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Abstract: Multiple simultaneous sound source localization (SSL) is one of the most important ap-
plications in the speech signal processing. The one-step algorithms with the advantage of low
computational complexity (and low accuracy), and the two-step methods with high accuracy (and
high computational complexity) are proposed for multiple SSL. In this article, a combination of
one-step-based method based on the generalized eigenvalue decomposition (GEVD), and a two-
step-based method based on the adaptive generalized cross-correlation (GCC) by using the phase
transform/maximum likelihood (PHAT/ML) filters along with a novel T-shaped circular distributed
microphone array (TCDMA) is proposed for 3D multiple simultaneous SSL. In addition, the low
computational complexity advantage of the GCC algorithm is considered in combination with the
high accuracy of the GEVD method by using the distributed microphone array to eliminate spatial
aliasing and thus obtain more appropriate information. The proposed T-shaped circular distributed
microphone array-based adaptive GEVD and GCC-PHAT/ML algorithms (TCDMA-AGGPM) is
compared with hierarchical grid refinement (HiGRID), temporal extension of multiple response
model of sparse Bayesian learning with spherical harmonic (SH) extension (SH-TMSBL), sound
field morphological component analysis (SF-MCA), and time-frequency mixture weight Bayesian
nonparametric acoustical holography beamforming (TF-MW-BNP-AHB) methods based on the mean
absolute estimation error (MAEE) criteria in noisy and reverberant environments on simulated and
real data. The superiority of the proposed method is presented by showing the high accuracy and
low computational complexity for 3D multiple simultaneous SSL.

Keywords: sound source localization; microphone arrays; time delay estimation; eigenvalue decom-
position; generalized cross-correlation; direction of arrival estimation

1. Introduction

In recent years, the analysis of smart meeting room activities has been an important
area in the acoustic signal processing, where the sound source localization (SSL) is one of
these applications. In some scenarios such as smart meeting rooms, the speech signal for
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one speaker is overlapped with other speakers, which raised the multiple sound source
localization challenge based on the overlapped speech signal. Therefore, the researchers
proposed some algorithms for multiple simultaneous SSL in noisy and reverberant envi-
ronments for indoor scenarios [1]. The SSL algorithms usually use the microphone arrays
for improving the locations’ estimations accuracy in acoustical environments. For example,
the generalized cross-correlation (GCC) algorithm estimates the speakers’ directions by
calculating the time difference of arrival (TDOA) between the microphone pairs [2]. The
steered response power (SRP) [3] and SRP-phase transform (SRP-PHAT) [4] methods esti-
mate the locations by evaluating a cost function based on the probability of the speakers’
presences on different three-dimensional points in the acoustical environment.

Currently, some methods have been proposed for simplifying the SSL systems based
on the single-speaker methods [5]. These algorithms are based on a hypothesis, where the
speech signals are separated in short-time Fourier transform (STFT) domain for multiple
speakers’ scenarios, where each time-frequency (TF) bin with high probability contains the
signal of a single speaker, which is named as windowed-disjoint orthogonality (W-DO)
property [6]. This hypothesis is faced with many challenges, where the recorded signals
by microphones contain the environmental reverberation. For solving this problem, some
of the recent research works [7,8] are independent of speech signal for using the W-DO
property. For example, Nadiri et al. in the first step proposed a correlation evaluation
for determining the single-source content and then, considering a repetitive process for
detecting the other sources in multi-speakers’ scenarios [9]. Similar to this method, the
relative harmonic coefficients algorithm was proposed as a pre-processing method in
recent years for detecting the single-speaker frames, which can be implemented for multi-
speakers’ conditions within an iterative process [10]. On the contrary, the traditional
subspace methods localize the speakers’ locations directly by using an overlapped speech
signals [11,12]. The multiple signal classification (MUSIC) algorithm as a subspace method
is popular due to the easy implementation and high efficiency [13]. In addition, some of
the methods use the ad-hoc microphone arrays based on their advantage in comparison
with other microphone arrays for SSL [14].

