and reconstruction is
based on a shape/structure representation. The methods were then categorized into 1) creating non-existent
plants (modeling) and 2) creating models from real-world plants (reconstruction). This paper also discusses
the limitations of current methods and possible future directions.
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Introduction

The structure of plant shoots (i.e., leaves and stems) is an
important cue for plant phenotyping and cultivation.
Although modeling plant stems are known to be beneficial,
it involves a number of technical challenges. To auto‐
matically model non-existent virtual plants, sophisticated
representations of plant structure and shape are required.
If we want to reconstruct the plant shape/structure based
on observation, such as multiview images, difficulty arises
because of heavy occlusions or structural complexity.

Three-dimensional (3D) modeling of plants and trees has
been developed in multiple research fields. Recently, appli‐
cations for plant science, breeding, and cultivation have
been actively developed in the plant phenotyping (PP)
field, while technical components of 3D modeling have
been primarily related to the computer vision (CV) field.
As so, a series of workshops named Computer Vision
Problems in Plant Phenotyping and Agriculture (CVPPA),
has been held in conjunction with major CV conferences.
In addition, there has been an important demand for
(semi-)automatic plant modeling in computer graphics (CG)
because modeling plants and trees is time-consuming. Tree
modeling and reconstruction are also essential topics for
forestry studies analyzing forest inventories.

In this paper, a cross-cutting review of the 3D modeling
methods of plant stems is presented, spanning across
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research fields such as CV, CG, and PP. There has been
some survey literature related to 3D modeling of plants. For
instance, a recent survey paper has discussed 3D recon‐
struction for plant phenotyping (Paulus 2019), including a
brief theory of 3D reconstruction. A more specific topic,
multiview image-based plant modeling, was summarized in
(Kochi et al. 2021). The present paper aims to provide a
broader and cross-cutting review, including the state-of-the-
art from multiple research fields. Although it only focuses
on plant stems (i.e., the above-ground part), the root system
is also an essential target of plant modeling (e.g., Zheng et
al. 2011) and interested readers are encouraged to refer to a
recent survey report of root phenotyping (Takahashi and
Pradal 2021). Image-based plant phenotyping has been well
studied for related topics (Li et al. 2014, 2020b). More
specifically, unmanned aerial vehicle (UAV)-based pheno‐
typing (Guo et al. 2021) and the use of convolutional neu‐
ral networks (CNNs) for plant phenotyping (Jiang and Li
2020, Toda and Okura 2019) are also summarized. A spe‐
cific review of the 3D representation of plant structure/
architecture has been presented earlier (Godin 2000).

Overview

First, a brief classification of plant modeling/reconstruction
studies is summarized. For simplicity, the following defini‐
tions of the terms modeling and reconstruction are used in
this paper:
• Modeling: Creating models of non-existent plants by sim‐

ulating their shapes and structures;
• Reconstruction: Creating plant shapes or structures which

mimics existing plants.
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Note that modeling is generally used for broader mean‐
ings, including reconstruction tasks (e.g., image-based
modeling is regarded as a reconstruction task).

In addition to the methodologies for modeling and recon‐
struction, the representation of plant shape and structure is
an important topic of this study. While we can naturally
represent the plant shape using point clouds and mesh mod‐
els, structural representations are often used for (functional)
structural plant modeling ((F)SPM), which are frequently
used for the simulation of plant functionality (Kim et al.
2020).

Fig. 1 summarizes the classification of plant modeling/
reconstruction. In this paper, the major representations of
plant shape and structure are first summarized, and a
review of plant modeling/reconstruction methods using
these representations is then presented.

Plant shape/structure representation

This section briefly reviews on how 3D shapes and struc‐
tures are represented in the virtual world. Both plant-
specific approaches and general 3D representations are
introduced. Fig. 2 summarizes the common representations
of local and global shapes/structures.

Shape representations
There are multiple representations for some shape

details. Local representations are first described, followed
by ways to represent the shape and structure globally.
Point cloud representation

A straightforward way to represent an object’s existence
at a specific 3D location is to use a point or density plot.
Point-based 3D representations are often called point
clouds consisting of 3D points located on the surface of an
object. As a default, many commercial range scanners, light
detection and ranging (LiDAR), and depth sensors yield
point clouds as 3D measurements. Many plant reconstruc‐
tion methods use point cloud input given by multiview
stereo or 3D laser scanners.
Voxel representation

Volumetric representations are commonly used in den‐
sity/silhouette-based 3D reconstruction methods, such as
computed tomography (CT) (Brooks and di Chiro 1975),
which represent the object density of each small 3D grid
(i.e., voxels). Interested readers are invited to refer to the
fundamental techniques in CG (Foley et al. 1996). An early
attempt at the 3D reconstruction of botanical trees used a
voxel-based representation for the crown (Reche-Martinez
et al. 2004), which enabled practical CG applications such

Fig. 1. A rough classification of important words used in plant modeling/reconstruction techniques.

