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Abstract

In this paper, we present an approach that is able to re-

construct 3D models from extended video sequences cap-

tured with an uncalibrated hand-held camera. We focus on

two specific issues: (1) key-frame selection, and (2) pro-

jective drift. Given a long video sequence it is often not

practical to work with all video frames. In addition, to al-

low for effective outlier rejection and motion estimation it

is necessary to have a sufficient baseline between frames.

For this purpose, we propose a key-frame selection proce-

dure based on a robust model selection criterion. Our ap-

proach guarantees that the camera motion can be estimated

reliably by analyzing the feature correspondences between

three consecutive views. Another problem for long uncali-

brated video sequences is projective drift. Error accumula-

tion leads to a non-projective distortion of the model. This

causes the projective basis at the beginning and the end of

the sequence to become inconsistent and leads to the failure

of self-calibration. We propose a self-calibration approach

that is insensitive to this global projective drift. After self-

calibration triplets of key-frames are aligned using absolute

orientation and hierarchically merged into a complete met-

ric reconstruction. Next, we compute a detailed 3D surface

model using stereo matching. The 3D model is textured us-

ing some of the frames.

1. Introduction

In recent years a lot of progress has been made in the

area of 3D modeling from images. Several fully auto-

matic systems have been proposed that reconstruct 3D mod-

els from video sequences recorded with a hand-held cam-

era [10, 7, 6]. The development of statistically based al-

gorithms have made it possible to automatically compute

a robust estimate of the multi-view geometric relations be-

tween images of a sequence. In such cases, a projective

3D reconstruction can be obtained from an uncalibrated im-

age sequence. The projective reconstruction can be up-

graded to a metric reconstruction using a technique called

self-calibration. Self-calibration achieves this by using con-

straints on the scene, camera motion, and camera intrinsics.

Despite the substantial progress, many approaches that are

effective on short sequences do not address the problems

that can arise from processing extended sequences. In this

paper we focus on two important problems that need to be

addressed to reliably deal with extended uncalibrated video

sequences.

When obtaining a 3D reconstruction from long image se-

quences, a subset of frames should be selected that are most

suitable for the estimation of the epipolar geometry between

views. The frames belonging to this subset are called key-

frames. In order to accurately estimate the camera motion

between frames, key-frames should be selected with a suffi-

cient baseline between them. If two consecutive key-frames

are too close to each other some of the degrees of freedom

of the epipolar geometry are hard to estimate which leads to

problems in motion estimation and in identifying divergent

feature tracks. Different approaches have been proposed

is in the literature [17, 3, 12]. All those approaches only

perform a pairwise analysis for key-frame selection. How-

ever, as in the uncalibrated case, a triplet of views is the

basic building block for structure and motion recovery, it is

important to make sure that the key-frame selection takes

this into account. A sufficient amount of well distributed

features needs to observed by each set of three consecu-

tive key-frames. This is not ensured by previous pairwise

key-frame selection algorithms. The approach proposed in

this paper is based on the model selection criterion proposed

in [18]. The new key-frame selection criterion proposed in

this paper uses features tracked over three frames.

A second issue that needs to be addressed when process-

ing long image sequences is the mitigation of projective

drift. Sequential structure and motion recovery is incre-

mentally built-up by orienting additional views using the

3D positions of common features. Inaccuracies in the 3D

positions of feature points due to noise and approximation

errors accumulate over the course of the sequence and have



an detrimental effect on the overall reconstruction. The es-

timated camera positions start to significantly deviate from

their actual positions. Bundle adjustment, a common non-

linear minimization technique used in refining the projec-

tive reconstruction, only partially helps with this problem.

Steedly et al. [14], for example, have shown that for long

video sequences significant deformations of the motion path

often only result in small errors, or inversely that accurate

motion can not be computed over extended video sequences

without closing the loop. This projective drift is most evi-

dent in closed sequences where overlapping camera posi-

tions differ in the final reconstruction. However, this effect

is just as important when the sequence is not closed. When

radial distortion is not corrected before the structure and

motion estimation, the drift can be much worse [2]. Pro-

jective drift is most problematic for self-calibration meth-

ods over long sequences, but has little effect over short se-

quences. Here we will propose a new self-calibration tech-

nique that is not sensitive to projective drift. The proposed

approach is linear and imposes prior knowledge on the cam-

era intrinsics and forces them to be constant over the whole

sequence.