In recent decades, the array with high number of microphones (more than
30 microphones) for recording the speech signals are widely considered for SSL [15,16].
The high number of microphones prepare the possibility of using a set of orthogonal spatial
functions for decomposing the measured voice pressure in spherical harmonic domain
(SHC) [17]. The precision of the localization algorithms can affect the performance of other
speech processing applications. Therefore, the SSL algorithms should be designed in a way
for localizing the 3D positions of multiple simultaneous speakers in noisy and reverberant
environments by eliminating the spatial aliasing.

In the last two decades, much research has been performed on SSL applications. Niko-
laos et al. presented the perpendicular cross-spectra fusion (PCSF) method in 2017 as a new
algorithm for direction of arrival (DOA) estimation [18]. This algorithm contains the sub-
systems for DOA estimating, which prepare the candidate DOAs for each time-frequency
(TF) points by a parallel processing. Mert et al. presented an extension of SRP method in
2018 as steered response power density (SRPD) and single-adaptive search method, which
is called hierarchical grid refinement (HiGRID) for decreasing the source candidate points
in searching space [19]. Ning et al. in 2018 proposed a new framework for binaural source
localization, which combines the model-based information of source spectral features with
deep neural networks (DNN) [20]. Huawei and Wei proposed a robust sparse method in
2019 for multiple SSL in indoor scenarios with 3D spherical microphone arrays, which
trains the temporal extension of multiple response model of sparse Bayesian learning with
spherical harmonic (SH) extension (SH-TMSBL) [21]. Bing et al. presented a time-frequency
spatial classification (TF-Wise) method in 2019 for localization and estimating the number
of speakers by using of microphone arrays in undesirable conditions [22]. Luka et al.
proposed a passive 3D SSL method in 2020, which localizes the speakers by geometric
configuration of 3D microphone arrays [23]. Ning et al. in 2021 presented a sound field
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morphological component analysis (SF-MCA) method in combination with an enhanced
alternative direction method of multipliers (ADMM) for accurate SSL [24]. The circular
microphone arrays are widely considered in multi-speaker applications due to the flexibility
in speech signal analysis, but the accuracy of the SSL algorithms is strongly dependent
to the physical properties of the microphones, the level of the noise-reverberation, and
the number of speakers. To address this problem, Kunkun et al. in 2021 presented an
indoor multiple SSL algorithm based on an acoustical holography beamforming (AHB) and
Bayesian nonparametric (BNP) methods [25]. They proposed a BNP algorithm based on
infinite Gaussian mixture model (IGMM) for estimating the DOAs of independent sources
without any pre-information of the number of speakers. To decrease the reverberation
effect, they proposed a robust TF bins selection based on mixture weight (MW) method
and implementing the algorithm on the selected frames. The MUSIC method is known
as a traditional algorithm for estimating the DOAs of multiple speakers due to the easy
implementation, but its accuracy decreases in noisy environments. Yonggang et al. in 2021
proposed a novel MUSIC algorithm based on the sound pressure measurement by using
the high number of microphones in noisy environments [26].