Fig. 2. Shape and structure representations of plants. The left-most column shows an example of structural representation, L-system, which
generates structural patterns via recursive processes (see Fig. 3 for details).
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as relighting, i.e., simulating tree appearances under differ‐
ent illumination conditions (Cabral et al. 2011). In addition,
X-ray CT is a major method for analyzing the 3D shape of
grains (Hu et al. 2020, Hughes et al. 2017).
Mesh (polygon) representations

Gathering the local shape is often helpful beyond just the
point or density at a 3D position. A common way of repre‐
senting 3D shapes by local shapes is to use small planes,
i.e., polygon meshes. An advantage of mesh-based repre‐
sentation is the simplicity of deriving the neighboring
points, resulting in a simple computation for the surface
normal direction or object boundary, which are essential
when using 3D models for rendering or physics simulation.
Converting point/voxel-based representations to polygon
meshes is useful in terms of frequency. For example,
Poisson mesh reconstruction (Kazhdan et al. 2006) gener‐
ates a mesh model from a given point cloud. From voxel
representations, we can use an intermediate representation
such as a signed distance function (SDF) (Curless and Levoy
1996) during the conversion, which represents the distance
from the object surface (and the zero-crossing indicates the
surface location). However, obtaining reasonable meshes
from a point cloud or voxels is often challenging for thin
objects such as plant stems. Recent studies have attempted
to overcome this issue using deep learning and have shown
promising results, including plant 3D models (Wei et al.
2021).
Parametric surface representations

Parametric (curved) surface representations, such as
Bezier, B-spline, and NURBS (Piegl and Tiller 1997), are
used to represent more global shapes using a smaller num‐
ber of parameters than the polygon models. For example,
leaf shapes can be approximated using a curved surface.
Some methods for leaf 3D reconstruction fit the parametric
surfaces on the given observation in the form of point
clouds (Ando et al. 2021, Quan et al. 2006).
Primitive-based representations

If we have prior knowledge of the target scene, we can
interpret it as a composition of primitive shapes, such as
cylinders. For example, early studies on human image anal‐
ysis frequently approximated human shapes using multiple
cylinders (called cylindrical models) (Deutscher and Reid
2005). Indoor scenes or city sceneries are often approxi‐
mated by the composition of cuboid shapes (called the
Manhattan World assumption (Coughlan and Yuille 1999)).
In the context of plant modeling, cylindrical models are
sometimes used because the branches can be approximated
as stacks of small cylinders (Tan et al. 2007, 2008).
Neural implicit representations

Recent advances in neural networks enable the repre‐
sentation of 3D shapes as weight parameters in a neural
network, called neural implicit representations. Neural
radiance fields (NeRF) (Mildenhall et al. 2020) are a typi‐
cal example based on a ray-based representation. The den‐
sity and color of each 3D location are implicitly encoded as
a neural-net-based mapping function that inputs a viewing

ray and a given 3D location. Similar ideas are used to rep‐
resent voxel density (Niemeyer et al. 2020) or surface
meshes (Zhang et al. 2021b). These representations are
difficult to interpret by humans, but they demonstrate the
visually promising performance of 3D (or 2.5D) shape
reconstruction for thin objects, including plants.

Structure representations
Because the structure (e.g., of branches) is essential to

represent plants, 3D shapes are often converted to structure-
based representations. Apart from plants, structure-based
representations for human image analysis have been well
studied in CV. The human pose is described by a skeleton,
which is a graph structure with a fixed number of joints and
fixed edge connections (i.e., isomorphic graphs). Lever‐
aging this characteristic, the estimation of human skeletal
pose has been well studied (Cao et al. 2021). The estimated
pose can be effectively used in many applications, such
as action recognition (Ke et al. 2017, Yan et al. 2018).
Beyond the skeleton, the rough 3D shape of humans,
including their physique, is approximated using a small
number of (<100) parameters (Loper et al. 2015). These
parametric shape representations are useful for simultane‐
ously estimating pose and shape (Bogo et al. 2016,
Pavlakos et al. 2018). These types of representations are
not limited to humans; extensions to animals, for example,
are available for both skeletal pose representation (Mathis
et al. 2018) and parametric shape representation (Zuffi et
al. 2017, 2018, 2019).
Graph-based representation

For plant modeling purposes, compared to humans and
animals, there is a technical challenge, because the number
of joints and topology is different for each individual plant.
A straightforward approach to representing plant structure
is to use graph theory. Many plant modeling methods
implicitly or explicitly assume that plants and botanical
trees form the tree structure. For example, some (botanical)
tree reconstruction methods from multiview images track
the branch patterns from the root detected from a given
image (Tan et al. 2007). The resulting structure will natu‐
rally be the tree structure in this case. Also, graph/tree-
based structure is applicable for many other parts in plants,
such as leaf vein, which is used for leaf species classifica‐
tion (Yu et al. 2020).
(Functional-)structural plant modeling (FSPM)

Beyond the graph structure, description of the growth of
plant structure has been well studied since early 1970’s
(Horn 1971). Therefore, it is natural to use such character‐
istics for plant modeling purposes. One of the important
classes of plant structure representation is FSPM (Vos et al.
2010), which unifies the properties of plant growth in the
model representation. This class of representation has been
studied for a long time, even before naming it FSPM, as
presented in (Honda 1971). A famous example of FSPM-
type representation is the Lindenmayer system (L-System)
(Lindenmayer 1968, Prusinkiewicz et al. 1994), which is a
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formal language used to describe the growth (evolution) of
the structural shape. It includes production rules, which
define how to replace the symbols. Fig. 3 illustrates a sim‐
ple example of the growth with the L-system, which gener‐
ates the binary trees. Based on the pre-defined rules, we get
strings via recursive processes. The strings can be decoded
into structures using the definitions of variables and con‐
stants. For details on L-systems, interested readers can refer
to Prusinkiewicz and Lindenmayer (1990). A possible ex‐
tension is to introduce self-organization in plant growth,
where each unit (e.g., a branch) in a plant decides how to
grow (or die), considering the surrounding environment
(Palubicki et al. 2009, Ulam 1962).

