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Abstract
In recent decades, some photogrammetric methods for 3D monitoring of plant growth and structure parameters 

have been studied by the automated feature extraction and matching. In this study on growth analysis of sweet potato 

(Ipomoea batatas L.) plants at different fertilizer conditions, we proposed a convenient solution of 3D reconstruction 

by a single camera photography system based on Structure from Motion (SfM) method. Also, we handled effectively 

the noise problem by minimizing re-projection errors. The results of 3D models demonstrated that the average 

percentage error was a constant about 4.8% for plant height or decreased from 13% to 8% (leaf area index, LAI =3.5) 
for leaf number and from 19% to 12% (LAI =3.5) for leaf area with increasing in LAI, although each percentage error 

fluctuated, especially at low LAI. In contrast, the average percentage error in 2D image processing was 20% to 45% 

for leaf number and 60% to 90% for leaf area, and the leaf height was immeasurable. Comparing with the errors of 

3D results, the errors of 2D images were much larger because 2D imaging had some problems, such as not being 

robust against occlusion of plant organs, and the ambiguity between object size and distance from the camera. On the 

other hand, we examined a method to calibrate the estimates from 3D models using the regression model between the 

measured value and the value estimated from 3D model. The regression models showed the linear and good estimation 

for leaf height (R2 =0.97 and RMSE =0.71 cm), leaf number (R2 =0.99 and RMSE =4.03) and leaf area (R2 =0.98 and 

RMSE=0.12 m2), in spite of use of data across a wide range in fertilizer supply and growth stage of sweet potato plants. 

The results demonstrated that 3D imaging technique in the study has the potential to remotely monitor plant growth 

status and estimate growth and structure parameters at various environmental factors outdoors.
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1. Introduction

The importance of plant growth and structure parameters in 

estimating crop yield and controlling the microclimate is widely 

recognized, but the measurements of plant growth and structure 

parameters are challenging, time consuming, and often rely on 

destructive methods. Over the past three decades, several studies 

about plant growth and structure parameters monitoring were 

conducted, which are non-destructive, automated, image-based 

measurement technologies (Omasa et al., 2007; Lati et al., 2013; 

Muller-Linow et al., 2015). Over the past decades, 2D imaging 

has been applied ranging from such growth analysis, structural 

analysis, environment assessment, and yield estimation at 

different growth level or different period (Omasa, 1990; Se et 

al., 2012; Li et al., 2014). However, compared with 3D models, 

2D imaging has a number of shortcomings (Gonzalez and 

Woods, 2008; Li et al., 2014), such as not being robust against 

occlusion of plant organs because of many overlapping leaves 

and stems, not being able to obtain fully 3D information because 

of complex 3D plants structure, and the ambiguity between 

object size and distance from the camera.

Thus, the application of 3D imaging technologies has 

gradually been a long-time challenging study topic. In recent 

decades, 3D imaging technologies are being widely applied 

in plant science and modern agriculture (Snavely et al., 2006; 

Omasa et al., 2007; Kazmi et al., 2014; Zhang et al., 2016). 
With the development of 3D imaging and the improvement 

of sensor accuracy, this research area is now receiving more 

attention than ever before. 3D imaging techniques include 

contact and non-contact methods. During the last decade, some 

non-contact optical imaging methods like passive-based and 

active-based 3D reconstruction methods have been developed 

and improved for a wide range of applications, such as LiDAR 

or Kinect system based on structured light (Omasa et al., 2003, 

2007; Hosoi et al., 2011; Lou et al., 2014), and the digital 

camera photography system based on stereovision (Rovira-Más 

et al., 2005; Paproki et al., 2012; Tippetts et al., 2013; Rose et 

al., 2015). The advantages of active methods like LiDAR lie 

in not only the measurability of homogeneous objects but also 

the canopy penetration while their disadvantages include the 

prohibitive cost and being easily influenced by wind movement 

outdoors (Hosoi et al., 2011; Rose et al., 2015). On the other 

hand, the advantages of passive methods include lower cost, 

higher resolution and more detailed estimates. But passive 

methods are usually time consuming when it comes to image 

processing. Comparing passive methods with active methods, 

self-occlusion and correspondence problems are common. 

Generally speaking, passive methods are applied more and more 

to fields with the specific advantages attributed to their low-cost 
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and higher resolution, and especially practicality value in 

multi-view observation for plant growth and structure parameters 

monitoring. They may also improve the self-occlusion and 

correspondence problems. 

In the passive methods, a common approach of 3D imaging 

technology, such as stereovision, shape from focus/shading/texture, 

structure from motion etc is normally applied (Omasa and Kouda, 

1998; Se et al., 2012; Rose et al., 2015; Nguyen et al., 2016; 

Teng et al., 2016; Zhang et al., 2016). The most widespread 

method of acquiring 3D data is stereovision. Stereovision 

provides high resolution depth data with stereo views comparing 

with active methods but it is constrained by the texture of the 

plants along with computational efficiency. Self-occlusion and 

correspondence problems are also its problems. As for shape 

from focus/shading/texture using a single camera, the method is 

simple and it avoids complex stereo correspondence with single 

view resulting in problems of self-occlusion and correspondence. 

Comparing with the above methods, Structure from Motion (SfM) 
has more advantages. It can handle large number of views, 

minimize self-occlusion problem and optimize correspondence 

problem. However there also exist the problems of noises and 

data miss. Besides, the processing time may take a lot of time 

with the growing of views number. In general, SfM is becoming 

an effective method for 3D reconstruction with high-resolution 

because of its advantages of low-cost, and solving self-occlusion 

and correspondence problems. 

