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ABSTRACT 
We report research performed on gesture analysis and mapping 
to music. Various movements were recorded using 3D optical 
motion capture. Using this system, we produced animations 
from movements/dance, and generate in parallel the soundtrack 
from the dancer's movements. Prior to the actual sound 
mapping process, we performed various motion analyses. We 
present here two methods, both independent of specific 
orientation or location of the subject. The first deals with 
gestural segmentation, while the second uses pattern 
recognition.  
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1. INTRODUCTION 
The digital encoding of human motion in general and motion 
capture systems specifically present a powerful potential for 
creative expression and human computer interaction. 
Particularly interesting is the possibility of a person using their 
entire body as controller, whether they are applied to visuals, 
audio, or even other purposes such as data exploration.  

Motion capture facilities at the Claire Trevor School of the 
Arts, University of California Irvine, include a state-of-the-art 
Vicon system, designed for full body 3D motion capture. We 
report here on-going research using this motion capture 
system [1]. 

This Vicon system is primarily designed for animation. Our 
intention is nevertheless to use it for more general purposes 
such as an interface for music control (see Fig.1). The 
challenges are twofold. First, motion analysis has to be 
performed to transform the raw motion capture data to a set of 
parameters that contains a particular expression. Two different 
approaches, that complement each other, are presented here: 
extraction of gestural segments (section 3.1) and pattern 
recognition (section 3.2). Second, the set of parameters derived 
from the motion analysis is mapped to sonic parameters.  

Mapping sounds to gesture using technology is an old idea. 
Several types of interfaces have been developed over the years 
to control digital media, and electronic music in particular 
(References[3] to[8]). As a matter of fact, the possibility of 

designing the interface between gesture and/or touch and sound 
is a fascinating feature of digital music. Such an approach is 
re-gaining interest partially because of the availability of cost 
effective software and hardware. Nevertheless, the mapping of 
sound to gesture remains a challenging problem [9].  

Our approach here was to assess various methods of motion 
analysis and sound mapping in a post-processing mode (The 
Vicon motion capture system we used does not allow for real-
time processing, but an upgrade to a real-time system is 
possible). We found this approach interesting in two ways. 
First, we believe that this research guide us in the design of 
real-time systems for music expression. Second, this work 
allows us to build interactive installations where the animations 
and the mapping “gesture to sound” are controlled in real-time. 
In such a case, the control is therefore shifted from the 
performer to the viewer [2] (this approach is in some ways 
similar to a video game). 

 

2. 3D OPTICAL MOTION CAPTURE 
We are using a commercial 3D motion capture system (Vicon 
8), primary designed for animation purposes or biomechanics 
studies. We summarize here only the basic principles of this 
system. Comprehensive information about the system can be 
found at the Vicon website.[10] 

The Vicon system at the University of California, Irvine 
School of the Arts, is based on the simultaneous recording by 8 
video cameras of small reflective balls, “markers”, attached to 
a dancer, at 120 Hz. The balls are lightweight and interfere 
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Figure 1. Diagram of the animation and music production.

Figure 1. Animation production, including 
video and sound track generated from the 
motion capture data. 



 

 

minimally with the dancer's movements. The 8 video cameras 
are placed around the subject to create a capture volume. 
Because each ball is simultaneously imaged by several video 
cameras, the 3D coordinates of each ball can be computed 
using triangulation (a calibration being performed first). The 
standard Vicon system does not process the data in real-time. 
However, this system can be upgraded for real-time 
processing. Once the Vicon system has processed the data, it 
outputs them as a list of 3D coordinates for each reflective 
marker, frame by frame. If the balls are placed at chosen points 
of the "skeleton", the data can then also be expressed in term of 
angles between various human joints.  

For animation purposes, a minimal set of 30 markers is 
normally used. The data can be imported in animation software 
to be transformed in 3D animation (3DStudioMax, Maya). The 
final product can be either rendered as a 2D movie or kept in 
3D format using, for example, VRML. 

 

3. MOTION ANALYSIS 
A general problem with using a motion capture system as a 
controller for musical processes is that at 900 events/second 
(~30 points at 30 Hz), there are simply far too many to 
translate directly into a coherent musical process. The frame 
rate is itself an artificial construct, not inherent within the 

motion, and the human ear does not perceive as separate events 
which occur closer than 20-50 ms apart. The elements that are 
perceived as indivisible within a motion are made up of 
multiple points and multiple frames. A process is needed, 
similar to the process of motion capture itself, in order to 
reduce the data into a number of events that are translated into 
a musical process, while keeping the salient features of the 
motion intact. 