FSPM has been actively studied and implemented. L-
studio (Prusinkiewicz et al. 1999) is an early implementa‐
tion of an L-system-based simulator. An extension of the L-
system, relational growth grammars (RGG), (Kniemeyer et
al. 2007, Kurth et al. 2004) and the programming language
XL (Hemmerling et al. 2008) are used in the software
GroIMP (Kniemeyer et al. 2006). Another famous project
is OpenAlea (Pradal et al. 2008), which develops an inte‐
grated environment using Python, including the visualiza‐
tion library PlantGL (Pradal et al. 2009). In addition, many
commercial applications now implement structure-based
representations, such as Xfrog (Deussen and Lintermann
2005) and SpeedTree (https://speedtree.com/). Previous
literature describes how each plant component has been
parameterized so far (Prusinkiewicz and Runions 2012).
Representations for effectiveness

Another research direction on the representation of trees
and plants has been how to improve its efficiency. The hier‐
archical structure of trees expresses abstract shapes of
foliage details by canonical geometry (named texture-
lobes), resulting in lighter but still plausible 3D models
(Livny et al. 2011) for efficient transmission or light-
weight simulation. A similar direction was introduced in
(Quigley et al. 2018), representing trees with a limited
number of rigid bodies.

Modeling of (virtual) plant shape/structure/
appearance

A major goal of generating plants and trees in the synthetic
environment is the automatic setup of synthetic environ‐
ments, which is useful for plant phenomics or photorealistic
CG simulations (e.g., for games and cinemas). Because it is
time-consuming to create hand-crafted CG models of plants
and trees, (semi-)automatic modeling is well studied as part
of the FSPM study and CG community.

The technical components are closely related to the
structure-based representation of the plants, such as the L-
system. In contrast, to create plausible plant shapes and
structures, it is mandatory to analyze how to determine the
production rules for structure-based representations. Plant
modeling is often categorized into a procedural modeling
pipeline based on a growing procedure, which is also used
for the generation of terrain, water surface, and city layouts
(see Smelik et al. (2014) for a recent review). So far, many
studies have considered the interaction during growth
within the same plant, with the surrounding environment,
or manipulation by users. Fig. 4 summarizes existing stud‐
ies on plant/tree modeling.

Procedural modeling of plants and trees
The evolution of procedural modeling pipelines for the

modeling of plants and trees is presented next.
Early works with recursive processes

For the modeling of botanical trees, Honda and col‐
leagues provided some examples (Fisher and Honda 1977,
Honda et al. 1981) based on the analyses of the branching
angles and lengths (Honda and Fisher 1978, 1979) using
the representation of tree structures in a recursive manner
(Honda 1971). In addition, in CG literature, early work on
the generation of 3D shapes of trees was based on fractal-
based recursive algorithms to create artificial plants and
trees (Aono and Kunii 1984, Oppenheimer 1986). These
were localized to model specific species (Bloomenthal
1985), extended to real-time modeling (Oppenheimer
1986), or used to discuss how they could be rendered real‐
istic (Reeves and Blau 1985). In addition, de Reffye et al.

Fig. 3. A simple example of L-system representation (binary trees). Left: Pre-defined rules. Right: Growth via a recursive process (colors of
the line segments corresponding to those in the symbols).
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(1988) tried to convey detailed botanical knowledge in the
recursive process, such as how they generate branches,
occupy spaces, or create leaves/flowers.
Using the L-system (or its variants)

Using the L-system representation or its variants is a
common way of modeling plant structure. A simple method
is to generate a plant/tree using the L-system and then
prune the branches to fit a given volume or silhouette
(Prusinkiewicz et al. 1994, Weber and Penn 1995). Further
extending L-systems has been studied to consider environ‐
mental effects, such as collisions, space competition (for
colonization or growth), and competition for light and
water (Měch and Prusinkiewicz 1996). Early reviews in
this direction can be found in Prusinkiewicz (1998) and
Prusinkiewicz et al. (1997). Deussen et al. (1998) intro‐
duced an overall procedural modeling pipeline from terrain
generation, ecosystems, geometric plant models, and other
given components. In addition to the related literature by
Lintermann and Deussen (1998, 1999), a famous Xfrog
modeling system was developed. To represent more
branch-level details, Streit et al. (2005) attempted to model
the detailed shape (e.g., the curvature of a branch), which is
often beyond L-system-like representations. In addition,
Galbraith et al. (2004) aimed to represent detailed texturing
effects, such as branch bark ridges and bud scale scars. To
represent the space competition among branches and
leaves, the space colonization technique limits the space in
which each branch can grow (Runions et al. 2005, 2007).
Self-organizing processes

It is relatively easy to prune the branches to fit the given
silhouettes or volumes using L-system-like representations.
However, it is not straightforward to control the behavior of
each element (e.g., bud and branches), resulting in unrealis‐
tic models. A promising approach to this problem is to
introduce the idea of a self-organizing process, where each
element considers how it will grow according to the sur‐
rounding environment, for example, to maximize the space
for each element (Ulam 1962). Self-organizing tree model‐
ing (Palubicki et al. 2009) is a cornerstone for this direc‐

tion, which can incorporate the effect of surroundings such
as space colonization or shadows (or additional user input)
to determine the fate of each bud. This characteristic
enables users to generate highly realistic tree models with
simple and easy interactions.

Recent direction of procedural plant/tree modeling
Recent studies have attempted to represent more com‐

plex or large environments based on procedural modeling
methods.
Complex growth models

The recent growth of computing resources enables us to
use rich information during procedural modeling. For
example, Wang et al. (2014a) evaluated the cost function
every time a branch was added. The cost function assesses
the fitness of the crown shape with the given silhouettes
and other botanical priors. Yi et al. (2018) introduced
diverse factors (e.g., detailed lighting and occupying
spaces) into a growth equation and evaluated them during
the procedural modeling simulation.
Complex environmental interaction

Plastic Trees (Pirk et al. 2012a) considers the dynamic
deformation of trees by environmental interactions, such as
the occurrence of new objects colliding with the growing
tree. Wind effects during growth are also discussed (Pirk
et al. 2014), where they consider the wind force, branch
breaking, bud abrasion, and drying. The interaction with
supporting objects for climbing plants was discussed in
(Hädrich et al. 2017).
Large-scale simulation