In recent years, computer vision has successfully employed 

SfM techniques on multi-view imagery for the generation of 

high-resolution 3D models such as digital surface models (DSM) 
and digital elevation models (DEM). SfM can be applied to 

large collections of overlapping images to obtain point clouds 

for a wide range of objects, such as buildings and sculptures. 

The power of this technique was demonstrated by Snavely et al. 

(2006) who used the Bundler software to reconstruct 3D models 

based on hundreds of overlapping images available from a 

photogrammetric camera. SfM technique is based on identifying 

matching features in images taken from different views. For 

example, multi-camera photography system was developed to 

effectively capture images from different views and reconstruct 

fine-scale 3D models by Zhang et al. (2016). Image features are 

identified by scale invariant feature transform (SIFT) algorithm 

(Lowe, 2004), which is robust in terms of its feature descriptors 

for image features at different viewing angles. 

More recently, there have been several aboveground studies 

on 3D reconstruction of plant growth and structure parameters. 

These studies have successfully demonstrated the use of 

SfM for generation of high-resolution 3D point clouds and 

surface models from a photogrammetric technique of single 

camera. For example, Santos et al. (2014) adopted a kind of 

computer-aided image acquisition method by freely moving 

the single camera around the plants to get overlapping images 

from different views to solve occlusions problem. The presented 

approach relies on local features detected on the plant surface. 

But the lack of feature points in some plants can make camera 

localization unfeasible. Experiments with maize specimens 

were unsuccessful because of presenting almost featureless 

surfaces. Rose et al. (2015) conducted the image acquisition 

with a Canon EOS 450D camera. The study did not include 

extracting additional morphological parameters, like leaf 

length/number/area, leaf area index (LAI) and stem diameter. 

The limit of detectable details should be studied, as well. Jay 

et al. (2015) retrieved the crop row 3D structure with a single 

digital camera. The camera calibration parameters could be 

automatically estimated from the data by SfM. But the method 

did not consider occluded leaves and further investigation is 

needed to retrieve leaf area for such plant structures. Besides, 

the wind-related problem is also a major obstacle in the field as 

the plants may not be in the same position from one image to the 

other, which would lead to poorer reconstruction results.

In this research, the previous problems will be addressed in 

our experiment by SfM and re-projection error minimization 

algorithm. The algorithm is conducted by optimizing the location 

of 3D points and the camera. The efficiency and accuracy of 

the proposed method were assessed at difference growth stages 

and culture conditions as well as its robustness against various 

plant structures and acquisition techniques outdoors. The 

objectives of this study are to not only explore a highly-effective 

data capturing method outdoors and 3D reconstruction method 

from multi-view images by SfM but also to optimize the 3D 

modeling method by accuracy assessment between measurement 

results and estimation results based on plant growth and 

structure parameters. In sum, the overall purpose is to build 

high-resolution 3D plants models from multi-view overlapping 

images by applying an improved SfM technique and relating it 

to growth parameters measurements of sweet potato plants in the 

field, aiming at accurate retrieval of plant growth and structure 

parameters based on 3D plants models. Finally, we hope to 

provide the quantification assessments and monitoring solutions 

for plant growth and structure parameters by 3D imaging 

technologies during different growth periods.

2. Materials and Methods

2.1  Study area
The study was conducted at the farmland of National 

Institute for Environmental Studies Ecosystem Research Field 

II (36.05
◦

N, 140.08
◦

E) in Tsukuba, Japan (Fig. 1). The study 

farmland is 60 m by 20 m including 23 rows of sweet potato 

(Ipomoea batatas L.) plants with approximately 125-140 plants 

per row. Figure 1A shows the overview of study area and the 

fertilizer amount in the divided 6 sample areas, leading to 

desirable variation in the plant height, canopy structure and leaf 

area across the site. The study farmland is equally divided into six 

sample areas by red line and labeled in numbers (S1 to S6). The 

area of each sample area is 10 m×20 m. Figure 1B shows the 

side view of one sample block in S1 sample area; including sweet 

potato plants (green), plastic mulch film (black), and soil within 

the area. Figure 1C shows the young sweet potato plants of one 

sample block (1×1 m2) in S1 sample area. Each sample block is 

fenced up by four ferric pillars on 4 corners and a white string.

We chose sweet potato plants as our study object. We 

transplanted the seedlings into the farmland in April 2015 and 

started to monitor them and take images one or two times every 

month since May 2015. We only measured two sweet potato 

plants of one sample block (1×1 m2) for every sample area each 
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time. The actual measurement parameters include leaf number, 

leaf area, and plant height and so on. For the direct measurements 

of leaf number and area, we adopted destructive way that means 

cutting them and calculating their number or area. As for the 

plant height, we used a ruler scale by hand. Besides, there are 

different fertilizer treatments in the six sample areas (Fig. 1A). 
The fertilizer compound contained 3% fertilizer, 10% Phosphoric 

Acid, 10% Potassium Kinsei Kasei No.3, Taki Chemical Co., 

Japan and 2% Granular Magnesia (Tagen Lime Industry Co., 

Japan). The fertilizer amount in S1 to S6 sample area (200 m2) 
is 0 kg (0 kg/m2), 5 kg (0.025 kg/m2), 10 kg (0.05 kg/m2), 
20 kg (0.1 kg/m2), 30 kg (0.15 kg/m2) and 40 kg (0.2 kg/m2), 
respectively. Uniform fertilization was carefully conducted to 

keep spatial uniformity of plant growth in each area.