One problem of many attempts to deal with this issue is the 
rather simplistic mappings from gestures to the processes that 
are often used.  Most often these deal with purely positional 
mappings, i.e. high location produces a high pitch etc. Our 
research is an attempt to find a gestural mapping which is more 
robust and expressive than this simple mapping, yet still just as 
intuitive.  We present two approaches to motion analysis both 
of which have the advantage that the analysis is independent of 
any specific axes or origin point, so a performer does not have 
to worry about a particular orientation, only the qualities of the 
gesture. 

3.1. Method 1: mapping motion capture 
data to gestural segments 
The main idea of this method is that significant changes in the 
trajectory of a gesture can be indicated by significant changes 
in the acceleration of a body part. A change in acceleration of a 

Figure 2. 

Left:  Dancer with the various markers. One of the 8 camera (with LED lighting) can be seen on the upper left corner of
the picture. 

Right: The Interface of the Vicon System, illustrating the layout of the motion capture camera 



 

 

body part can be used as a threshold to parse the motion of the 
body part into different segments. This will then create a way 
for interpreting gestures that is tied more to the quality of the 
gesture, rather than to the spatial location of the body part. 

The method focuses on data from the motion of a single 
marker observed using the Vicon system (in our example, this 
is the right finger marker). The first step is to try to find 
transition points, where the point begins to move, stops, or 
significantly changes direction (Fig.3). These transitions points 
can be used to break long sequence of continuous data into 
shorter gestural segments, each of which can be used to 
generate a single event to control a musical process. 

 
Figure 3.  An example of a transition point. 

 

 The raw data is in the form of three floating point coordinates 
(x, y, z) for each frame of the motion capture data.  This data 
delineates a 3-dimensional vector function of time.  In order to 
use standard edge detection techniques, and in order to remove 
bias toward particular directions (we want a motion parallel to 
an axis to have the same effect as one askew to the axes), we 
needed to reduce this function into a single scalar function of 
time.  We first calculated the first derivatives with respect to 
time of each data point, obtaining the velocities along the three 
axes.  A fringe benefit of this transformation was also the 
removal of a preference to a particular location or point of 
origin in the data.  Through experimentation, we found that 
there was a strong correlation between the transition points we 
were looking for and an increase in the acceleration of the 
point (intuitively, this is related to the kinesthetic muscle 
response by the dancer to change the trajectory of the marker).  
Although it is possible to generate points from sudden 
increases in velocity, we found it more useful to base our 
points on increases in acceleration.  This way sudden halts and 
abrupt changes in direction could be also interpreted as 
transition points, along with the beginnings of a motion.  A 
single scalar function was then generated by taking the second 
derivative of the position and obtaining the scalar magnitude 
by taking the dot product of the vector with itself. 

A crucial step in the processing of this function is the use of 
low pass filtering to eliminate jitter.  A good deal of small 
variation in the data is found due to both small inaccuracies in 
acquiring the measurements, as well as "haptic noise" in the 

motions made by the dancer.  Although these do not seem to be 
initially very significant, calculating the velocity and 
acceleration from these slightly noisy functions greatly 
increases the noise, as can be seen from the figure below. The 
filtering was accomplished by simply calculating a running 
average with the last few frames of the data (we used around 
10). We found the most effective way to remove this noise was 
to both preprocess the position information, as well as filter the 
subsequent function prior to edge detection.  The coefficients 
of these functions are very important for the effectiveness of 
the edge detection, and can be found through either careful 
tuning, or through machine learning, if transition points have 
been previously determined by hand. 

 

 
Time � 

Figure 4.  1D analysis from motion capture data: Low Pass 
Filtered x component of position (Upper Left), Magnitude 
of 3D Velocity (Upper Right), Magnitude of 3D 
Acceleration (Lower Left), Acceleration Low Pass Filtered 
with leading edges marked (Lower Right). 

 

Once we had obtained a single function vs. time, we could then 
use standard edge detection techniques to parse the transition 
points.  The two standard methods for finding edges are either 
1) to calculate the Laplacian (in 1 dimension, just the second 
derivative of time) and find the zero points, or 2) find local 
maxima and minima by looking at increases and decreases in 
the first derivative with respect to time [11].  We found the 
second method to be the most expedient, and found that the 
transition point we were looking for corresponded to troughs in 
the function.  We then found the leading edge of each peak by 
looking for the first significant increase in the function 
subsequent to a significant decrease.    