While there have been attempts to make large-scale
scenery simulations (Beneš et al. 2009), fast or real-time
simulation has been performed at the forest level (Eloy et
al. 2017, Kim and Cho 2012, Makowski et al. 2019).
Other methods or applications

There have been tree/plant modeling methods other than
the recursive/self-organizing processes. One of these meth‐
ods sets up tree structures to connect the randomly distrib‐
uted points by graph optimization and manual interaction,

Fig. 4. Developmental trends in plant modeling methods. The theoretical growth of procedural modeling (left) has been developed to the more
complex and large-scale approaches (top right) or sophisticated through user interaction (bottom right).
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resulting in trees with irregular appearance representing
some environmental effects (Xu and Mould 2012). Simi‐
larly, the growth direction can be controlled in more detail
by setting a vector field in 3D space, where the branches
grow along the vectors (Xu and Mould 2015). The
exemplar-based method was proposed in (Xie et al. 2016),
where real tree parts were combined to represent tree mod‐
els. Along this line, blending between trees in the shape
space was proposed (Wang et al. 2018a), which can gener‐
ate time-series tree models. The methods studied for plant/
tree modeling are applied to other (yet similar) applica‐
tions, such as creating opening flowers (Ijiri et al. 2008).

User interaction in plant and tree modeling
Beyond generating the models that fit given silhouettes

and volumes, sophisticated methods for interactive model‐
ing have been proposed. For example, Boudon et al. (2003)
focused on user interaction via a graphical user interface
(GUI) to create Bonsai trees. A common way to efficiently
create 3D models is to use sketches/scribbles. Sketch-based
interactions to create tree models have been well studied
(Ijiri et al. 2006a, Okabe et al. 2005) and extended to the
modeling of flowers (Ijiri et al. 2005, 2006b). Inferring a
branching structure from rough concept sketches (Anastacio
et al. 2006) is along this line, and some methods further op‐
timized multiple shape parameters from sketches (Anastacio
et al. 2009, Chen et al. 2008) or silhouettes (Wither et al.
2009). Decreasing the required number of sketches is a
promising direction (Longay et al. 2012) and distinguishing
the type of sketches, e.g., sketch for main branches and
spray for foliage (Zakaria and Shukri 2007), has also been
studied. Another unique direction (Onishi et al. 2003, 2006,
Zhang et al. 2021a) is to develop a user interface for
manipulating tree models in a virtual reality space. A recent
method directly infers L-systems from line drawings (Guo
et al. 2020a), which shows a potential of using deep learn‐
ing for the estimation of structural representations.

Inverse procedural modeling
Another possibility of user-guided plant modeling is to

provide richer cues (than sketches or silhouettes) to the
modeling system, namely, to provide photographs of plants/
trees or an existing 3D model (e.g., polygon meshes or a
point cloud) to infer plant/tree structures. This batch of
methods is sometimes called inverse procedural modeling
(Stava et al. 2014), which is also regarded as a reconstruc‐
tion problem. The next section will further revise this prob‐
lem, while here, the review will focus on how these
methods can be used for plant/tree simulation.

Some may recover the plant/tree structure from the exist‐
ing 3D polygon model created by Xfrog. For example,
using a polygon model, Pirk et al. (2012b) estimated the
skeleton structure and then created a backward growth ani‐
mation from the given model. In addition to the skeleton
structure, polygon models can be converted into a hierar‐
chical structure associated with the original meshes,

enabling physics simulation (Zhao and Barbič 2013).
Extracting 3D structures from existing real-world plants

is a quick way to model virtual plants. Many approaches
have been studied to achieve this goal by inputting a point
cloud acquired by 3D scanners (Livny et al. 2010, Xu et al.
2007), multiview images (Isokane et al. 2018, Neubert et
al. 2007, Tan et al. 2007, Wu et al. 2020), or even a single
image (Argudo et al. 2016, Tan et al. 2008). These can be
used for growth simulations or graphical applications, as
shown so far. However, it should be noted that the goal of
reconstruction is different based on its applications. For
example, because the goal of graphical applications is to
create 3D models with plausible and photorealistic appear‐
ance, some methods are not suitable for direct use of plant
breeding-related applications that require 3D models faith‐
ful to real objects.

Reconstruction of plant shape and structure

A straightforward way to create a 3D plant model from
real-world plants is to peel each leaf off and measure it
using 2D/3D scanners (Yin et al. 2016); however, this is
unrealistic for many cases, for example, growth analysis.
Therefore, many attempts have been made to reconstruct
the shape and structure of non-inversive plants from 3D
point clouds or photographs. Common and general methods
to reconstruct 3D shapes are first presented, followed by
the methods for extracting plant structures.

Reconstruction of 3D shapes
To reconstruct the structure of real-world plants, we first

need to acquire the shape of the target scenes, such as using
3D laser scanners or multiview images. This has been
considered a fundamental problem in CV for a long
time. Therefore, reconstruction methods include several
approaches. Technical details are not all presented but a
summary of the input and output of some common tech‐
niques is given in Table 1. For technical details, interested
readers are invited to read (Szeliski 2011), while a few sur‐
vey papers (Kochi et al. 2021, Paulus 2019) provide brief
overviews of plant reconstruction using these techniques.