2.2  Image collection
For this study, a moderately priced, consumer-grade 

digital single lens reflex (SLR) camera (EOS Kiss X7, Canon 

Industrial Co., Ltd, Japan) with a Cannon GPS GP-E2 receiver 

was used. This camera is equipped with an approximately 

1800 megapixel-(5184×3456 pixels) CMOS sensor with ISO 

range of 100 to 12800. The focal length of the lens used was 

28 mm (f/1.8) and a polarization filter (Circular PL for reflection 

removal, Kenko Tokina Japan Co., Ltd, Japan) was added to the 

lens. Before capturing the image, we calibrated the camera for 

lens distortion compensation. 

In our experiment, we have chosen a 28 mm lens for the field 

experiment. The number of view positions of taking images were 

totally 53 views with this single camera whose purpose is to 

make the overlapping images cover the study block (see Fig. 2). 
The overlap ratio is over 90%. The camera took an image with 

GPS position information in every view. The images were taken 

with 8 bit JPEG resolution by the camera. Time required for 

one measurement was about 8 minutes. These image datasets 

will be input into the PhotoScan (Agisoft LLC, St. Petersburg, 

Russia) for calibration processing and 3D model building in the 

computer (see Fig. 3).
All images were collected from 10 June 2015 to 19 October 

2015. As for data acquisition during different periods, some 

references (the red-and-white pillar and the cubic, etc) would 

be laid across the study area for referencing purposes and 

independent accuracy assessment. Especially after 13 July, 

the plants grew lushly and needed the estimation references. 

Ground control points (GCPs) could be easily identified on the 

collected imagery. Their exact locations were measured directly 

after image acquisition in real-time kinematic mode, providing 
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Fig. 1. The scheme of six sample areas: (A) The overview of study area and the fertilizer amount in the divided 

6 sample areas; (B) The side view of one sample block (1×1 m2) in S1 sample area; (C) The young sweet 

potato plants of one sample block in S1 sample area taken in June 10, 2015.

Fig. 2. Conceptual diagram of view positions of taking images with a single camera. The number of view 

positions of taking images is 53 views. The overlap ratio is over 90%.
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centimeter positional and height accuracies. Finally, the original 

images and generated 3D models were visually assessed on the 

basis of quality, viewing angle, and overlap, in order to remove 

blurred and under- or over-exposed images by the re-projection 

error minimization algorithm. In addition,  we also performed 

image processing of 2D images including leaf number and leaf 

area by classifying image color with maximum likelihood and 

calculating leaf parameters (see in Fig. 3). Then we compared 

the accuracy between estimated and measured values for 2D 

images and 3D models.

2.3  3D modeling of plants
 SfM is an effective method for 3D modeling, which is 

the process of inferring 3D structure of a static scene from 

multi-view images. The conventional SfM method is applied 

for the estimation of 3D camera motion and structure (Oliensis, 

2000; Carrivick et al., 2016). The method can be used to obtain 

3D data of objects and calibrate a cluster of camera positions and 

3D point’s locations for each camera track (Leberl et al., 2010; 

Turner et al., 2012; Mathews and Jensen, 2013). 
In SfM method, the uncalibrated original image data were 

processed and calculated by PhotoScan. As was shown in Fig. 3, 

there are 6 steps of image processing during the 3D rebuilding. 

The image data taken from 53 views had individual coordinate 

systems. First of all, in order to make them have the same 3D 

coordinate system, the image datasets obtained from 53 views 

were co-registered into the orthogonal coordinates and aligned 

by location identification.

As for the estimated matching points and camera positions, 

the datasets were registered through an accurate conversion. 

Then the conversion was repeatedly extracted by selecting in 

turn matching points from the image dataset and getting the 

best translation and rotation matrices that minimize an error 

estimation on account of the distance among them. This process 

was conducted for all couples of image dataset. Then the colored 

point clouds of stereo image data captured were produced by 

the SfM algorithms after calibrating the camera. These points 

are often located by X, Y, and Z coordinates in 3D coordinate 

system. The SfM algorithm starts from the calibrated stereo 

images and a set of tracks. For properly calibrated camera 

positions, undistortion of stereo images is actually combined 

with rectification. The process computed disparity images in 

turn from incoming stereo images using the block matching 

algorithm. The disparity images were generated using a local 

correlation algorithm based on Sum of Squared Differences 

(SSD). It was optimized for efficiency and had a number of 

validation steps to prune disparity. Note that the extracted 3D 

point clouds were entangled with redundancies, a large number 

of outliers and noise. Fortunately, the additional information 

provided by the calibrated images can be exploited to help later 

mesh and surface reconstruction. After exporting 3D points data, 

dense point clouds model was reconstructed in four steps, which 

includes calculating depth information for each camera position, 

capturing dense point clouds correspondences, reconstructing 

structure from motion and 3D dense point clouds. The dense 

point clouds could be edited and classified or exported to an 

external tool for further analysis. Then, the classified dense 

point clouds of plants were transformed into polygon meshes. 

This procedure did some basic filtering to eliminate the most 

obviously irrelevant points. Thereafter, such polygon mesh 

images of plants were allowed to calculate the area of leaves. 