The aim of this research article is proposing a 3D multiple simultaneous SSL system
based on the novel T-shaped circular distributed microphone array (DMA) in combination
with generalized eigenvalue decomposition (GEVD) and adaptive GCC-PHAT/maximum
likelihood (ML) methods (TCDMA-AGGPM) for undesirable environments with low com-
plexity. The proposed SSL method should be able to localize the multiple simultaneous
speakers in noisy and reverberant scenarios with high accuracy and low computational
complexity. A novel distributed arrangement is proposed for microphone arrays, where
a limited number of microphones are considered in each time frame for decreasing the
computational complexity. A circular microphone array (CMA) in the center of the room
is considered in combination with GCC algorithm for estimating the speakers’ directions
based on the robust proposed processing in front of the noise and reverberation. In addition,
the full-band recurrent neural networks (F-CRNN) algorithm [27] is selected for estimating
the number of speakers. Therefore, the GCC method is adaptively implemented in combina-
tion with PHAT filter for reverberant environments and ML filter for noisy conditions [28]
on the recorded microphone arrays’ signals for estimating the central speakers’ DOAs
(DOAC). Therefore, the two closest T-shaped microphone arrays on the walls are selected
for each speaker based on the estimated DOAC. One of the T-shaped microphone arrays
is considered in combination with GEVD algorithm for vertical DOA estimation and the
other T-shaped array for horizontal DOA estimation. The uncertainty area for central array,
vertical array, and horizontal array are estimated by calculating the standard deviation
(SD) of obtained DOAs for all three microphone arrays (central, horizontal, and vertical)
on different time frames. The intersection between these three areas creates an area in 3D
space, where the 3D speakers’ locations are estimated by calculating the closest point in this
area to all three DOAs. This process in repeated for all speakers to estimate the 3D speakers’
locations. The primary results of the proposed method were presented at the EUSIPCO
2021 conference [29], where it was implemented on simulated data and was compared with
some simple works. In this article, in addition to its complete mathematical expansion,
we considered adaptive GCC method by using the PHAT and ML filters. In addition, the
proposed method is evaluated on real data for different range of signal-to-noise ratio (SNR)
and reverberation time (RT60). Also, the proposed TCDMA-AGGPM algorithm is compared
with HiGRID [19], SH-TMSBL [21], SF-MCA [24], and TF-MW-BNP-AHB [25] methods,
where the presented algorithm not only localizes the speakers more accurately, but also
decreases the computational complexity in comparison with previous works on real and
simulated data. The strategy for selecting these methods was based on the accuracy and
computational complexity for multiple SSL, which are two important parameters in sound
source localization methods.

Section 2 includes the microphone signal models and the proposed T-shaped circular
distributed microphone array. Section 3 shows the proposed 3D multiple simultaneous
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SSL algorithm based on the combination of GCC-PHAT/ML method with central circular
microphone array and GEVD algorithm with T-shaped microphone arrays. In Section 4,
the results of the evaluations for the proposed TCDMA-AGGPM method are presented in
comparison with HiGRID, SH-TMSBL, SF-MCA, and TF-MW-BNP-AHB algorithms on
real and simulated data. Section 5 includes some conclusions of the presented algorithm
for multiple SSL.

2. Distributed Microphone Array

The microphone arrays are frequently considered as an appropriate tool in the speech
signal processing. Increasing the number of microphones in SSL algorithms covers a wider
range of acoustical environments, where the localization methods estimate the speakers’
locations with equal accuracy for all speakers. In this section, the microphone signal
models are presented for multiple simultaneous SSL applications. In addition, the proposed
distributed microphone array is proposed based on the circular and T-shaped arrays.

2.1. Microphone Signal Model in SSL Applications

Microphone signal modelling is an important processing in the implementation of
SSL algorithms on simulated data. The aim of this modeling is preparing the simulated
data as much as possible similar to real recorded speech. Noise and reverberation are
the undesirable environmental factors, where they effect the microphone signals and the
accuracy of the speech processing algorithms. In acoustic applications, two microphone
signal models are considered for SSL methods: 1-ideal model, and 2-real model. In an ideal
model, the received signal by microphone is a delayed and weakened version of the speech
source signal, which is expressed as:

xI
m(t) =

Q

∑
q=1

xm,q(t) =
Q

∑
q=1

1
dm,q

sq
(
t− τm,q

)
+ vm(t) {∀m|m = 1, . . . , M}, (1)

where in Equation (1), xI
m(t) is the ideal received signal in the m-th microphone, sq(t) is the

transmitted sound signal by q-th sound source, τm,q is the time delay between q-th sound
source and m-th microphone, dm,q is the distance between q-th sound source and m-th
microphone, vm(t) is the additive Gaussian noise in the m-th microphone, M is the number
of microphones, and Q is the number of sound sources. Figure 1 shows the near-field model
for the speech signal propagation from sound sources to the microphones.

Sensors 2022, 21, x FOR PEER REVIEW 4 of 23 
 

 

computational complexity for multiple SSL, which are two important parameters in sound 
source localization methods. 

