
3D Motion Reconstruction for Real-World Camera Motion

Yingying Zhu1,2, Mark Cox2 and Simon Lucey2

1University of Queensland, Australia
2Commonwealth Scientific and Industrial Research Organisation (CSIRO), Australia

zy.2@itee.uq.edu.au, Mark.Cox@csiro.au, Simon.Lucey@csiro.au,

Abstract

This paper addresses the problem of 3D motion recon-

struction from a series of 2D projections under low recon-

structibility. Reconstructibility defines the accuracy of a 3D

reconstruction from 2D projections given a particular tra-

jectory basis, 3D point trajectory, and 3D camera center

trajectory. Reconstructibility accuracy is inherently related

to the correlation between point and camera trajectories.

Poor correlation leads to good reconstruction, high corre-

lation leads to poor reconstruction. Unfortunately, in most

real-world situations involving non-rigid objects (e.g. bod-

ies), camera and point motions are highly correlated (i.e.,

slow and smooth) resulting in poor reconstructibility. In

this paper, we propose a novel approach for 3D motion re-

construction of non-rigid body motion in the presence of

real-world camera motion. Specifically we: (i) propose the

inclusion of a small number of keyframes in the video se-

quence from which 3D coordinates are inferred/estimated

to circumvent ambiguities between point and camera mo-

tion, and (ii) employ a L1 penalty term to enforce a spar-

sity constraint on the trajectory basis coefficients so as to

ensure our reconstructions are consistent with the natural

compressibility of human motion. We demonstrate impres-

sive 3D motion reconstruction for 2D projection sequences

with hitherto low reconstructibility.

1. Introduction

Recent work in [2, 6] has demonstrated the benefit of

employing a trajectory basis when solving certain non-rigid

structure from motion problems. Non-rigid structure from

motion (NRSFM) refers to the task of recovering the time

varying 3D coordinates of points on a deforming object

from their 2D locations in an image sequence. Trajectory

basis approaches to NRSFM are especially useful for non-

rigid objects whose 3D coordinates motion are compress-

ible in the trajectory domain, as it places natural constraints

on the object’s motion (e.g., periodic, slow and smooth,

etc.). The term compressible is borrowed from the com-

(a) Random Camera

(b) Real-World Camera

Figure 1. 2D projections for different camera trajectories. (a) 2D

projections for a random camera, (b) 2D projections for a real-

world camera that is moving slowly/smoothly. It has been well

noted in literature [6] that for trajectory basis NRSFM methods

(a) will have good 3D motion reconstruction whereas (b) will have

poor motion reconstruction. In this paper we propose an approach

that incorporates randomly sampled 3D keyframes within a trajec-

tory basis framework in order to gain good 3D motion reconstruc-

tion for (b).

pressed sensing community [5] to denote a signal that is

well approximated by a sparse vector.

The Problem: Park et al. [6] recently characterized theoret-

ically the accuracy of a 3D reconstruction from 2D projec-

tions given a particular trajectory basis, 3D point trajectory,

and 3D camera center trajectory. Reconstructibility accu-

racy is inherently related to the correlation between point

and camera trajectories. Poor correlation leads to good re-

construction, high correlation leads to poor reconstruction.

Impressive empirical results have been depicted in [2, 6] for

NRSFM trajectory basis problems where: (i) camera mo-

tion is continuous but much faster than the object’s, and (ii)

the camera motion is random (see top row Figure 1). Un-

fortunately, in most real-world situations (see bottom row
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Figure 1) involving non-rigid objects (e.g. bodies), cam-

era and point motions are highly correlated (e.g., slow and

smooth) resulting in poor reconstructibility in many practi-

cal scenarios.

Contributions: Recent work [11, 13] has demonstrated

how static NRSFM problems for the human body can be

overcome through the application of rigid-body constraints

on the torso & hips along with assumptions about joint

length symmetry. Although giving impressive results on

real-world images the approach is extremely labour inten-

sive as: (i) it requires human labeling to obtain 2D joint

locations, and (ii) further human labeling to resolve depth

ambiguities. This makes the approach of [11, 13] largely

unsuitable for NRSFM problems involving 2D video se-

quences of points containing thousands of image frames.