Besides, during 3D modeling of plants, there are some noises 

Measuring directly parameters    

outdoor at different growth stages 

(monthly)
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color images from 53 

different views(JPEG) Setting coordinate system 

based on images with GPS

Calibrating cameras and lens & 

aligning images (A)

Detecting points & generating 

point cloud by SfM algorithm (B)

Removing points noise and

building dense point cloud (C) 

Mapping 3D model texture (E)

Comparing the accuracy 

between estimated and 

measured values of them

Leaf number

Leaf area
Plant height

Measuring the distance 
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Fig. 3. The flowchart for 3D modeling and measurement.
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in plant leaf model. These noises increase with leaves growing 

more and larger. They were resulted from the overlapping of 

lush leaves, incorrect estimation of the feature points and color 

extraction in segmentation of surroundings. Thus, SfM method 

is not very accurate in feature detection and 3D modeling of 

plants. In order to minimize and mitigate self-occlusion and 

correspondence problem effectively, the re-projection error 

minimization algorithm was developed to improve image 

consistency with high-accuracy. We use estimate (E), projection 

matrix (M), 3D points (S) and W as combined matrix.

   i=1,…,m; j=1,…,n. (1)

According to the algorithm, the leaf with noise problem was 

detected and removed effectively. Besides, to reduce image 

analysis errors mentioned previously, it is necessary to include 

leaf shape analysis for taking the overlapping leaf areas into 

account and improve the system calibration algorithm for 

increasing the search accuracy of target positions.

Therefore, 3D surface texture of plant height and leaves 

was expressed as the inconsistent triangle meshes depending 

specially on alignment of point cloud after noise exclusion. 

Moreover, triangulated meshing and surface reconstruction were 

applied to generate surface texture models. Laplacian smoothing 

was employed to smooth triangle meshing. A series of natural 

color images captured after mesh were matched on the surface 

model of the entire plant using a texture-mapping approach. 

The texture-mapping approach is generally used as a method 

for putting surface texture into a computer-reconstructed 3D 

surface model (Koniaris et al., 2014). The 2D images like natural 

color images are available as the surface model reconstruction. 

Through the coordinate’s correspondence of 2D image to 

3D model, the feature of 2D image is automatically matched 

onto each mesh shell of the 3D model. A rigid choosing of the 

matching points between 2D and 3D images is very important 

to generate the complicated texture mapping of the sweet potato 

plants. Then the matching points were selected from each plant 

height and leaf. Whereafter, exact 3D natural color models 

were constructed. From the models, some information can be 

refined, such as plant height, leaf number and area, which are 

significative in plant detection and recognition.

2.4   The measurements and estimates of plant growth and 
structure parameters in 3D model

According to the above method, a 3D model is built and 

served as a basis for retrieving plant growth parameters. This 

model is computed using SfM method with RGB images 

acquired by translating a single camera. Then, to estimate the 

measurement parameters including leaf number, leaf area and 

plant height, plants and background are discriminated by a robust 

method that uses both color and height information in order to 

handle low-contrasted regions. The leaf number can be counted 

from 3D model. As for the calculation of leaf area in 3D model, 

each leaf polygon was automatically counted and estimated within 

leaf mesh. For the direct measurement of leaf area, we calculated 

leaf area by destructive method. We firstly cut all the leaves from 

sweet potato plants of 6 sample blocks and spread them on the 

desk to take the plane fanning leaves images after taking images 

in 6 sample blocks of 6 experiment areas each time. Then we 

could compute leaf area in Software LIA32 (an image analysis 

freeware for estimating LAI (Yamamoto, 2004)) according to the 

plane fanning leaves images. Plant height was calculated from 

stem tip to soil surface by calculating the distances of measured 

marked points according to the coordinates of referenced points 

in 3D model.

Besides, as an important ecophysiological parameter and plant 

structural variable in the description of many vegetation and 

plant growth processes, LAI was investigated. It is the total one 

sided green leaf area per unit ground area in broadleaf canopies, 

as seen in the Eq. (2). Many destructive and non-destructive 

methods have been developed to quantify LAI from the ground 

and describe other structural parameters. Knowledge of LAI 

variation during the whole plant cycle is essential for the 

modeling of plant growth and the estimation of yield (Clevers 

and Van Leeuwen, 1996). Some experiments have been 

carried out to estimate LAI and other biophysical parameters 

of vegetation and plants by optical remote sensing technology 

during the growing periods and for growth models and monitor 

plant growth (Hosoi et al., 2011). They have demonstrated that 

LAI is correlated with the fresh biomass of plants.

,    Ground area=1×1 m2. (2)

In this study, LAI were measured and obtained within randomly 

selected areas of 1 m×1 m. In order to monitor the growth 

conditions of the sweet potato plants, the relationship between LAI 

and other growth and structural parameters, such as height, leaf 

number and the error ratio, were also investigated. Consequently, 

the sweet potato plants were measured from June to October 2015 

in each sample block. Data from 6 sample blocks with 1×1 m2 

area were shown in the corresponding measurements. 