In Table 1, the practical settings for these methods are
categorized into passive and active. Active settings rely on
external light sources whose positions and directions are
known. Regarding the underlying approaches for each
method, geometric methods use triangulation or 3D ray
intersections and usually output depth images, 3D point
clouds, or mesh models. Photometric methods analyze the
irradiance values captured by cameras, resulting in the esti‐
mation of surface normals. In practice, it is important to
know that these methods do not yield the absolute scale of
the resultant models unless we place reference objects with
known sizes such as ground control points (GCPs) or fidu‐
cial markers. Conversely, 3D laser scanners and the LiDAR
approach measure the traveling distance of emitted light via
phase differences, which output 3D shapes with an absolute
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scale. We then summarize the advantages and disadvan‐
tages of each approach for 3D reconstruction of plant
shapes.
Shape reconstruction using 3D scanners

For the reconstruction of plants and trees, 3D scanners
are typically used. We can directly acquire (relatively)
accurate 3D point clouds; thus, there are numerous ways of
extracting the 3D structure of plants and trees from point
clouds. However, there are some drawbacks to the direct
use of 3D point clouds acquired by 3D laser scanners. The
use of accurate laser scanners is not realistic for some
applications in terms of costs or physical limitations (e.g.,
difficulties in mounting on drones or capturing from multi‐
ple views). In addition, 3D point clouds lack spatial rela‐
tionships among the points. We usually need to be
concerned about which points are physically neighboring,
which is a fundamental cause of 3D point cloud processing
being much more challenging than 2D image input for CV-
related methods such as semantic segmentation.
Multiview 3D reconstruction with photogrammetry

Another common approach is 3D reconstruction from
multiview images. Structure-from-motion (SfM) is used to

estimate camera poses and a sparse point cloud. Multiview
stereo (MVS) was then used to estimate the dense surface
shape from the given camera poses. This pipeline is also
called photogrammetry. Using multiview images easily
leverages the rapid growth of computer vision techniques,
such as 2D/multiview image processing and image-based
3D reconstruction. Recent studies have provided sophisti‐
cated open-source photogrammetry implementations, such
as COLMAP (Schönberger and Frahm 2016, Schönberger
et al. 2016). Commercial photogrammetry software such
as Metashape (https://www.agisoft.com), 3DF Zephyr
(https://www.3dflow.net/), and RealityCapture (https://www.
capturingreality.com), include useful features such as the
automatic recognition of fiducial markers. Meanwhile,
photogrammetry of plants and trees is sometimes challeng‐
ing because of the repetition of similar textures, resulting in
a low-quality outcome or failure of 3D reconstruction.
Therefore, to achieve a better and faster reconstruction of
3D models for high-throughput phenotyping, some studies
have discussed ways to develop multiview imaging systems
(Gao et al. 2021, Tanabata et al. 2018, Wu et al. 2020), or
the ways to select suitable images from multiple images

Table 1. Common methods for 3D shape reconstruction along with their rough classification and characteristics. Active settings rely on exter‐
nal light sources whose positions and directions are known. Geometric methods use triangulation or 3D ray intersections, while photometric
methods analyze the irradiance values captured by cameras

Setting Approach Method Input Assumption Output Scale

Passive

Geometric

(Two-view) stereo Two images with
disparity

Known camera poses
(position/orientation)

Distance to each pixel
(i.e., depth image) Yes

Structure-from-motion
(SfM) Multi-view images Unknown camera poses Camera pose + sparse

3D points No

Multi-view stereo (MVS) Multi-view images Known camera poses Dense 3D point cloud or
3D mesh No

- Shape from silhouette
- Space carving
- Computed tomography

(CT)

Multi-view images Known camera pose 3D voxel occupancy or
density Yes

Learning
(or optimization)

Single-image 3D recon‐
struction A single image

Using a pre-trained neural
network or a parametric
shape model on the spe‐
cific domain

Depth image or surface
normal (+ reflectance,
structure, etc., depending
on methods)

Yes/No

Active

Direct
- Time-of-flight (ToF)
- 3D laser scanners/

LiDAR

Light (temporal) pattern
+ receptor

Distance to each point
(usually as a 3D point
cloud or depth image)

Yes

Geometric Active stereo (structured
light)

Light (spatial) pattern
(e.g., by projector) +
camera

Known relative pose
between projector &
camera

Distance to each point/
pixel (usually as depth
image)

Yes

Photometric

Photometric stereo (PS)a
Images (fixed view‐
point) with different
light source

Known/unknown light
position (depending on
methods)

Surface normal (+ re‐
flectance and/or camera
pose, depending on meth‐
ods)

No

Shape from shadingb A single image
Known light source +
surface reflectance (and
additional constraints)

Surface normal No

a Passive setting of PS is possible using uncalibrated methods captured under unknown lighting positions.
b Active but casual setting using the sunlight (and its direction acquired by latitude/longitude and time) is a possible extension.
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(Lou et al. 2014). Wang et al. (2018b) provided a compari‐
son of 3D laser scanning and MVS for plant shape recon‐
struction.
Volumetric 3D reconstruction

As a similar setting but different method, the use of
cameras surrounding a plant or tree enables volumetric
approaches like shape-from-silhouette methods, which have
been used for tree shape reconstruction (Phattaralerphong
and Sinoquet 2005, Reche-Martinez et al. 2004, Shlyakhter
et al. 2001) and phenotyping systems (das Choudhury et al.
2020). While the resolution of the resultant 3D shape by the
naïve methods for volumetric reconstruction is capped by
the voxel resolution, Klodt and Cremers (Klodt and Cremers
2014) proposed an optimization framework to acquire the
volumetric reconstruction of plants with fine details by
optimization using octrees. X-ray CT shares theoretically
similar ideas to these volumetric approaches, and it is used
for plant reconstruction (Ijiri et al. 2014).
Photometric methods for 3D reconstruction

Compared to geometric approaches such as MVS and
shape-from-silhouette, photometric methods that estimate
surface normals by analyzing shading information have the
advantage of reconstructing fine details. Photometric stereo
(PS) traditionally inputs images from a fixed viewpoint
with at least three known light sources (Woodham 1980),
and it has extensions for uncalibrated (i.e., unknown light‐
ing conditions) settings (Mo et al. 2018). PS is also used
for plant shape reconstruction, for example, in Arabidopsis
plants viewed from above (Bernotas et al. 2019) and vena‐
tion patterns of leaves (Zhang et al. 2018). Although reduc‐
ing the number of required lighting conditions of PS is
fundamentally ill-posed (called the shape-from-shading

problem for a single-view setting), Uto et al. (2020) pro‐
posed a photometric method for leaf angle estimation under
sunlight by introducing domain-specific priors.