1.1. Notation

Points are represented by homogeneous 4-vectors X in

3-space, and by homogeneous 3-vectors x in the image. A

plane is represented by a homogeneous 4-vector Π and a

point X is on a plane if Π⊤X = 0. A point X is mapped to

its image x through perspective projection, represented by

a 3 × 4 projection matrix P as λx = PX. The λ indicates

a non-zero scale factor. In a metric coordinate system the

matrix P can be factorized in intrinsic and extrinsic camera

parameters: P = K[R t] where the upper-triangular matrix

K is given by the following equation:

K =





f s u

rf v

1



 (1)

with f the focal length (measured in pixels), r the aspect

ratio, (u, v) the coordinates of the principal point and s a

factor that is 0 when the pixels are rectangular. To deal

with radial distortion, the perspective projection model is

extended to KR([R t]X) with R([x y 1]⊤) = [x y w]⊤,

w−1 = (1+ k1r
2 + k2r

4), r2 = x2 + y2, and k1 and k2 are

parameters of radial distortion. Two corresponding points x

and x
′ should satisfy the epipolar constraint x′

⊤
Fx = 0. A

point x located in the plane corresponding to the homogra-

phy H is transferred from one image to the other according

to λx′ = Hx. The fundamental matrix F and the two-image

homography H, are both 3 × 3 homogeneous matrices. A

more complete description of these concepts can be found

in [4].

2. Background

2.1. Uncalibrated structure and motion recovery

Given a set of corresponding image features, structure

and motion recovery attempts to determine the metric 3D

reconstruction of image features without any prior knowl-

edge of the camera’s calibration. Features are tracked be-

tween frames over a sequence of images. The epipolar

geometry between frames can be determined from the fea-

ture correspondences, used to constrain the search for ad-

ditional correspondences, and subsequently refined. The

epipolar geometry is represented by a 3 × 3 matrix known

as the fundamental matrix F. If all features between frames

are found on a planar object or the baseline between frames

is not large enough, a planar homography can also describe

the relation between frames. Consequently, the epipolar

geometry can not be uniquely determined in some cases.

The projective reconstruction of the scene can be ob-

tained from the epipolar geometry and the tracked features.

Structure and motion recovery starts by setting up an ini-

tial projective reconstruction frame from the first two views

and adding additional views using correspondences. The

3D structure is only known up to a projective transforma-

tion. Consequently, a 3D point’s reprojection into the origi-

nal image is used to determine and refine its position. Pho-

togrammetric bundle adjustment is used to refine the projec-

tive reconstruction using the reprojection error of the fea-

ture’s 3D point.

Projective reconstruction can be upgraded to a metric

reconstruction using self-calibration. The Absolute Conic

(AC) is a geometric entity determined by the feature corre-

spondences that has a constant position relative to a moving

camera. This is due to the fact that the AC is invariant un-

der Euclidean transformations. Self-calibration locates and

uses the AC to upgrade the reconstruction to metric. In-

accuracies in the estimations of the 3D point positions can

cause the distortions in the projective model in turn affect

location of the AC. The transformation that upgrades the

reconstruction to metric can be solved for using the AC and

the projection matrix, as discussed later.

2.2. Dense surface estimation and model creation

The reconstruction obtained as described in the previous

section only contains a sparse set of 3D points. Therefore,

the next step attempts to match all image pixels of an image

with pixels in neighboring images, so that these points can

also be reconstructed. This task is greatly facilitated by the

knowledge of all the camera parameters that were obtained

in the previous stage.

Since a pixel in the image corresponds to a ray in space

and the projection of this ray in other images can be pre-

dicted from the recovered pose and calibration, the search



of a corresponding pixel in other images can be restricted to

a single line. Additional constraints, such as the assumption

of a piecewise continuous 3D surface, are also employed to

further constrain the search. It is possible to warp the im-

ages so that the search range coincides with the horizontal

scanlines. This allows us to use an efficient stereo algo-

rithm that computes an optimal match for the whole scan-

line at once. Thus, we can obtain a depth estimate (i.e. the

distance from the camera to the object surface) for almost

every pixel of an image.

A complete dense 3D surface model is obtained by fus-

ing the results of all the depth images together. The images

used for the reconstruction can also be used for texture map-

ping so that a final photo-realistic result is achieved. The

different steps of the process are illustrated in Figure 1. An

in-depth description of this approach can be found in [11].

input sequence

feature matches

3D features and cameras

dense depth maps

3D surface model

recovery

Structure & Motion

Dense Matching

Relating images

3D Model Building

Figure 1. Overview

3. Solving the key-frame selection problem

Our key-frame criterion selects views that are best suited

for computing the three-view geometry. Each view is eval-

uated based on features that it has in common with the pre-

vious two key-frames. The remainder of the structure and

motion recovery procedure uses triplets of key-frames with

a two view overlap.