Once the transition points have been found, and the motion has 
been parsed into gestural segments, a number of parameters 
that characterize the segments can be very easily extracted 
from them.  A non-exhaustive list of these include: the time 
taken to traverse the segment, the total distance traversed over 
the segment, the average speed while traveling along the 
segment, and the "curviness" of the path   (the relation of the 
total distance traveled divided by the direct distance between 
the end points).  These parameters can then be augmented, if 



 

 

one chooses, by the more axis specific parameters normally 
used (i.e. the height of a gesture). 

Both through the use of low pass filtering as well as the extra 
frames needed to determine that a leading edge does indeed 
exist after a trough, some latency is introduced into the system.  
However, this is alleviated to a large extent by the fact that an 
increase in acceleration occurs significantly before what is 
perceived visually as a transition point.  As a result the system 
can designate a transition point just a few frames after it has 
appeared to occur  (3-5 frames or 100-150 ms).  This allows 
the system to both look and feel quite responsive.  A more 
serious issue is the fact that the response to a single gesture 
segment does not occur until the end of a gesture.  However 
this can be compensated for, and certainly the character of 
several gestures together will be accurately portrayed. 

The benefit that this method has over alternative approaches is 
that no specific patterns or gestures are searched for, so the 
system may be used quite expressively and intuitively, without 
the need for learning specific gestures.  Once the performer has 
a general sense of how the analysis responds, they are free to 
use any vocabulary of gestures that they choose and the system 
will respond to them in a predictable way.  

3.2. Method 2. Pattern recognition and 
Principal component analysis (PCA). 

In the previous method, no prior knowledge of the gesture is 
necessary. In the following section we are describing the 
implementation of pattern recognition procedures. In such a 
case, the movements are analyzed based on a priori set of 
movements (training set). A new movement can then be 
classified by calculating its similitude (or difference) with the 
training set of movements. In this approach, the movement of 
the whole body (as defined by the set of markers) can be easily 
taken into consideration.  

We consider a movement as an ordered sequence of states, 
defined by the position of the markers. We considered only the 
relative distances of the markers to the pelvis (which is roughly 
the mass center of the body). Thus, the position and orientation 
of the figure in the space is irrelevant.  

For proof of concept, we selected a series of two short 
movements, “left jumps ” and “right jumps”. Each jumps are 
approximately 94 frames long (recorded at 120 frames/s) and 
correspond to a vector of 90×94 numbers. Principal component 
analysis (PCA) is used to derive the most important common 
feature between all jumps. PCA is used in many fields such as 
medical imaging or face recognition [12].  

Any other sequence of movements (test movement) can be 
correlated to the basic movements derived from PCA (training 
set), by simply computing the Euclidean distance between the 
training set of movements (jumping left or right) and the test 
movement. Since the test movement is usually longer than the 
training movements (here 94 frames), the test movements are 
analyzed by translating a time window. 

An example of correlations is shown in Fig. 5. The top graph 
shows to the correlation of a “right jump”, whereas the bottom 

graph corresponds to the correlation to “right left jump”. The 
peaks in Fig5 correspond to each jump. 

PCA can be applied in the case where the training set is 
composed of many different types of training movements at 
once. PCA can define small set of movements (eigenvectors) 
that can be used to describe all of the motions within a certain 
degree of accuracy. The eigenvectors can be called 
eigenmoves, similarly to eigenfaces which are defined for face 
recognition. Interestingly, these eigenmoves can be rendered in 
animations but do not correspond to any actual movements. 
We are currently investigating such a procedure to generate 
new movements. 
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Figure 5. Top: correlation between a long
sequence with a training set composed of right
jumps Bottom: correlation between a long
sequence with a training set composed of left
jumps. 



 

 

4. MAPPING MUSIC TO GESTURE 
We developed a program to map aspects of motion to sound in 
the Max/MSP environment [13]. The program reads the motion 
capture data and transforms it into either MIDI parameters or 
parameters controlling signal processing. A video rendering of 
the animation can be played simultaneously to the music 
generation. The mapping gesture-sound can be modified in 
real-time.  

Various mappings, from triggering discrete musical events to 
continuous control of sonic parameters, are currently the 
subject of experiments: 

1) Triggering. Sample sounds can be triggered based on events 
defined by the procedures described in sections 3.1 and 3.2. 