In this paper we propose a novel approach for overcom-

ing the current limitations to trajectory basis NRSFM meth-

ods [2, 6] when applied to the human body given that we

have an extremely small number of 3D keyframes gener-

ated through [11, 13]. An elegant aspect of our proposed

approach is that it synergetically combines the shortcom-

ings of [2, 6] and [11, 13] resulting in an algorithm that is

able to obtain 3D motion reconstruction of 2D image se-

quences with an extremely small number of hand labeled

keyframes. The main contributions of this paper are,

• Investigate the reconstructibility of 3D human mo-

tion from a small number of randomly chosen 3D

keyframes. Based on the compressibility of human

motion in the discrete cosine transform (DCT) trajec-

tory basis we argue for, and empirically justify the em-

ployment of an L1 penalty term. (Section 3)

• We then propose a joint objective function that com-

bines full sequence 2D projections and randomly cho-

sen 3D keyframes into a single framework using a tra-

jectory basis. (Section 3)

• We demonstrate empirically how the inclusion of 3D

keyframes with an L1 penalty term on full sequence

2D projections gives a dramatic improvement in recon-

structibility over Park et. al’s [6] method using real-

world camera motion. (Section 4)

Related Work: Factorization approaches, first proposed for

recovering rigid structure by Tomasi and Kanade in [8],

were extended to handle non-rigidity in the seminal paper

by Bregler et al. [4]. In this notable work the authors real-

ized that the only way to make the non-rigid structure from

motion problem tractable is to impose some constraint on

the object being analyzed (e.g. assuming we are looking

at a body). Bregler et al. imposed this constraint as a lin-

ear shape basis. A number of approaches that develop the

use of shape basis have subsequently been proposed, in-

cluding [9, 14, 10]. A fundamental criticism, however, of

all these approaches is the specificity, or more critically the

poor generalization properties, of the shape basis. For ex-

ample, the shape basis of a “person walking” will not be

the same as that of a “person bending down to pick some-

thing up”. Akhter et al. [2] recently proposed an approach to

non-rigid structure from motion that is shape agnostic, and

instead places a constraint on how individual points are al-

lowed to move through space over time. The authors frame

this work in a manner similar to Bregler et al. through the

introduction of a trajectory basis. This seminal work forms

the basis of our proposed approach.

Recently, Wei and Chai [12] proposed an approach for

obtaining 3D motion from 2D video sequences based on

the employment of a small number of discontinuous 3D

keyframes. Although similar in spirit, the method presented

in this paper differs substantially to Wei and Chai’s in that

we do not rely on a complex, non-linear, computationally

costly physics based model for solving the 3D motion. In-

stead, our method relies on a trajectory basis for solving this

missing motion information through the optimization of an

elegant convex objective function.

2. Trajectory Basis NRSFM

We will quickly review trajectory basis NRSFM meth-

ods [2, 6]. Let a point at frame f in 3D Xf = [xf , yf , zf ]T

be imaged as xf = PfXf where Pf ∈ R2×3 is a weak-

perspective camera matrix. By taking into account all F

time instants the 3D point trajectory X can be formulated

as,
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, or x = PX (1)

where x ∈ R2F , X ∈ R3F and P ∈ R2F×3F . This 3D

point trajectory can be approximated as,

X ≈

3K
�

j=1

Θjβj , or X ≈ Θβ (2)

where Θj ∈ R3F is the jth trajectory basis vector, Θ ∈
R3F×3K is the trajectory basis matrix and β ∈ R3K is

the trajectory coefficient vector. This trajectory basis at-

tempts to model inherent redundancies/constraints on how

real-world non-rigid objects move (i.e., motion in 3D needs

to be smooth and continuous). The DCT basis has been

reported [2, 6] to fulfil this role well for many types of non-

rigid motion (e.g., human motion).