The Geometric Robust Information Criterion (GRIC)

model selection approach is useful in key-frame selection

[18]. The GRIC computes a score based on the feature cor-

respondences between images and a model. Two models

can be quantitatively compared to each other because scores

are assigned to models based on the model’s parsimony and

how well the model fits the data. The model with the lowest

score is a best fit.

GRIC =
∑

ρ(e2

i ) + (nd ln r + k ln rn), (2)

such that,

ρ(e2

i
) = min (

e2

σ2
, 2(r − d)) (3)

In the above equation, if the dimension of the data is r

and n is the total number of features then nd ln(r) repre-

sents the penalty term for the structure having parameters

that are n times the manifold’s dimension d. Each para-

meter is estimated from r observations. The term k ln(rn)
represents the penalty for the motion model having k para-

meters estimated from rn observations.

Between each pair of images, a Maximum Likelihood

Estimator (MLE) is used to determine the fundamental ma-

trix F and 2D homography H using the feature correspon-

dences. Since F can describe the simpler model H because

F = [e′]xH (with the epipole e
′ corresponding to the left

nullspace of F), the GRIC(F) will produce a lower score if

F best fits the data. When no translation is observed, tech-

niques that estimate F will fit the outliers to the solution,

producing meaningless results. In addition, the H model

best describes the correspondences for views with a small

baseline. By using only views that are related by F, the

epipolar geometry between two views is unambiguously re-

covered by avoiding pure rotation and small baselines. Fur-

thermore, with an robust estimate of F, points that do not

fit the epipolar constraints can be removed from the system.

As a result, the projective structure can unambiguously be

recovered in the standard way.

The key-frame criterion proposed selects three views

where the GRIC score of the epipolar model is lower than

the score of the homography model. In our algorithm, the

frames are processed sequentially, and the first view in the

sequence is selected as the first key-frame. The second key-

frame is determined by the last view to share more than 90%

of the features with the view that GRIC(F) was smaller than

GRIC(H) as in [13]. Subsequent frames are selected as key-

frames based on the GRIC with features that are found not

only in the last key-frame selected but also in the second

to last key-frame. Thus, a view is selected as the a key-

frame if the fundamental matrix between it and the last key-

frame view yields a GRIC(F) score that is smaller than the



GRIC(H) score of the homography between the two views.

The features used in computing the GRIC are those from the

current view that are found in the previous two key-frames.

By using features found in the current view and the pre-

vious two key-frame views, we ensure that the three-view

geometry can be estimated reliably for each selected triplet

of views.

Using points tracked over three views also is an indica-

tion that the tracked points are well supported. The prob-

ability of a tracked feature point being an outlier is dimin-

ished. Each view that the feature is tracked in will con-

tribute evidence supporting its 3D position. Our objective

is to obtain a strong local structure and motion solution for

each triplet. As each key-frame is selected, the triplet of

key-frames (the current selection along with the previous

two) are reconstructed, and each reconstruction is refined

using bundle adjustment. Each projectively reconstructed

triplet is separate from the others. As we will see in the

next section, the projective drift problem is made less se-

vere by working with triplets of views. A global structure

and motion solution will be obtained by merging triplets af-

ter self-calibration.

4. Solving the projective drift problem in long

sequences

Once the projective structure and motion has been com-

puted, self-calibration can be used to restrict the ambigu-

ity on the reconstruction from a projective to a similarity

transformation (i.e. a Euclidean transformation plus scal-

ing). However, for long image sequences self-calibration

techniques that require one single consistent projective re-

construction, e.g. [19, 9], tend to fail. The reason for this

is the error accumulated during the structure and motion re-

covery. The result is that self-calibration constraints at the

beginning and at the end of the sequence might end up not

being consistent. In other words, the solution for the ab-

solute conic that one would obtain from the first part of the

sequence, would not satisfy the constraints on the intrin-

sic camera parameters for the last part and vice-versa. We

have regularly observed this with real sequences where self-

calibration would fail for long sequences while it would be

successful for a subsequence.

One possible solution to this problem is to use a self-

calibration algorithm that does not enforce a global consis-

tency and only directly uses information from nearby im-

ages. The Kruppa equations [1] could for example be used

since they only use pairwise information, but they suffer

from additional degeneracies [16]. Also, almost all suc-

cessful algorithms based on the Kruppa equations use fun-

damental matrices between remote views in the sequence

derived from the projective reconstruction. In this case the

Kruppa equations are also sensitive to error accumulation in

the reconstruction process.