2) Sound synthesis and signal processing. In this case, 
continuous parameters are used to control for example the 
sound's timbre. These parameters can be the position, velocity 
or acceleration of any tracker, or the global parameters derived 
from the gesture analysis we described previously.  

 

5. CONCLUSIONS AND FUTURE 
WORK 
We have presented two methods of gesture analysis. The first 
one corresponds to segmenting a movement in several parts, 
while the second corresponds to gesture recognition. 
The experiments conducted with the first method of course 
deal with only a single marker in the motion capture.  Although 
we feel that using all the points would be both overly complex 
and redundant, increasing the number of points analyzed could 
be very fruitful.  Points on different parts of the body could be 
used to control separate processes, while a more complex 
translation to a musical process could be based segments from 
multiple points on the same body part.  In the future we will 
also look at integrating the two methods of analysis. 
A crucial step in increasing the utility of these methods of 
course is to implement them with a real time motion capture 
system.  The expressiveness that can be found in this system 
can only be truly exploited if there is simultaneous feedback 
between the dancer and the music.  In this way the dancer is 
not just a performer of dance and data source for the 
accompanying music, but becomes a performer and interpreter 
of both the dance and the music.  We hope to achieve this in 
the new future by upgrading the current motion capture system 
used, and/or implementing the analysis on other systems.  
Video processing or machine vision systems are just two 
examples. 
 

6. ACKNOWLEDGMENTS 
We acknowledge the Claire Trevor School for the Art, and we 
particularly thank Prof. Lisa Naugle, director of the Motion 
Capture facilities. 

We also thank Isabel Valverde, Alexia BonvinBevilacqua and 
Christopher Dobrian. 

7. REFERENCES 
[1] F. Bevilacqua, L. Naugle and I. Valverde, “Virtual dance 

and music environment using motion capture” Proc. of the 
IEEE - Multimedia Technology And Applications 
Conference, Irvine CA, 2001 

[2] Part of this work will be used in an installation at the 
Museum of Photography-University of California 
Riverside, by Lisa Naugle, John Crawford, Frederic 
Bevilacqua, Isabel Valverde and Alexia 
BonvinBevilacqua.  

[3] "Trends in Gestural Control of Music", edited by: Marcelo 
Wanderley and Marc Battier, Ircam - Centre Pompidou - 
2000. 

[4] J.A.Paradiso, "The Brain Opera Technology: New 
Instruments and Gestural Sensors for Musical Interaction 
and Performance", Journal of New Music Research 
Vol.28 No.2, pp.30-149, 1999. 

[5] A. Mulder, S. Fels and K. Mase . “Design of Virtual 3D 
Instruments for Musical Interaction”, Proceedings 
Graphics Interface '99, S. Mackenzie and J. Stewart Eds., 
76-83, 1999. 

[6] J. Paradiso, "Electronic Music Interfaces: New Ways to 
Play," IEEE Spectrum, 34(12), 18-30, 1997 

[7] A. Camurri, S. Hashimoto, M. Ricchetti, A. Ricci, K. 
Suzuki, R. Trocca, and G. Volpe "EyesWeb: Toward 
Gesture and Affect Recognition in Interactive Dance and 
Music Systems", Computer Music Journal, Vol.24 No.1, 
pp. 57-69, 2000, or see http://musart.dist.unige.it/ 

[8] F.Paracino, G.Davenport, and A.Pentland "Media in 
performance: Interactive spaces for dance, theater, circus, 
and museum exhibits", IBM Systems Journal, Vol 39, No 
3&4, 2000.  

[9] Interactive Systems and Instrument, Design in Music 
Working Group, 
www.notam.uio.no/icma/interactivesystems/wg.html  

[10] Vicon, www.vicon.com. 
[11] Laplacian Edge Detection, Roger Claypoole, Jim Lewis, 

Srikrishna Bhashyam, and Kevin Kelly,               
www-ece.rice.edu/~kkelly/elec539/laplacian.html 

[12] M. Turk, “A random walk through eigenspace,” IEICE 
Trans Information and Systems, Vol.E84-D, No.12, 
pp.1586-1595, 2001.  

[13] Max/MSP, www.cycling74.com. 
 

.

 


	INTRODUCTION
	3D OPTICAL MOTION CAPTURE
	MOTION ANALYSIS
	Method 1: mapping motion capture data to gestural segments
	Method 2. Pattern recognition and Principal component analysis (PCA).

	MAPPING MUSIC TO GESTURE
	CONCLUSIONS AND FUTURE WORK
	ACKNOWLEDGMENTS
	REFERENCES