In the outdoor experiments, we have also surveyed GPS 

coordinates information on four pillars of 4 corners. In order to 

estimate the parameters of plants from 3D model, we used some 

references for accuracy estimation, such as the red-and-white 

pillar, the cubic and white rope. For example, one red-and-white 

pillar on one of four corners in each block was once served as 

the reference to set the referenced coordinates points during the 

latter measurements. The gap distance between red and white 

marker is 10 cm. The coordinates in the pillars were set as 

reference coordinates with 3D coordinates for the assessment 

of the geometric accuracy, namely that westing (X), southing 

(Y), and height (Z) was carried out for the orthomosaic. These 

referenced point clouds can be used to provide very specific and 

exact representations of a close depth scene. The coordinates 

of the key points were retrieved from the image according to 

the corresponding GPS coordinates, resulting in mean and root 

mean squared error (RMSE) accuracy measures in the X and Y 

direction. The height value was derived from the DSM for the 

GCP and also compared to the GPS observations, producing 

mean and RMSE accuracy measures for the Z direction (Höhle 

and Höhle, 2009; Harwin and Lucieer, 2012). Finally, we could 

obtain the direct and indirect measurement data. According to 

these data, we could calculate correlation coefficients (R2) and 
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RMSE between the estimated and measured values of these 

parameters to obtain their accuracy.

2.5   The measurements and estimates of growth and 
structure parameters in 2D images

In the past studies, 2D imaging had been applied ranging 

from such growth analysis, structural analysis, environment 

assessment, and yield estimation at different growth level or 

different period. Figure 4 showed the procedure example of 

measured parameters based on 2D image in S1 block at July 

13, 2015, including leaf number and leaf area. It is the same for 

other blocks or other measurement periods. The original image 

might be considered to contain sub-images sometimes referred 

to as regions-of-interest (ROIs), or simply regions (see Fig. 4A). 
The original image could be considered to be a function of two 

real variables, for example, a(x,y) with a as the amplitude (e.g. 

brightness) of the image at the real coordinate position (x, y). 
In order to obtain important information by identifying and 

analyzing 2D original image, the classification process that 

groups image pixels into categories was necessary. Firstly, we 

set RoIs and classify regions as different colors for plant, soil, 

string, pillar and vinyl with ENVI (Exelis VIS Co. Ltd.,2016).
Then, in Fig. 4B, the 2D original image was classified for 

training data by the supervised classification method. This 

method allows us to cluster pixels and pre-define classes, 

creating “training data” to work from when classifying the 

rest of the image. In this step, a supervised classification was 

performed where we provided training data and specified a 

classification method of maximum likelihood. The following 

determinant functions for each pixel in the image by Maximum 

Likelihood classification (MLC) (Richards, 2012) with supervised 

classification method were calculated:

 (3)

Where,

i =  the ith class

x =  n-dimensional data (where n is the number of bands)
 = determinant functions for each pixel in the image

p (ωi) =  probability that a class occurs in the image and is 

assumed the same for all classes

|Σi| = determinant of the covariance matrix of the data in a class

Σi-1 =  the inverse of the covariance matrix of a class

mi =  mean ROI of a class

MLC assumes that the statistics for each class in each band is 

normally distributed and calculates the probability that a given 

B CA

FD E

B CA

Fig. 4. The procedure example of measured parameters based on 2D image in 6 sample blocks at July 13, 2015: (A) Original 

image; (B) Classified image by the maximum likelihood method as a supervised classification from R(red), G(green) and 

B(blue) images of color photos; (C) Calculated leaf parameters (leaf number and leaf area) based on leaves left. 

Fig. 5. The procedure for 3D modeling of sweet potato plants: (A) Camera and lens calibration; (B) Point cloud; (C) Dense 

point cloud; (D) Mesh (3D polygonal model); (E) 3D model texture; (F) DSM model.
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pixel belongs to a specific class. After dividing a 2D color photo 

to R(red), G(green) and B(blue) images, 2D RGB images were 

classified by the maximum likelihood method as a supervised 

classification and showed with different colors in Fig. 4B. 

After that, we could export classification results to an ENVI 

classification file. According to the results, we calculated plant 

growth parameters, such as leaf number and leaf area. For the 

counting of leaf number, we simply counted them on 2D RGB 

images. As for leaf area, Figure 3C is the estimated results of 

leaf parameters after calculating by Lia32. In this way, we were 

able to obtain the estimated accuracy of measured parameters 

for 2D image as well as the comparison between actual and 

estimated value in 2D image of parameters in 6 sample blocks at 

different growth periods.

3. Results and discussion

3.1  3D modeling of sweet potato plants
Figure 5 shows an overview of 3D modeling procedure 

for sweet potato plants reconstructed from a series of images 

taken by the 28 mm lens. Firstly, Figure 5A shows camera and 

lens calibration in the internal parameters of the camera. Then, 

according to the process of 3D modeling shown in Fig. 3, 

PhotoScan generated point clouds with a total of 112,316 points 

after registration from the input images captured by the camera, 

as shown in Fig. 5B. Currently each point in the clouds is 

determined by the images and overlapping areas have a lot of 

points. It would be more accurate if this was determined by all 

possible images. It is best to define the minimum number of 

images for the determination of a point. Secondly, after removing 

the noise within the point cloud dataset, a total of 3,456,487 dense 

points remained in Fig. 5C. The dense point clouds gave greater 

precision, and its point number is thirty times more than one of 

the point clouds and much more accurate. Then, the dense clouds 

of plants were converted into the corresponding polygons mesh 

in Fig. 5D. It was seen that the polygons consist of many uneven 

triangle meshes. The complex curves and unevenness on the 

sweet potato plant model were generated on the polygon meshes. 

The number of polygon meshes per leaf was determined by 

unevenness polygon size in addition to leaf size. Figure 5E shows 

the texture mapping of 3D models from a series of images for 

sweet potato plants. In Fig. 5F, DSM models were reconstructed. 