A key concept employed in all variations of trajectory

basis NRSFM [2, 6] is that it is possible to solve,

arg min
β

||x − PΘβ||2 (3)
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if 3K < 2F . This typically takes the form of choosing the

first K of F smooth DCT basis vectors for the x, y and z

components. For the purposes of this paper we shall assume

we know the concatenation of camera matrices P a priori.

More details on the estimation of P shall be provided in

Section 4. Given a solution to β it is then possible to obtain

an approximation to the full 3D motion matrix X through

Equation 2.

Reconstructibility: Park et al. [6] pointed out recently a

problem in Equation 3. Specifically, an adversary could

choose a concatenated matrix P of camera/projection ma-

trices that would give poor reconstructions of β. Park et al.

characterized1 this situation theoretically by characterizing

camera motion as C = ΘCβC + Θ
⊥

Cβ⊥

C and point motion

as X = ΘXβX + Θ
⊥

Xβ⊥

X where ⊥ refers to the null space

of Θ and β for the camera and point. Reconstructibility can

be defined by the measure:

η =
||Θ⊥

Cβ⊥

C ||
2

||Θ⊥

Xβ⊥

X ||2
(4)

as η approaches infinity the solution to Equation 3 will tend

towards its true solution. Unfortunately, in practice for non-

rigid objects moving smoothly/slowly in 3D space this re-

quires the camera to be moving extremely quickly around

the object or randomly. This requirement drastically min-

imizes the usefulness of trajecory basis NSRFM in real-

world problems.

3. Adding 3D Body Keyframes

Recently, Wei and Chai [13] proposed an approach for

solving non-rigid structure from motion problem specifi-

cally for bodies. This work differs substantially to the work

reviewed in Section 2 as it requires no temporal continuity

of the 2D projections or constraints on camera motion. In-

stead, their approach takes advantage of assumed, and em-

pirically validated, rigid constraints in the human body’s

torso and hip. Their approach is notable in comparison to

previous literature [1, 7, 3, 4] in the area as it: (i) makes no

assumptions about bone lengths or camera scale, (ii) is not

limited/constrained to modeling shapes previously seen in a

train set, and (iii) can handle missing body points. Subse-

quent work by Valmadre and Lucey [11] demonstrated how

this initial approach could be dramatically sped up using a

deterministic method, and placed new bounds on how many

frames/images are required. One of the major drawbacks

to the approach, however, is the requirement for interac-

tion from a human user to resolve depth ambiguities. The

approach is useful for obtaining 3D structure from a small

1We should note that the work of Park et al. [6] concerning recon-

structibility was derived for the case of perspective geometry. In our work

we shall be only assuming weak perspective, where the measure of recon-

structibility still obviously holds.

number of image frames, but is largely unsuitable for ob-

taining 3D motion from a image sequence containing thou-

sands of frames.

Compressibility of 3D Human Motion: An interesting re-

search question now arises as a result of [11, 13] since we

are able to obtain 3D structure from a video sequence, but

only for a small discontinuous subset of all frames in the

sequence. An example of this situation can be seen in Fig-

ure 2(a) for one dimension from a single point (left radius)

of a human motion sequence taken from the CMU Mocap

database. The blue line in Figure 2(a) denotes the full mo-

tion trajectory, and the red dots denote an example of the

random subset of keyframes available to us. We denote the

randomly chosen 3D keyframes as X
� ∈ R3M where M �

F is the number of randomly chosen keyframes and F is

the total number in the full 3D motion trajectory X.

In this section we argue that through the application of

a trajectory basis along with access to a random subset of

3D keyframes X
� a good reconstruction of the full 3D tra-

jectory X can be obtained. Our argument shall center upon

the solution to the following objective function:

arg min
β

� X
� − Θ

�β �2 +λ � β �p
p (5)

where Θ
� ∈ R3M×3K is a submatrix of the full trajectory

basis Θ relating to the M random keyframes. The sec-

ond term denotes a necessary p-norm regularization term to

overcome problems associated with the first term of Equa-

tion 5 being under-determined. The λ term controls the

influence of the regularization term, and is tuned along

with K through cross-validation. Once the trajectory co-

efficient vector β is estimated from Equation 5 it becomes

possible to obtain an estimate X based through Equation 2.