Section 2 includes the microphone signal models and the proposed T-shaped circular 
distributed microphone array. Section 3 shows the proposed 3D multiple simultaneous 
SSL algorithm based on the combination of GCC-PHAT/ML method with central circular 
microphone array and GEVD algorithm with T-shaped microphone arrays. In Section 4, 
the results of the evaluations for the proposed TCDMA-AGGPM method are presented in 
comparison with HiGRID, SH-TMSBL, SF-MCA, and TF-MW-BNP-AHB algorithms on 
real and simulated data. Section 5 includes some conclusions of the presented algorithm 
for multiple SSL. 

2. Distributed Microphone Array 
The microphone arrays are frequently considered as an appropriate tool in the speech 

signal processing. Increasing the number of microphones in SSL algorithms covers a 
wider range of acoustical environments, where the localization methods estimate the 
speakers’ locations with equal accuracy for all speakers. In this section, the microphone 
signal models are presented for multiple simultaneous SSL applications. In addition, the 
proposed distributed microphone array is proposed based on the circular and T-shaped 
arrays. 

2.1. Microphone Signal Model in SSL Applications 
Microphone signal modelling is an important processing in the implementation of 

SSL algorithms on simulated data. The aim of this modeling is preparing the simulated 
data as much as possible similar to real recorded speech. Noise and reverberation are the 
undesirable environmental factors, where they effect the microphone signals and the 
accuracy of the speech processing algorithms. In acoustic applications, two microphone 
signal models are considered for SSL methods: 1-ideal model, and 2-real model. In an ideal 
model, the received signal by microphone is a delayed and weakened version of the 
speech source signal, which is expressed as: 

( ) ( ) ( ) ( ) { }
1 1

1    1,..., ,
Q Q

I
m m q q m q m

m qq q

x t x t s t v t m m M
d

τ
= =

= = − + ∀ = , ,
,

 (1)

where in Equation (1), ( )I
mx t  is the ideal received signal in the m-th microphone, ( )qs t  

is the transmitted sound signal by q-th sound source, m qτ ,  is the time delay between q-th 

sound source and m-th microphone, m qd , is the distance between q-th sound source and 

m-th microphone, ( )mv t  is the additive Gaussian noise in the m-th microphone, M is the 
number of microphones, and Q is the number of sound sources. Figure 1 shows the near-
field model for the speech signal propagation from sound sources to the microphones. 

 
Figure 1. The relation between sound signals and microphones in near-field assumption for multiple 
speakers. 
Figure 1. The relation between sound signals and microphones in near-field assumption for
multiple speakers.

This model is called ideal because the reverberation, which is an important undesirable
factor, has not been considered in the formulations. The presented model for microphone
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signals should contain all undesirable factors to be similar to the real scenarios. Therefore,
the real model is selected for the simulations of microphone signals. By considering the
room impulse response (RIR), the real model is written as:

xR
m(t) =

Q

∑
q=1

xm,q(t) =
Q

∑
q=1

sq(t) ∗ γm,q

(→
d m,q, t

)
+ vm(t) {∀m|m = 1, . . . , M}, (2)

where in Equation (2), xR
m(t) is the real received signal in the m-th microphone, γm,q

(→
d m,q, t

)
is the RIR between q-th sound source and m-th microphone, and * denotes to convolution
operator. By considering this model, the simulated signals are similar to real recorded
speech signals in the environment, which is selected for the simulations in this article. In
this model, the sound sources are independent, and noise is assumed as an additive signal
in microphones’ places.