Here we propose an alternative algorithm that is not sen-

sitive to error accumulation on the projective reconstruc-

tion. Our approach is based on the coupled self-calibration

presented in [13] to deal with degeneracies for structure

and motion recovery in the presence of dominant planes.

We will only require projective consistency of the recon-

struction for triplets of neighboring views, but at the same

time force the intrinsic camera parameters for the whole se-

quence to be constant. The proposed approach is linear.

The approach is based on the projection equation for the

absolute quadric [19]:

λKK
⊤ = PΩ

∗
P

⊤ (4)

where Ω
∗ represents the absolute quadric. In metric space

Ω
∗ = diag(1, 1, 1, 0), in projective space Ω

∗ is a 4 × 4
symmetric rank 3 matrix representing an imaginary disc-

quadric. By transforming the image so that a typical focal

length (e.g. 50mm) corresponds to unit length in the image

and that the center of the image is located at the origin, re-

alistic expectations for the intrinsics are log(f) = log(1) ±
log(3) (i.e. f is typically in the range [17mm, 150mm]),
r = log(1) ± log(1.1), u = 0 ± 0.1, v = 0 ± 0.1, s = 0.

These expectations can be used to obtain a set of weighted

self-calibration equations from Equation (4):

1

9λ

(

P1Ω
∗P1

⊤ − P3Ω
∗P3

⊤

)

= 0

1

9λ

(

P2Ω
∗P2

⊤ − P3Ω
∗P3

⊤

)

= 0

1

0.2λ

(

P1Ω
∗P1

⊤ − P2Ω
∗P2

⊤

)

= 0

1

0.01λ

(

P1Ω
∗P2

⊤

)

= 0

1

0.1λ

(

P1Ω
∗P3

⊤

)

= 0

1

0.1λ

(

P2Ω
∗P3

⊤

)

= 0

(5)

where Pi is the i-th row of a projection matrix and λ a scale

factor that is initially set to 1 and later on to P3Ω̃
∗P3

⊤ with

Ω̃
∗ the result of the previous iteration. In practice iterat-

ing is not really necessary, but a few iterations can be per-

formed to refine the initial result. Experimental validation

has shown that this approach yields much better results than

the original approach described in [9]. This is mostly due to

the fact that constraining all parameters (even with a small

weight) allows to avoid most of the problems due to criti-

cal motion sequences [15] (especially the specific additional

case for the linear algorithm [8]).

When choosing P = [I|0] for one of the projection ma-

trices it can be seen from Equation (4) that Ω∗ can be writ-

ten as:

Ω
∗ =

[

KK
⊤

a

a
⊤ b

]

(6)



Now the set of equations (5) can thus be written as:

[

C D
]





k
[

a

b

]



 (7)

where k is a vector containing six coefficients representing

the matrix KK
⊤, a is a 3-vector and b a scalar and C and

D are matrices containing the coefficients of the equations.

We propose to write down those equations for each triplet

of consecutive views.

If the sequence is recorded with constant intrinsics, the

vector k will be common to all triplets and one obtains the

following coupled self-calibration equations:
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(8)

The advantage of this approach is that it is far less sensi-

tive to projective drift since we only require consistency be-

tween triplets of consecutive views, while other approaches

require consistency over the whole sequence. For each sub-

sequence a transformation to upgrade the reconstruction

from projective to metric can be obtained from the con-

straint TiΩ
∗

i
T

⊤

i
= diag(1, 1, 1, 0) (through eigenvalue de-

composition).

To validate our approach to deal with projective drift we

have generated a synthetic 30 view sequence observing 100

points. The camera motion consists of a 180 degree rotation

around the center of the points. For each view we generate

a projective transformation close to identity and apply it to

that view and all the ones that follow to simulate projective

drift. Then, we apply both the standard self-calibration al-

gorithm on the 30 view sequence and the triplet-based self-

calibration algorithm to attempt to upgrade the reconstruc-

tion from projective to metric. Both results can be seen in

Figure 2. The standard approach fails (as the circular path

gets warped to a hyperbola), while the proposed approach

yields good results. Notice that the small deviation from

the original half circle that is visible for the successfully up-

graded reconstruction corresponds to the induced projective

drift.