Unfortunately, as one can see in Figure 2(b) the recon-

struction of X when using a traditional p = 2 regularization

term (i.e. ridge regression) gives poor reconstruction. This

poor reconstruction for p = 2 stems from a well under-

stood result in the field of compressed sensing [5]. Specif-

ically, that if the coefficient vector β is compressible when

estimated from the full trajectory X, then this compress-

ible constraint needs to be enforced when estimating β from

random samples2. A common approach for enforcing spar-

sity/compressibility is through the employment of a p = 1
regularization term (i.e. lasso regression). An example of

the p = 1 reconstruction can be seen in Figure 2(c) giv-

ing an almost perfect reconstruction. A central aspect of

the objective function in Equation 5 is that the motion of

the camera, unlike trajectory basis NSRFM methods, has

no bearing on our ability to estimate β.

2It should be noted that the sampling strategy employed in compressed

sensing problems is important with respect to the accuracy of reconstruc-

tion. All the work in this paper assumes that keyframes are sampled ran-

domly. Additional, work is required on what the optimal strategy for sam-

pling human motion is with respect to reconstruction.
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Empirically, we have found in our experiments on hu-

man motion that we need at least 2 − 3 key-frames per sec-

ond (on average assuming random sampling) to obtain use-

ful 3D trajectory estimation. The next section of this paper

shall investigate how 2D point image projections can reduce

the number of required key-frames further. Specific details

on the number of random samples required for good recon-

struction are discussed in the experimental portion of this

paper (Section 4).
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Figure 2. Trajectory of single dimension of left radius of exam-

ple human motion sequence: (a) the original trajectory (red points

are randomly selected key frames), (b) the trajectory reconstructed

with a p = 2 regularization term, (c) the trajectory reconstructed

with a p = 1 regularization term.

Reconstructibility & 3D Keyframes: A drawback to the

objective function described in Equation 5 is that it does not

take into account additional information that could be pro-

vided from other tools in computer vision (e.g., 2D point

tracking). Conversely, a drawback to the trajectory basis

NRSFM methods, based solely on 2D point projections (de-

scribed in Section 2) is low reconstructibility. Specifically,

when camera motion is correlated with point motion (e.g.,

if cameras and points have similarly slow/smooth trajecto-

ries) reconstructibility is poor. In this section we propose an

objective function that overcomes the shortcomings of both

these methods:

arg min
β

(1−γ) � x−PΘβ �2 +γ � X
�−Θ

�β �2 +λ � β �p

(6)

where γ is a weighting factor that controls the influence of

the 3D keyframes in relation to the 2D image projections.

Inspecting Equation 6 one should note that when γ = 1
the problem becomes the compressed sensing problem de-

scribed earlier in Equation 5. When γ = 0 the problem be-

comes the trajectory basis NRSFM problem described ear-

lier in Equation 3 (with the exception of the regularization

term).

Estimating Camera Matrices from 2D Points: In the

original work of Akhter et al. [2] a method for solving

for P and β simultaneously was proposed. In our ex-

periments, however, we found much better empirical per-

formance could be obtained if P was calculated from a

rigid substructure of the body. As suggested by Wei and

Chai [13] we employed the human torso (due to its ap-

proximate rigidity) to estimate the concatenation of camera

matrices P from the 2D image projections through canoni-

cal structure from motion[8]. Due to the inherent ambigu-

ities associated with canonical structure from motion a P

was employed that was consistent with known random key

frames X
� so as to ensure consistency in the objective func-

tion described in Equation 6.

4. Experiments

CMU Mocap:

In this section, we show results of our proposed method

on a subset of the CMU motion capture (Mocap) dataset.