In sum, from Fig. 5F, we can see that most of leaves and stems 

shape were reconstructed and their clear models were generated 

from a series of images taken by the 28 mm lens.

Typically, during building the point clouds, noise also 

increased with increasing point density. The positions of 

some points were slightly higher or lower than actual model, 

which could not reproduce any actual character of 3D sweet 

potato plant model. Therefore, these points would be directly 

classified as noise points, most of which were removed during 

building the dense clouds next step. The filtered point clouds 

produced an accurate 3D modeling of the sweet potato plants 

as shown in Fig. 5E. Each leaf feature was clear because of the 

high-resolution images captured by our system.

3.2   Growth and structure parameters of sweet potato plants 
measured by direct method

In our experiment, a total of 12 plants were sampled at random 

in 6 sample areas of the field. We measured the growth of plant 

height, leaf number and leaf area by a single camera 6 times, 

from June to October 2015. The different fertilizer amount in 

the divided 6 sample areas led to desirable variation in the plant 

height, structure and leaf area across the sample areas. As is 

seen in Fig. 6, the plant growth rate in six sample areas S1 to 

S6 changed according to the different fertilizer treatments. The 

standard errors of growth parameters at each measurement were 

shown. The plant growth in area with more fertilizer treatments 

was significantly better than that in area with less fertilizer 

treatments. Especially, S5 and S6 sample blocks have the best 

growth state of leaf and stem biomass where the fertilizer 

amount is 30 kg and 40 kg, namely 0.15 kg and 0.2 kg per m2.

Figure 6A to 6C showed changes in the parameters with the 

growth of sweet potato plants. It illustrated the measurement 

results of these parameters were evaluated at sample blocks 

during different growth periods. For example, Figure 6A showed 

plant height ranged between 5 cm and 25 cm over all the growth 

periods of sweet potato plants. The plant height of S5 sample 

block was the highest in 10 August and the plant height of S6 

sample block was the second highest in 5 September. This was 

because the plant height of S5 block could not continue to grow 

higher but grew longer until August. But the plant height of S6 

block still continued to grow higher until September. Seasonal 

Fig. 6. The direct measurement of sweet potato plants growth parameters in 6 sample blocks (12 sample plants) at different 

growth periods from June to October 2015: (A) Plant height growth; (B) Leaf number growth; (C) Leaf area growth (Each 

point is the mean value and the vertical bar is standard error).
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growth change of plant height (Fig. 6A) is more complex than the 

other results (Fig. 6B and 6C), probably because plant height will 

be affected by various factors, such as effects of wind speed and 

light competition in adjacent individuals as well as the effect of 

fertilizer amount on each organ’s growth. In Fig. 6B, the generated 

leaf number ranged between 5 and about 500 during the growth 

period. Only the leaf number of S6 sample block was the most in 

29 June and 5 September. But the leaf number of S5 sample block 

was the most during other periods. S4 also continued to grow until 

September despite fertilizer amount is less than S5.

Besides, as the growth speed of sweet potato plants would 

change slower after September, the stem started to atrophy and 

leaf number changed less. So October should be the best harvest 

time. Likewise, Figure 6C also showed the increasing trend of leaf 

area as sweet potato plants grew and leaf number increased before 

5 September. The value of leaf area ranged from 0.01 m2 on 10 

June to 3.39 m2 on 5 September. Until October, S5 sample block 

had a better status with the most leaf number and the biggest leaf 

area. Thus, different fertilizer treatments had an important effect 

on the growth of sweet potato plants during its growth period. 

According to the measured results, Figure 6 demonstrated the 

fertilizer amount treatment with 0.15 kg per unit block was the 

most suitable for the growth of sweet potato plants.

In this study, we not only monitored the growth status of sweet 

potato plants during the growth periods but also obtained the data 

series of their structure parameters by a destructive method. As is 

seen in Fig. 6, we found the best fertilizer amount and fertilizer 

treatments for the growth of sweet potato plants. In general, 

according to the parameters measurement results of sweet potato 

plants, we can analyze the performance of different measurement 

periods in different sample areas. These analyses are very 

helpful for understanding the relationships between plant growth 

parameters and its environment such as light and temperature 

conditions, effects of fertilizer, irrigation and disease, etc.

3.3   The relationship between LAI and the error of growth 
parameters estimated from 3D model

As LAI is defined as the total one-sided leaf area per unit 

ground surface area is a growth indicator, we investigated the 

relationship between LAI and the error of growth parameters 

estimated from 3D model to the direct measured value. Figure 7 

showed the relationship between LAI and percentage error of 

estimated parameters and the changing trend of the parameter 

error with the growth of sweet potato plants and increasing LAI 

in 6 sample blocks at different growth periods. The trend of a 

decreasing percentage error of estimated parameters as LAI 

increases can be observed. The value of LAI ranges from 0.1 to 

3.5. The results of 3D models demonstrated that the errors linearly 

increased for plant height and leaf number and exponentially for 

leaf area with increasing in LAI, but the average percentage error 

shown in the regression line was a constant about 4.8% for plant 

height or decreased from 13% to 8% (LAI =3.5) for leaf number 

and from 19% to 12% (LAI =3.5) for leaf area with increasing in 

LAI, although each percentage error fluctuated, especially at low 

LAI (Fig. 7). These results may be insufficient for use in growth 

management and breeding in the farmland, hence we examined 

the regression models in next sections. 