2.2. The Proposed T-Shaped Circular Distributed Microphone Array for SSL

A microphone array uses a set of microphones, where they are located in some specific
positions for recording an appropriate spatial information, which is called spatial diversity
in wireless telecommunications. This diversity is represented by using the sound channel
impulse response, which is the sound propagation path from sound source to microphone.
These sound channels are modeled by finite impulse response (FIR) filters, which are
not identical in general conditions. The microphone arrays prepare extra information,
where the main issue in the microphone signal processing is estimating the parameters
such as speakers’ locations or extracting some favorite signals in the speech enhancement
applications. The microphone array geometry plays an important role in formulating
the sound processing algorithms. For example, in SSL applications, the geometry of
the microphone array must be known for estimating the correct speakers’ locations. In
this article, a DMA is proposed as an appropriate solution for increasing the accuracy
and decreasing the computational complexity of SSL algorithms. This proposed DMA is
structured as a central uniform circular microphone array in combination with six T-shaped
microphone arrays on the walls. Figure 2 shows the structure of circular and T-shaped
microphone arrays. The circular microphone array in Figure 2a is selected in combination
with adaptive GCC-PHAT/ML algorithm for estimating the central speakers’ directions
(DOAC). Since the number of speakers are estimated by the F-CRNN [27] algorithm, the
direction of each speaker is estimated by the proposed algorithm based on this circular
array, which decreases the computational complexity. In the following, the T-shaped
microphone arrays are selected in the second step in combination with GEVD algorithm,
where the two closest T-shaped arrays to each speaker are selected as the input signals
for GEVD algorithm. Each T-shaped microphone array is independently selected by the
GEVD method, where the T-shaped microphone array in Figure 2b is considered for vertical
DOA estimation (DOAV), and the T-shaped microphone array in Figure 2c for horizontal
DOA estimation (DOAH). By considering an uncertainty area (β) around each estimated
direction, three areas, βC, βH , and βV , are constructed around the estimated directions
by these three microphone arrays. The intersection between these areas is considered
for SSL, which is explained in the next section. The DMA prepares the condition for
using the arrays in parallel and independently, where the central microphone array in
combination with adaptive GCC-PHAT/ML algorithm is used simultaneously with each
T-shaped microphone array in combination with GEVD algorithm, which decreases the
implementation’s computational complexity. In addition, Figure 2 shows the selected
microphone pairs for adaptive GCC-PHAT/ML and GEVD algorithm, which prepare the
appropriate information for SSL process.
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3. The Proposed SSL Algorithm in Combination with Distributed Microphone Array

The multiple simultaneous SSL algorithms are divided into one-step and two-step
methods. In two-step methods, the time delays are calculated between the microphone pairs
and then, the speakers’ directions are estimated based on the microphone array geometry.
This category of methods localizes the speakers with low computational complexity (faster)
and low accuracy. The one-step methods are designed based on the propagated energy
of each source. By considering a cost function, the candidate points in the environment
are selected for maximizing or minimizing this cost function. These methods localize the
speakers more accurately with high computational complexity (slower). In this article,
a novel 3D multiple simultaneous SSL algorithm is proposed based on the TCDMA in
combination with adaptive GCC-PHAT/ML and GEVD methods in noisy and reverberant
environments. The proposed DMA provides an appropriate information in all room
dimensions, which increases the accuracy and precision of SSL algorithm. In addition, the
combination of adaptive GCC-PHAT/ML algorithm due to low complexity and GEVD
method due to high accuracy is selected for proposing the novel SSL system. Figure 3
shows the block diagram of the proposed TCDMA-AGGPM algorithm, where each part of
the system is explained in the following.

The first step of the proposed system is CMA, which is located in the room center. This
CMA in combination with T-shaped arrays is called DMA, which are the main recording
sections for preparing the signals for SSL processing. The microphone pairs in CMA
provide the required signals for estimating the number of speakers in combination with
adaptive GCC-PHAT/ML algorithm. In this article, the number of speakers is estimated by
F-CRNN [27] algorithm based on the recorded signals by CMA. The GCC is an appropriate
function for estimating the TDOAs between microphone pairs. The estimated TDOAs by
this function are considered for estimating the speakers’ directions. As shown in Figure 1,
dm,q is the distance between q-th sound source and m-th microphone. The relation between
this distance and propagation delay for speech signal is formulated as:

τm,q =
dm,q

C
, (3)

where in Equation (3), τm,q is the time delay between q-th sound source and m-th micro-
phone, and C is the sound velocity. In addition, the related TDOAs for microphone pairs
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{ma, mb} and q-th sound source is called τab,q, which is simply expressed as the difference
between propagation delays as:

τab,q = τa,q − τb,q. (4)
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By replacing Equation (4) to Equation (3), the estimated TDOA for q-th sound source
is formulated as the distance between sound source and microphone as:

τab,q =
da,q − db,q

C
, (5)

where da,q and db,q are the distance between q-th source and microphones ma and mb,
respectively. Therefore, the source location is parametrized and estimated with some
algorithms, where they consider these TDOAs for location estimation. If the real model is
selected for simulations, the microphone signals ma and mb are expressed as [1]:

xa(t) =
Q

∑
q=1

xma,q(t) =
Q

∑
q=1

sq(t) ∗ γma,q

(→
d ma,q, t

)
+ vma(t), (6)

and,

xb(t) =
Q

∑
q=1

xmb,q(t) =
Q

∑
q=1

sq(t) ∗ γmb,q

(→
d mb,q, t

)
+ vmb(t). (7)

The GCC function is the CC of filtered version of microphone signals xa(t) and xb(t).
Based on the recorded signals by microphones ma and mb, and by considering the Fourier
transform for these filters as Ga(ω) and Ga(ω), the GCC function is expressed as:

Pab(τab) =
1

2π

+∞∫
−∞

(Ga(ω)Xa(ω))(Gb(ω)Xb(ω))′ejωτab dω. (8)
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where Xa(ω) is the Fourier transform of signal xa(t) and Xb(ω) is the complex conjugate of
Fourier transform of signal xb(t). By defining the weighting function ψab(ω) = Ga(ω)G′b(ω),
the GCC function is written as:

Pab(τab) =
1

2π

+∞∫
−∞

ψab(ω)Xa(ω)X′b(ω)ejωτab dω. (9)

In this article, the PHAT and ML weighting functions are considered in combination
with GCC algorithm for SSL application. It has been shown in [28] that the GCC function in
combination with PHAT filter increases the accuracy of estimated locations in reverberant
scenarios with SNR > 10 dB as:

PPHAT
ab (τab) =

1
2π

+∞∫
−∞

1
|Xa(ω)X′b(ω)|Xa(ω)X′b(ω)ejωτab dω. (10)

The GCC-PHAT function performs well in reverberant environments, but its accuracy
decreases in noisy conditions. By experiments in [28], it has been shown that the ML filter is
more robust in noisy environments with SNR < 10 dB. When the reverberation is low and
the noise and speech signals are uncorrelated, the ML weighting function is an unbiased
estimator, which is expressed by power spectrum of source signal s(t) and noise signals
va(t) and vb(t) as:

ψML
ab (ω) =

|Xa(ω)||Xb(ω)|
|Vb(ω)|2|Xa(ω)|2 + |Va(ω)|2|Xb(ω)|2

. (11)

It is assumed that the power spectrum density (PDF) for noise signals |Va(ω)|2 and
|Vb(ω)|2 are estimated from the silent part of the signal by using VAD. Therefore, the
GCC-ML function is expressed as:

PML
ab (τab) =

1
2π

+∞∫
−∞

|Xa(ω)||Xb(ω)|
|Vb(ω)|2|Xa(ω)|2 + |Va(ω)|2|Xb(ω)|2

Xa(ω)X′b(ω)ejωτab dω. (12)

In this article, by measuring the SNR in microphone signals, the GCC-PHAT function
is considered for SNR > 10 dB (reverberant scenario), and the GCC-ML function for
SNR < 10 dB(noisy scenario), which is called adaptive GCC-PHAT/ML algorithm in the
following. The adaptive GCC-PHAT/ML function’s peaks are the TDOAs related to the
microphone pairs. For calculating the speakers’ directions, the TDOA values (τab) can be
converted to DOA values (θab) as:

τab =
d
C

sin(θab) → θab = arcsin
(

τab.C
d

)
. (13)

The adaptive GCC-PHAT/ML function is averaged on all microphone pairs (M = 8)
for decreasing the effect of noise and reverberation as:

PPHAT/ML(θ) =
1
M

M

∑
m=1

1
2π

+∞∫
−∞

ψm,m+1(ω)Xm(ω)X′m+1(ω)ejω d
C sin θdω. (14)
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In Equation (14), microphone m9 is equal as m1, which is at the end of cycle. In
the following, the adaptive GCC-PHAT/ML function’s peaks are extracted based on the
number of speakers (Q), which is estimated by the F-CRNN algorithm.