Plant/tree structure from 3D shape
This section discusses the methods used to extract the

structure of plants and trees from reconstructed 3D shapes,
such as point clouds. We deal with the shapes that are
acquired by any method, for example, 3D laser scanners,
RGB-D sensors (e.g., Microsoft Kinect), and multiview
stereo. Meanwhile, some methods estimating structure in‐
formation from 3D shapes alone implicitly assume the
point clouds captured by 3D laser scanners, whose accu‐
racy is relatively high. The methods unifying 2D and 3D
information to estimate plant structure—often used for
multiview or single-image input—have been discussed
later. Fig. 5 summarizes the taxonomy of tree/plant struc‐
ture estimations from 3D shape and/or 2D images.

Naïve 3D shape representations such as point clouds do
not have structural information. In addition, some 3D mod‐
els may not be complete; for example, due to occlusions
during the capture. Some plant modeling methods that fit
the branches with the designated 3D volumes (e.g.,
Runions et al. 2005, 2007) create a branching structure;
however, they do not ensure that the resultant structure
accurately represents the actual plant.
Skeletonization + graph optimization

To reconstruct faithful skeletons from 3D shapes, skele‐
tonization methods (Bucksch 2014) have been studied in
the CG research field, which mainly inputs bare trees or
plants with narrow leaves such as maize. Note that,
although the context is beyond plant shoot reconstruction,

Fig. 5. Developmental trends in the estimation of reconstructed plant/tree structure. Top: Estimation methods using 3D shapes. Middle: Meth‐
ods jointly using 3D shapes and 2D images. Bottom: Methods just using 2D images.
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the skeleton structure of plant roots is often reconstructed
using similar approaches (Bucksch et al. 2014). An early
method of tackling the 3D to skeletal branch structure was
developed in the late 1990s (Verroust and Lazarus 1999),
although it was not limited to plant reconstruction. This
method connects the neighborhood points and optimizes
the branch structures by solving the shortest path problem.
Bucksch and Lindenbergh (2008) constructed an octree-
graph for efficient and robust skeletonization, which was
later extended for partially occluded point cloud input
(Bucksch et al. 2010). Tagliasacchi et al. (2009) treated
thin objects as compositions of partial cylinders and devel‐
oped a robust method to skeletonize partially missing point
clouds.

As an important breakthrough, Livny et al. (2010) opti‐
mized the graph structure (called the branch structure
graph; BSG) on a given 3D point cloud. Given an initial
BSG using a graph-based method, for example, solving the
shortest path problem optimizes the branch path and thick‐
ness regarding the fitness to the point cloud and the
smoothness of branches. This method creates a plausible
branch structure with minimal user interaction (i.e., just
pointing at the root position) for real-world point clouds,
including multiple trees. The optimization-based method is
further improved; for example, some methods (Aiteanu and
Klein 2014, Wang et al. 2014b) deal well with the varying
point density captured from one side of the tree. The qual‐
ity measures for these tree-skeleton reconstruction methods
are provided in (Boudon et al. 2014).
Forestry applications of skeletonization methods

Skeletonization-based methods for tree reconstruction
from 3D point clouds captured by laser scanners are
actively applied in forestry. The resultant models are usu‐
ally called quantitative structure models (QSMs) in forestry
research. SimpleTree/SimpleForest (Hackenberg et al.
2015a) is an interactive tool for modeling tree structures
from point clouds based on forestry studies (Hackenberg et
al. 2014, 2015b). TreeQSM (Åkerblom et al. 2018, Disney
et al. 2018, Markku et al. 2015, Raumonen et al. 2013,
2015) is also used for many practical applications, such as
species-specific analysis (Zhang et al. 2020), species recog‐
nition (Åkerblom et al. 2017), and estimation of above-
ground biomass (Calders et al. 2015, Gonzalez de Tanago
et al. 2018). 3D Forest (Trochta et al. 2017) is yet another
popular tool for QSM reconstruction, which includes
sophisticated functionalities such as the segmentation of in‐
dividual trees (Krůček et al. 2020). Owing to the availabil‐
ity of sophisticated tools (including other implementations
such as PypeTree (Delagrange et al. 2014) and AdTree (Du
et al. 2019)), these techniques are widely used for forest-
level reconstruction and practical use in forest inventories
(Liang et al. 2016, 2018).
Foliage-aware skeletonization

A major drawback of skeletonization is that it is difficult
to treat thick parts, such as the foliage canopy. For foliage
trees, Xu et al. (2007) first reconstructed the main (visible)

branches and detected the rough leaf positions. They then
reconstructed the invisible branches that roughly fit the leaf
volumes. Similarly, Côté et al. (2009) segment the point
clouds into woody and foliage parts based on intensity val‐
ues (i.e., laser reflectance). Approximations of foliage areas
as the composition of lobes (Livny et al. 2011) or volumet‐
ric models (Xie et al. 2018) are also used for foliage-aware
reconstruction. When the laser reflectance is not accessible,
the segmentation of the foliaged and woody parts is non‐
trivial. A few studies have addressed this problem of seg‐
menting foliage versus woody parts based on shape infor‐
mation (Digumarti et al. 2018, Tao et al. 2015a, 2015b).
However, even if accurate segmentation is given, it is un‐
realistic to achieve a physically accurate reconstruction of
occluded parts only from the 3D shapes of the visible part.
Nevertheless, recent attempts have analyzed the detailed
crown shape to recover invisible branches (Zhang et al.
2014b).
Reconstructing small plants with skeletonization and seg‐
mentation