Furthemore, the percentage error largely fluctuated near LAI 

0 in Fig. 7C. During the early periods of plant growth, sweet 

potato plants had few and small leaves. The absolute error of 3D 

model was easily affected by slight camera shake and wind in the 

field during the image capturing in addition of inherent spatial 

resolution of camera. On the other hand, the real measured value 

of plant leaves also has some error and the absolute error is 

constant. So, relatively, the percentage error is larger in the early 

periods of sweet potato plant growth. 

3.4   The relationship between LAI and the error of growth 
parameters estimated from 2D images

For similarity with the estimation of growth parameters in 

3D model, we also investigated the relationship between LAI 

and the absolute error of the growth parameters estimated from 

2D images. As plant height was difficult to be estimated from 

the 2D image, we only made the estimation of leaf number and 

leaf area. Figure 8 shows the relationship between LAI and 

the percentage error of growth parameters estimated from 2D 

images in 6 sample blocks at different growth periods. From 

Fig. 8, we found the average percentage error was 20% to 

45% (LAI =3.5) for leaf number and 60% to 90% (LAI =3.5) 
for leaf area, and leaf height was immeasurable. Comparing 

with the percentage errors estimated from 3D models, it was 

demonstrated that the percentage error from 2D images was very 

large. Comparing with the results in Fig. 7B and 7C, we found 

that the growth parameters values estimated from 3D models 

were obviously more accurate than the ones from 2D images. 

Thus, 3D modeling had a better advantage in the monitoring of 

Fig. 7. The relationship between LAI and the percentage error of growth parameters estimated from 3D models in 6 sample 

blocks at different growth periods: (A) Plant height; (B) Leaf number; (C) Leaf area.
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plant growth and structure parameters.

As is seen above, 2D imaging had some problems, such as 

not being robust against occlusion of plant organs because of 

many overlapping leaves and stems, not being able to get fully 

3D information because of complex 3D structure of plants, 

and the ambiguity between object size and distance from the 

camera. Meanwhile, as seen in Fig. 8, the growth parameters 

estimation from 3D models was reasonable results because of 

improvements of the above problems for 2D imaging.

3.5   Estimation of growth parameters using regression 

models between the direct measured values and the 
values estimated from 3D model

In the above section, we showed the growth parameters 

were directly estimated from 3D models within the reasonable 

error percentage. In this section, for more improvement of the 

estimates, we examined a method to calibrate the estimates from 

3D models using the regression model between the measured 

value and the value estimated from 3D model. Figure 9 shows the 

regression models for plant height, leaf number and leaf area. The 

regression models were linear as y=0.964x+0.394 (R2 =0.97 and 

RMSE=0.71 cm) for plant height, y=1.091x +3.815 (R2 =0.99 

and RMSE=4.03) for leaf number, and y =1.188x－0.015 

(R2 =0.98 and RMSE=0.12 m2) for leaf area, where x is the 

estimated value from 3D model described in the material method 

and y is the measured value in Fig. 6.

The results showed the very high regression for each 

parameter. As the result, the RMSE based on the regression 

models for plant height, leaf number and leaf area become 

very small as 0.71 cm, 4.03 and 0.12 m2, respectively. In the 

experiment, we used data across a wide range in fertilizer supply 

and growth stages of sweet potato plants. So, in the conclusion, 

we confirmed the validity of the method to calibrate the 

estimates from 3D models using the regression model between 

the measured value and the value estimated from 3D model.

3.6   The error analysis and accuracy assessments of 
measured parameters

The measurements of plant growth and growth parameters 

are challenging, time consuming, and often rely on destructive 

methods. Now as 3D imaging technology is becoming a good 

solution for the monitoring and estimation of plant growth and 

structure parameters (Li et al., 2014; Zhang et al., 2016), 3D 

models allow accurate plant growth features estimation indoor 

and outdoor without the need to destructively cut off any parts 

of a plant. As an application of 3D imaging technology, some 

active methods and passive methods are widely used to construct 

3D models for plants during the growth periods but they are 

constrained by the experiment environment and condition along 

with data acquisition and computational limitations.

In this study, we applied a novel 3D processing method based 

on SfM algorithms to reconstruct a fine-scale sweet potato plant 

model from multi-view images taken by a single SLR camera. 

We mainly analyzed the accuracy of plant growth and structure 

parameters at different fertilizer under 6 different periods and 

compared their performances of 3D shape reconstruction based 

on plant height, leaf number and leaf area. In our experiment 

design, the tested if sweet potato plants can be reliably detected 

with high accuracy and efficiency by our system platform. 

According to the experiments, we not only investigated the error 

between the estimated and measured values for plant height, 

leaf number and leaf area was small, but also investigated that 

the relationship between LAI and absolute error or percentage 

error with the fertilizer treatment. The measured parameter 

error correlates with the LAI of sweet potato plants in the test 

sample area during the different growth periods. The results in 

3D models demonstrated that the errors linearly increased for 

plant height and leaf number and exponentially for leaf area with 

increasing in LAI, but the average percentage error shown in 

the regression line was a constant about 4.8% for plant height or 

decreased from 13% to 8% (LAI =3.5) for leaf number and from 

19% to 12% (LAI =3.5) for leaf area with increasing in LAI, 

although each percentage error fluctuated, especially at low LAI. 

In contrast, the average percentage error in 2D image processing 

was 20% to 45% (LAI=3.5) for leaf number and 60% to 90% 

(LAI=3.5) for leaf area, and the leaf height was immeasurable. 