θ̂C1 = argmax
0≤θ≤2π

PPHAT/ML(θ) → DOAC1

θ̂C2 = argmax
0 ≤ θ ≤ 2π

θ 6= θ̂C1

PPHAT/ML(θ) → DOAC2

. . .,

. . .
θ̂CQ = argmax

0 ≤ θ ≤ 2π

θ 6= θ̂C1, . . . , θ̂CQ−1

PPHAT/ML(θ)→ DOACQ

(15)

where θ̂C1, θ̂C2, . . . , θ̂CQ are the speakers’ directions based on the central uniform circular
microphone array. An uncertainty area (βCq) is defined for each speaker, where the direction
for speaker is considered around this area. This uncertainty area prepares the possibility for
making a range in three-dimensional space, which provides the conditions for 3D SSL with
intersection by other uncertainty areas from T-shaped microphone arrays. This uncertainty
area is estimated by calculating the SD of estimated directions for each speaker based on
the microphone pairs as:

βCq =

√√√√ 1
M

M

∑
m=1

(
θ̂Cq,m − θ̂Cq

)2 f or q = 1, . . . , Q, (16)

where in Equation (16), θ̂Cq,m is the estimated direction for q-th source by using the mi-
crophone pairs {m, m + 1}, and βCq is the uncertainty area for q-th speaker’s direction
(DOACq). Therefore, a specific area in 3D space is generated for each speaker. These un-
certainty areas are calculated for all speakers (βC1, βC2, . . . , βCQ) and the direction of each
speaker is considered around this area (DOAC1 ± βC1, DOAC2 ± βC2, . . . , DOACQ ± βCQ).

In the following, two closest T-shaped microphone arrays are selected for each speaker,
which is repeated for all speakers separately. One of these T-shaped microphone arrays is
selected for calculating the horizontal direction estimation (DOAH) and horizontal uncer-
tainty area (βH), and the other T-shaped microphone array for vertical direction estimation
(DOAV) and vertical uncertainty area (βV). As shown in Figure 2, three microphone pairs
are selected for vertical DOA estimating (Figure 2b) and another three microphone pairs for
horizontal DOA estimating (Figure 2c). These T-shaped microphone arrays are considered
for estimating the horizontal (DOAH) and vertical (DOAV) speakers’ directions in combina-
tion with GEVD algorithm. Therefore, the proposed TCDMA-AGGPM algorithm is defined
based on the T-shaped microphone arrays as an input for GEVD algorithm. The acoustic
room is assumed as a linear time-invariant (LTI) system, where the relation between the
microphones’ signals and RIR is expressed as:

xa
T(n)g

b
= xb

T(n)g
a
, (17)

where in Equation (17), the microphone signal xm(n) is considered as:

xm(n) = [xm(n), xm(n− 1), . . . , xm(n− D + 1)]T , f or m = 1, 2, 3. (18)
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where xm(n) is the sample’s vector signal for m-th microphone in T-shaped microphone
array, T denotes to vector transpose, and D is the length of the signal (samples), which is
equal to RIR length as:

g
m
= [gm,0, gm,1 . . . . . . gm,D−1]

T , m = 1, 2, 3. (19)

Since there is a fact that xm(n) = g
m
∗ s(n), then the covariance matrix for three

microphone pairs is expressed as:

B =

 Bx1x1 Bx1x2 Bx1x3

Bx2x1 Bx2x2 Bx2x3

Bx3x1 Bx3x2 Bx3x3

, (20)

where the covariance matrix elements are defined as Bxaxb = E
{

xa(n)xT
b(n)

}
, (a,b = 1,2,3).