For relatively small plants, it is sometimes possible to
capture detailed point clouds with relatively mild occlusion,
such as by capturing from multiple viewpoints so that they
minimize the occluded part. Many methods on this line
have been proposed using multiview reconstruction or 3D
scans. Meanwhile, for small plants, naïve skeletonization
approaches are often insufficient because of the availability
of wide leaves. Therefore, region-segmentation techniques
are often used for 3D point clouds (Nguyen and Le 2013,
Xie et al. 2020). For example, the segmentation of individ‐
ual plants from point clouds of corn crops was discussed in
(Zermas et al. 2018). Stem-leaf segmentation from a point
cloud was also developed in Miao et al. (2021), Sodhi et al.
(2017) by solving the classification of stems vs. leaves. The
segmentation of the voxel-based reconstruction was consid‐
ered in das Choudhury et al. (2020). In addition, from a
photogrammetry-based 3D point cloud, segmentation of
organs (leaves, branches, and fruit) of grapevine (Dey et al.
2012) and segmentation of leaf instances (Li et al. 2020a,
Santos et al. 2014) are discussed. A combination of leaf
segmentation and skeletonization is often applied to plants
with relatively narrow leaves, for example, to extract the
structure of maize (Wu et al. 2019, 2020) or Arabidopsis
viewed from the side (Chaudhury and Godin 2020), cotton
plant (Sun et al. 2021), and sorghum (Gaillard et al. 2020).
4D (time-series 3D) reconstruction

Beyond 3D reconstruction, part segmentation for each
leaf and branch is a helpful cue for temporal tracking. Li et
al. (2013) developed an accurate method of reconstructing
the 4D (i.e., time-series + 3D) plant structure, including
branches, leaves, and buds, from time-series 3D point
clouds. Similar concepts were used for plant phenotyping
(Chebrolu et al. 2021, Magistri et al. 2020), leaf tracking
(Gelard et al. 2018), visualization (Golla et al. 2020), and
analysis of blooming flowers (Zheng et al. 2017). A recent
study provided a time-series point cloud dataset for the 4D
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phenotyping of maize and tomato (Schunck et al. 2021).
Occlusion handling

Some methods attempt to resolve invisible parts, mainly
by targeting small plants or specific parts of plants. A pheno‐
typing system of grape clusters proposes the use of 3D
scans (Schöler and Steinhage 2015), which involves prior
knowledge of the spherical shape of grape grains to miti‐
gate the impact of occlusions. In addition, the use of X-ray
CT is a possible method for resolving the occlusions of
small plants, which has been used for flower reconstruction
(Ijiri et al. 2014). Another unique way of (physically) treat‐
ing occlusion is letting the users sweep the occluders away.
Proactive 3D scanning (Yan et al. 2014b) for example,
tracks the movement of swept objects by the 3D scanning
system and reconstructs the occluded part. Yet another way
is to physically break down the whole plant (Yin et al.
2016), as discussed at the beginning of this section.

Plant/tree structure from 2D images + 3D shape
Image-based 3D reconstruction methods, such as photo‐

grammetry and volume-based reconstruction, rely on multi‐
view images. Using 2D cues on each image is a powerful
method because of the many resources for 2D image analy‐
sis resulting from CV-related studies. Although the context
is beyond 3D reconstruction, in the plant phenotyping field,
there have been many attempts using 2D image analysis,
such as leaf counting and segmentation (Minervini et al.
2016, Scharr et al. 2016) and organ detection (David et al.
2020), where large datasets were constructed for both tasks,
such as the CVPPP Dataset (Minervini et al. 2016) and the
Global Wheat Head Dataset (David et al. 2020, 2021). In
fact, an early attempt of multiview 3D reconstruction of
botanical trees (Shlyakhter et al. 2001) unified the 2D and
3D cues. It used a shape-from-silhouette for 3D shape
acquisition and inferred an L-system-based structure from
the reconstructed model by extracting the candidates of
branch tip points on 2D silhouettes. The points were then
back-projected onto the 3D space to determine 3D branch
tips.
Multiview tree reconstruction

In 2007, two famous methods for multiview tree recon‐
struction were proposed in the popular CG conference
SIGGRAPH. A paper entitled image-based tree modeling
(Tan et al. 2007) utilized 2D-3D joint information. From the
multiview image input, they first created SfM-based sparse
point clouds. This method used 2D image segmentation
between the foliage and woody parts to determine the visi‐
ble branch part. Visible branches traced the branches from
the root 3D point using the cost function defined with both
3D distance and 2D image gradient so that the branches did
not cross the object edges on images. Later, they created
hidden small branches so they would fit the canopy vol‐
umes. However, the method by Neubert et al. (2007) takes
the opposite strategy: generating the structure by gradually
unifying small branches. They created a vector (attractor)
field on each 2D image based on the direction of the root

and the density of foliage/branches. They then produced a
number of particles in 3D space and moved them to trace
the created vector field. The resultant paths of the particles
form a tree skeleton.

More recently, Guo et al. (2020b) proposed a fine
method to reconstruct foliaged trees using depth images
reconstructed from multiview image input as guidance.
Because the reconstruction of foliage is challenging,
Bradley et al. (2013) focused on this specific topic, yield‐
ing a method to estimate detailed (per-leaf) reconstruction
of dense foliage using template shapes of leaves, while this
direction is improved in Chaurasia and Beardsley (2017) to
use parametric leaf models. However, similar to the discus‐
sions for 3D-shape-based methods, it is still unrealistic to
estimate physically correct branching patterns for foliaged
trees due to the inevitable heavy occlusions.