We used the data in Akhter et al.’s paper [2] such as ”Yoga”

and ”Drinking” and we added more clips such as ”Run-

ning” from CMU Mocap. In Figure 3 we present the root

mean square (RMS) error of 3D motion reconstruction for

(a) random, and (b) smooth slow moving camera trajecto-

ries (see Figure 1 for a visualization of these two camera

trajectories). Camera motions were added artificially for

(a) and (b) so as to allow direct comparisons between the

same motion sequences. Results are presented as a func-

tion of average 3D key frames per second (kfps) employed

assuming a random sampling strategy. Complete 2D im-

age projection sequences are assumed. Reconstruction re-

sults were obtained using Equation 6 for: (i) 2D only points

(γ = 1, p = 2), (ii) 3D only points (γ = 0, p = 2), (iii) 3D

and 2D points (γ tuned, p = 2), (iv) 3D with L1 constraint

(γ = 0, p = 1), and (v) 3D and 2D points with L1 constraint

(γ tuned, p = 1). The two parameters in Eq. 6 were chosen

through a cross-validation procedure using a validation set

stemming from CMU MoCap. We found stable ranges that

(λ 0.05-0.15, γ 0.2-0.3) gave best performance. Further, we

found that performance gracefully degraded from these op-

timal values indicating that good performance could still be

obtained even when optimal values were not chosen.

Good performance is obtained in Figure 3(a) using 2D

only information, whereas for real-world camera motion in

Figure 3(b) performance is quite poor. This result is con-

sistent with the problem of reconstructibility in trajectory

basis NRSFM outlined in Section 2. A visualization of

this poor performance, for real-world camera motion, can

be seen in Figure 4(b). Another interesting result shown
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(a)

(t)

(c)

(d)

(e)

(f)
Figure 4. Visualizations of 3D motion reconstructions of an example sequence from CMU Mocap Subject 2-3 shows running:(a) the

original motion , (b) 2D only, (c) 2D+3D+ L1 (0.5 kfps),(d) 2D+3D+ L1 (1.0 kfps),(e) 2D+3D+ L1 (2.0 kfps), (f) 2D+3D+ L1 (3.0 kfps).

in Figure 3 is that all the methods (except 2D only) con-

verge after 3kfps. That’s because the DCT basis itself acts

as a subspace regularizer. This subspace regularizer starts

becoming dominant (over the other regularizers e.g. L1)

at a critical density of random 3D keypoints (3kfps ,or a

keyframe every 0.3 seconds). However it is more important

how these results differ before this critical point. Interest-

ingly, however, almost identical performance to the 2D only

result for a random camera in Figure 3(a) is obtained in fig-

ure 3(b) when one employs 3D keyframes with 2D frames

and the L1 constraint at a very modest 0.5 kfps (i.e., hand

labeling an image frame on average every 2 seconds). A vi-

sualization of this reconstruction can be seen in Figure 4(c).

As suggested by Figure 3(b), results for 3D keyframes with

2D frames and the L1 constraint keep improving as the kfps

is increased. Visualizations can be seen in Figure 4 for (d)

1.0 kfps, (e) 2.0 kfps, and (f) 3.0 kfps.

As expected, there is no difference between (a) random

and (b) real-world camera trajectories in Figure 3 for the

3D only approaches (with and without the L1 constraint).

The L1 constraint does improve performance in the 3D only

scenario, but only for specific kfps. There is, however, a

substantial advantage in employing this same L1 constraint

when using 3D keyframes and 2D frames as depicted in

3(b). This result reinforces our argument in Section 3 for

a joint objective function that combines 3D keyframes, 2D

frames and an L1 constraint to encourage compressibility.

Real-World Results:

In Figure 5(a) we see consecutive image frames of a real-

world sequence from the movie Run Lola Run (The images

are reversed in time so that motions are consecutive from

right to left). For this experiment we had access to 2D points

for almost all frames in the image sequence (labeled in red).

For the purposes of demonstration the 2D points were hand

labeled. Future work shall explore automated approaches.

We did not explore the role of noise on the 2D point tracks.