4.1. Merging the reconstructions

To merge the subsequences into a global reconstruction,

corresponding 3D features and camera positions of adjacent

triplets are registered using the absolute orientation [5]. Ab-

solute orientation is a least-squares solution that provides

Figure 2. Failure of self-calibration due to projec-

tive drift (top), success of proposed approach in

dealing with projective drift (bottom)

the Euclidean transformation between the 3D to 3D fea-

ture correspondences between the two overlapping views

of the adjacent subsequences. Ideally, after self-calibration

each separate metric reconstruction should differ only by

a Euclidean transformation. However, inconsistencies in

the 3D to 3D correspondences due to inaccurate estima-

tions of 3D positions may exist. Absolute orientation must

take into account the presence of outliers in the 3D to 3D

correspondences. Absolute orientation followed by bundle

adjustment is performed on adjacent subsequences hierar-

chically. Metric bundle adjustment is used to further refine

the aligned subsequences by enforcing the alignment using

redundant 3D points and cameras. These redundant points

and cameras are removed from the reconstruction before a

final bundle adjustment.



5. Results And Discussion

Figure 3. Our algorithm selected 204 key-frames

from 983 frames of video of a potted plant. Four

key-frames are shown along with the sparse 3D

point structure and recovered camera positions.

We have used the reconstruction algorithm on multiple

sequences of varying length. A few examples are shown

here. The result of using our reconstruction algorithm on

a 983 frame video sequence of a potted plant is shown in

Figure 3. Our algorithm selected 204 key-frames.

To illustrate how the GRIC values are related to the base-

line, another video sequence was created by walking around

a potted plant and pausing at each step while continually

filming. This camera motion is reflected in the recovered

camera positions as shown in Figure 6. In Figure 7, the

HGRIC and FGRIC scores alternate for subsequences cor-

responding to periods where the camera is in motion, and

the HGRIC score remains lower than the FGRIC score for

the subsequences corresponding to periods where the cam-

era is relatively static. The alternation between the HGRIC

and FGRIC scores is due to a key-frame being selected and

then compared to the frames that immediately follow it.

Figure 4. A model constructed from the potted

plant sequence showing the sparse 3D point

structure and recovered camera positions.

Figure 5. Side and top views of the model con-

structed from potted plant sequence.

Once a sufficient baseline is established between the pre-

vious key-frame and the frame being examined, the FGRIC

score drops below the HGRIC score and the corresponding

frame becomes a key-frame.

For the video sequence shown in Figure 8, the recovered

camera positions appear to follow a circular path, and the

last view appears to be close to the initial. No attempt was

made to enforce the sequence to be closed. The reconstruc-

tion indicates that the recovered camera position for last the

key-frame chosen was relatively close to the first. If sig-

nificant projective drift was present then the first and last

cameras would not appear as close as shown in the recon-

struction in Figure 8.

Noisy point features may be a result of features that are

tracked, lost, and subsequently come back into view. There

is no information linking these points together, and as a re-

sult their 3D positions may slightly drift apart. The large

amount of features is a result of our triplet based approach.

In addition, the construction is tolerant of subsequences that

have a residual error from bundle adjustment that is above



Figure 6. The camera path reflects the exagger-

ated walking motion of the camera operator. Each

arc in the camera path corresponds to a step. The

same scene as shown in Figure 3 is used.

the sequence’s mean if the surrounding subsequences have

a low residual. Typically, the error will be distributed over

the adjacent subsequences.

In some cases, after self-calibration, subsequences may

still have a small amount of distortion, which introduces er-

ror into the result of the absolute orientation. Consequently,

the cameras and points may not be in exact alignment. In

our experiments, we have found that the metric bundle fol-

lowing the absolute orientation calculation reduces the ef-

fects of a poor alignment.

6. Conclusions And Future Work

This paper has addressed two issues associated with

processing long video sequences: key-frame selection and

projective drift. A new key-frame selection criterion based

on the GRIC was presented that uses features tracked over

three views. Our three view approach allows us to estimate

the projective structure using well supported features. As

demonstrated, when sequentially updating a reconstruction,

projective drift causes cameras to significantly deviate from

their actual position. Using triplets of key-frames with cou-

pled self calibration avoids this by maintaining separate lo-

cal reconstructions and enforcing constant camera intrinsics

over all of the key-frame subsequences.

The system proposed in this paper can be enhanced by

handling the case where all feature tracks are lost between

views during key-frame selection. In the case where all

points are found on dominant planar features over a long se-

quence of frames, H will be the best model. In this case, the

number of feature points may decrease significantly as the

baseline between the current frame and the last key-frame

Figure 7. A graph of the FGRIC (shown as a solid

line) and HGRIC (shown as a dashed line) as they

vary over a portion (238 frames) of the video se-

quence. The score for each frame is computed us-

ing the fundamental matrix F or 2D homography H

determined by the feature correspondences found

in the frame and the previous two key-frames.

increases. Our results show that this is not a significantly

limiting case, but it is an interesting avenue for future work.
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