Comparing with other studies, for example, Paproki et al. (2012) 
tested six small Gossypium hirsutum plants over four time-points 

indoor and made the parameter estimation for the retrieval of 

measurements such as main stem height and inclination, petiole 

length and initiation angle, and leaf width, leaf length and leaf 

area, and the observed errors ranging from 5.75% to 9.34%. It 

was obvious that our performance was better than the percentage 

error (9.34%) of plant height demonstrated by Paproki et al. 

(2012). And, it is point out that our results were obtained in the 

field experiments outdoor, instead of indoor. Besides, comparing 

Fig. 8. The relationship between LAI and the percentage error of growth parameters estimated from 2D images in 6 sample 

blocks at different growth periods: (A) Leaf number; (B) Leaf area.

A
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with the errors of 3D results, the errors of 2D images were much 

larger. The accuracy of predicting leaf area with this approach 

would certainly be dependent on the accuracy of the 3D models. 

On the whole, the experimental results with good fit between 

LAI and growth parameters error also confirmed the feasibility 

and validity of the proposed SfM methodology for an accurate 

estimation of plant parameters. 

However, there are some errors or noises during the 

reconstructing 3D models of plant growth and structure 

parameters, especially for the measurement of leaf area, due 

partially to the errors inherent in field measurements and partially 

to the errors induced. For example, there were more re-projection 

errors for leaf in 3D model in S5 and S6 sample blocks according 

to the measurements in Fig. 6C. Errors in the leaf area were 

mainly caused by overlapping leaves. The errors were resulted 

from the overlapping of lush leaves, incorrect estimation 

of the feature points and color extraction in segmentation 

of surroundings such as other leaves and stems, grass, soil, 

plastic, etc. In order to reduce point noises and re-projection 

errors mentioned previously, it is necessary to improve camera 

calibration algorithm (e.g. distortion etc.) for increasing the search 

accuracy of target positions and solving the correspondence 

problem. As for the occluded leaves and wind-related problems, 

further improvement is needed to retrieve better leaf and plant 

structures, as well as setting fixed holder, increasing overlapping 

ratio, improving light conditions and so on.

Meanwhile, we also examined a method to calibrate 

the estimates from 3D models using the regression model 

between the measured value and the value estimated from 3D 

model. The regression model gave an improved coefficient of 

determination, and hence it made good estimations and could 

improve the image analysis method with capturing a linear 

relationship. According to the results, the regression models 

showed the linear and good estimation for leaf height (R2 =0.97 

and RMSE=0.71 cm), leaf number (R2 =0.99 and RMSE=4.03) 
and leaf area (R2 =0.98 and RMSE=0.12 m2), in spite of use of 

data across wide range in fertilizer supply and growth stage of 

sweet potato plants. Comparing with other studies, for example, 

Rose et al. (2015) presented a photogrammetric approach for 

high accuracy measurement at the organ level of three-week-old 

tomato plants in the greenhouse and showed all structure 

parameters highly correlated with the reference measurements, 

yielding an R2 lying between 0.96－0.99, including main 

stem height and leaf area. But the study did not consider the 

relationship between LAI and the error of growth parameters 

with the widely different fertilizer treatment and the whole 

growth stages. Jay et al. (2015) presented a method to retrieve 

row structure and structural parameters for 5 small plants, i.e., 

plant height and leaf area, and obtained two dataset collections 

during the two growth stages in the field. The two parameters 

were well estimated since high correlations and low average 

errors were obtained between estimated and actual values. 

However, their method did not consider occluded leaves and 

lacked further investigation to retrieve plant height and leaf area 

as well as LAI for such plant structure. According to our results, 

the performance was similar to the correlation of R2 over 0.96 

demonstrated by Rose et al. (2015) and the estimation for leaf 

height (R2 =0.99 and RMSE=1.1 cm) and leaf area (R2 =0.94 and 

RMSE=0.0085 m2) shown by Jay et al. (2015). In our study in 

field, we made 6 dataset collections for sweet potato plants at the 

whole growth stages and wide different fertilizer conditions, and 

also investigated the structure parameters including plant height, 

leaf number and leaf area. Our results demonstrated that the error 

between the estimated and measured variables was small under 

the current experimental condition, whose correlation coefficient 

showed a fairly good agreement. The results have demonstrated 

that the regression model enabled our image analysis to estimate 

growth variables of sweet potato plants with a high degree of 

accuracy and flexibility. Therefore, our method and photography 

system, after being calibrated and improved by using the 

regression model, successfully identified the growth status of 

sweet potato plants with a high degree of estimation accuracy.

In sum, this study suggested that 3D imaging technique in 

the study has the further potential to remotely monitor plant 

growth status and estimate growth and structure parameters 

under various environmental factors outdoors. In the future 

experiments, improvements to the approach presented in this 

study would include the implementation of a physically-based 

model. Future work will also include the acquisition and analysis 

of multispectral and thermal imagery collected. A multi-camera 

approach could provide more detailed information about the 

growth of plants and the key components of the vegetation. In 

the future, such technology could be used to monitor farmland 

and agriculture production automatically in the field or 

greenhouse without the need for destructive sampling of these 

unique and fragile ecosystems. 

Fig. 9. The accuracy comparison of sweet potato plants growth parameters between measured value and estimated value in 6 

sample blocks at different growth periods: (A) Plant height; (B) Leaf number; (C) Leaf area.
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