We applied [11] to generate 3D keyframes from the random

2D keyframes in (a) through a human labeler (in order to

resolve depth ambiguities) Figure 5(b) show a result of con-

secutive reconstructed 3D frames by our method for each

frame in (a). In Figure 5(c) we generate 3D keyframes using

the trajectory basis NRSFM method of [6]. This reconstruc-

tion was obtained using all 2D points in the sequence, with-

out the need for a human labeler. One can see for this real-

world example the trajectory basis NRSFM method in (c)

obtains quite a poor reconstruction, whereas our approach

in (b) obtains a realistic solution. The poor reconstruction

in (c) is consistent with the problem of reconstructibility

discussed in earlier sections, due to the slow movement of
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(a)

(b)

(c)
Figure 5. 3D frame reconstruction from the running sequence in the movie Run Lola Run: (a) we see consecutive frames with 2D joint

locations superimposed in red, (b) depicts 3D reconstruction using our method, and (c) depicts 3D reconstruction using the trajectory basis

NRSFM method of [6]. Due to reconstructibility issues concerning the slow moving camera in (a), the performance in (c) is quite poor

whereas the result in (b) is invariant to camera motion.

(a) (b)
Figure 6. 3D frame reconstruction with occlusions from the running sequence in the movie Run Lola Run: (a) we see consecutive image

frames with 2D joint locations superimposed in red and occluded image frame without 2D joint locations and 3D frame reconstruction

using our method, (b) another consecutive image frames with 2D joint locations superimposed in red and occluded image frame without

2D joint locations and 3D frame reconstruction using our method.

the camera in the image sequence.

In Figure 6 (a) and (b), we see two sequence of con-

secutive image frames including occlusions and the recon-

structed results by our proposed methods. We could not la-

bel the 2D points correctly because of the occlusions in the

two middle images. And this kind of occlusion always exist

in real world video. However, Figure 6 (a) and (b) show that

our method can reconstruct the 3D pose even when some 2D

points are lost due to occlusion. That’s because L1 penalty

can reconstruct compressible signal from incomplete sam-

ples [5].

In Figure 7 one can see the results for obtaining a re-

construction of the full 3D motion of the image sequence

from Run Lola Run (We used 5 seconds of data from the

movie ”Run Lola Run”. Due to limited space we depicted

only a subset of this sequence in Figure 7). In (a) we see

the reconstruction results for our proposed joint objective

function in Equation 6, which employs 3D keyframes, 2D
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(a)

(b)
Figure 7. Full 3D motion reconstruction for: (a) our proposed approach, and (b) the trajectory basis NRSFM approach of [6] for the running

sequence in the movie Run Lola Run.
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Figure 3. Root mean square (RMS) motion reconstruction error

for: (a) random, and (b) slow/smooth camera motion.

frames, and a L1 penalty. As a comparison we also depict

in (b) the 3D motion reconstruction using trajectory basis

NRSFM. As expected our proposed approach in (a) dramat-

ically outperforms the trajectory basis NRSFM approach in

(b) due to its poor reconstructibility.

5. Discussion and Conclusions

In this paper we have proposed a novel approach for re-

constructing 3D motion information purely from 2D image

point projections. Specifically, we propose that trajectory

basis NRSFM approaches to this problem have inherent

problems with respect to reconstructibility. We note that

good performance for 3D motion trajectories can be ob-

tained from a small discontinuous subset of 3D keyframes

by employing redundancies associated with human motion

associated with its compressibility in a trajectory basis (i.e.,

DCT basis). An important component of this result is that

it is, unlike trajectory basis NRSFM, invariant to camera

trajectory. Based on this insight we propose a novel ap-

proach for combining 3D randomly sampled keyframes, 2D

frames, and an L1 penalty term to encourage compressibil-

ity. Based on the approach of [11, 13] for obtaining random

3D keyframes through human labeling, we show impres-

sive full 3D motion reconstruction on a real-world image

sequence where traditional trajectory based NRSFM fails.
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