Previous approaches have achieved accurate reconstruc‐
tion of branch structures using multiview images of bare
(i.e., unfoliaged) trees. Lopez et al. (2010) first estimated
the branch skeletons in each 2D image and then integrated
them into a 3D space. Zhang et al. (2015) used the tracking
of image features between neighboring multiview images
and used them for branch skeleton extraction. The method
proposed by Zamuda et al. (2011) shares a similar concept
but uses an evolutionary algorithm to optimize the branch‐
ing parameters that fit the given multiview images.
Multiview reconstruction of small plants

For small plants, Quan et al. (2006) proposed an interac‐
tive method involving leaf segmentation jointly using 2D
and 3D features. The method also recovers the occluded
branch structure through user interactions. To achieve auto‐
matic reconstruction of leafy plants with inevitable occlu‐
sions, Isokane et al. (2018) proposed the use of deep
learning for 2D image processing. By inputting multiview
images, they first convert the leafy plant images to 2D
branch probabilities using an image-to-image translation
network (Isola et al. 2016). They then aggregated the 2D
probabilities onto 3D space and generated the branch struc‐
ture using the particle-based method (Neubert et al. 2007).
Doi et al. (2020) proposed a method to reconstruct leaf in‐
stances from multiview images and applied them to soy‐
beans. They first perform instance segmentation on each
2D image and then estimate the multiview correspondences
to yield 3D leaf instances. The use of instance segmentation
to recover 3D structures was also proposed in Santos et al.
(2020), where they tracked the instances over a video cap‐
tured by a moving camera.
Few-view reconstruction

Decreasing the required number of viewpoints is a prac‐
tical research direction for multiview reconstruction. From
the two images, Teng et al. (2007) extracted skeletons of
bare trees and then unified the 2D skeletons in 3D space.
Using RGB-D images, which contain both RGB color
information and depth information, is an instant way of
decreasing the input images because it is relatively straight‐
forward to bring 2D segmentation to 3D point clouds. Using
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a single RGB-D image is often discussed as a robotics ap‐
plication because RGB-D cameras are often mounted on
mobile robots and used for 3D leaf segmentation tasks
(Alenya et al. 2011). For robotic pruning applications, a
single RGB-D image is used to segment and reconstruct
tomatoes (Li et al. 2015) or to find pruning points from
dormant apple trees (Akbar et al. 2016). RGB-D captured
from above is beneficial for specific applications, such as
reconstructing flower petals from a single RGB-D image
considering occlusion (Zhang et al. 2014a).

Plant/tree structure from a single 2D image
The 3D reconstruction of plants from a single RGB

image is fundamentally ill-posed. Moreover, it will be ben‐
eficial because of its extreme applicability. Tan et al. (2008)
proposed a method for tree reconstruction from a single
image. The algorithm resembles their previous method for
multiview input (Tan et al. 2007), where both methods
trace the branch paths from the root point and generate 3D
branches using predefined rules. These approaches have
been further extended to include single-image-based meth‐
ods (Argudo et al. 2016) to provide a more plausible
appearance. Guénard et al. (2013) used the analysis-by-
synthesis strategy; they first reconstructed the initial skele‐
tons using skeletonization and then refined the underlying
parameters of branching systems to fit the observed silhou‐
ette. A recent method by Liu et al. (2021) uses a generative
adversarial network (GAN) to create 3D tree models from a
single image. As an extension of single-image tree model‐
ing methods, a video captured from a fixed viewpoint is
used to reconstruct 3D tree animation (Li et al. 2011). The
focus of these single-image-based modeling approaches is
to generate 3D tree models that provide nice-looking trees.
It is fundamentally difficult to reconstruct physically cor‐
rect 3D shapes, unless there is a strong prior knowledge,
such as flower petals (Yan et al. 2014a).

Conclusions and future directions

This paper summarized past and current trends in plant
modeling and reconstruction methods, which are catego‐
rized into 1) creation of virtual (non-existent) plants and
trees (referred to as modeling in this paper) and 2) model‐
ing from real-world plants and trees (i.e., reconstruction).
The representation of the shape and structure of plants and
trees was also reviewed. A number of methods have been
proposed so far but there is significant room for improve‐
ment. This review concludes with some open problems
resulting from the limitations of existing works, as well as
promising future directions for this research field.

Occlusion-aware structure reconstruction
A major limitation of existing reconstruction methods is

the difficulty of accurately recovering hidden structures,
although there have been a few attempts to recover the
occluded part using deep learning (Isokane et al. 2018).

Occlusion handling is essential in practice because the
foliage of plants and trees naturally involves heavy occlu‐
sions.

High-throughput 3D reconstruction
The entire pipeline of the 3D reconstruction process

(capturing and reconstructing the target object) is time-
consuming. In particular, image-based methods, such as
photogrammetry, often require special equipment for cap‐
turing a single plant, which restricts its use in field pheno‐
typing. There is a strong demand for detailed reconstruction
(i.e., structural recovery per single leaf and branchlet) with
higher throughput (e.g., using drone photographs), as some
researchers are actively pursuing this direction (Guo et al.
2020c).

4D reconstruction
An important application of plant structure reconstruc‐

tion is growth monitoring and analysis. Although there
have been attempts to recover 4D structures of plants (Li et
al. 2013), these methods require relatively complex equip‐
ment for a single target plant. 4D reconstruction from a
simple input (e.g., by a few cameras) is beneficial.

Analyzing plant functionality using reconstructed models
For plant phenotyping studies, the primary goal of plant

modeling and reconstruction is to analyze plant functional‐
ity, which is an essential part of cultivation and breeding.
Although the current main topic of plant phenotyping is
reconstructing or extracting the characteristics of plant
phenotypes, as reconstruction techniques will grow, the ex‐
tracted detailed traits will be actively used for plant science
and breeding.
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