In addition, vector u with length 3× D, which contains the impulse response for these
three microphone pairs, is shown as:

u =

 g
3
−g

2
−g

1

. (21)

Vector u is the eigenvector of matrix B related to eigenvalue 0. In addition, if the
impulse responses g

1
, g

2
, and g

3
do not have a common zero, and the covariance matrix of

signal s(n) has complete order, the covariance matrix B has only one eigenvalue equal to 0.
The exact estimation of vector u is impossible because of characteristics of speech signal,
room impulse response length, background noise, etc. The robust GEVD method extracts
the random gradient algorithms and estimates the generalized eigenvector related to the
smallest generalized eigenvalue of noise covariance matrix (Bb

D) and signal covariance
matrix (Bx

D), in an iterative process. It is assumed that the noise covariance matrix (Bb
D)

is known, which is estimated from silence parts of the recorded signal. In addition, we
assume that the noise is sufficiently stationary, where the noise covariance matrix, which
is estimated from silence part of the signal, can be used for updating the formulas in the
frames with mixture of the signal and noise. Instead of updating all GEVD functions for Bb

D,
Bx

D and estimating the generalized eigenvector related to smallest generalized eigenvalue,
the generalized eigenvector is estimated by minimizing the cost function uT Bx

Du in an
iterative process [30]. This low complexity method for minimizing the mean square error
(MSE) of error signal e(n) is called Rayleigh Quotient, which is shown as:

e(n) =
uT(n)xD(n)√
uT(n)Bb

Du(n)
=

uT(n)xD(n)∣∣∣∣∣∣∣∣√Bb
Du(n)

∣∣∣∣∣∣∣∣ (22)

Based on least mean square (LMS) adaptive filter, vector u is expressed as:

u(n + 1) = u(n)− µe(n)
∂u(n)
∂e(n)

, (23)

where µ is adaptation step in LMS algorithm and the gradient of vector u is written as:

∂e(n)
∂u(n)

=
1√

uT(n)Bb
Du(n)

xD(n)− e(n)
Bx

Du(n)√
uT(n)Bb

Du(n)

. (24)
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By replacing Equations (22) and (24) in Equation (23), the vector u is expressed as:

u(n + 1) = u(n)− µ

uT(n)Bb
Du(n)

[
xD(n)xT

D(n)u(n)− e2(n)Bb
Du(n)

]
. (25)

By calculating the expected value (E) of covariance matrix, the vector u is written as:

Bx
Du(∞) = E

{
e2(n)

}
Bb

Du(∞), (26)

where u(∞) is the generalized eigenvector related to smallest generalized eigenvalue of
covariance matrixes Bx

D and Bb
D. To avoid the error in estimations, an extra normaliza-

tion step is implemented in each repetition. Therefore, the impulse response vector u is
formulated as:

ũ(n + 1) = u(n)− µe(n)
{

xD(n)− e(n)Bb
Du(n)

}
. (27)

Finally,

u(n + 1) =
ũ(n + 1)√

ũT(n + 1)Bb
Dũ(n + 1)

, (28)

where vector u contains the impulse responses between source and selected microphones in
T-shaped microphone array. By estimating the impulse responses g

1
, g

2
, g

3
, the horizontal

(DOAH) and vertical (DOAV) speaker’s directions are calculated for a specific speaker.
Based on the T-shaped microphone array in Figure 2b, which is considered for vertical
direction estimating, the DOAV is expressed as:

θ̂V,q =
1
3

3

∑
k=1

θ̂ab,k
V

f or


a = 1, . . . , 3
b = 1, . . . , 3
q = 1, . . . , Q

, (29)

and the uncertainty area (βV) for vertical DOA estimation and q-th speaker is expressed as:

βV,q =

√√√√1
3

3

∑
k=1

(
θ̂ab,k

V
− θ̂V,q

)2

f or


a = 1, . . . , 3
b = 1, . . . , 3
q = 1, . . . , Q

, (30)

This process is repeated for T-shaped microphone array in Figure 2c for calculating
the horizontal speaker’s direction (DOAH) for q-th speaker as:

θ̂H,q =
1
3

3

∑
k=1

θ̂ab,k
H

f or


a = 1, . . . , 3
b = 1, . . . , 3
q = 1, . . . , Q

, (31)

Similarly, the uncertainty area (βH) for horizontal direction estimations (DOAH) for
q-th speaker is expressed as:

βH,q =

√√√√1
3

3

∑
k=1

(
θ̂ab,k

H
− θ̂H,q

)2

f or


a = 1, . . . , 3
b = 1, . . . , 3
q = 1, . . . , Q

, (32)

Finally by calculating the speaker direction and its uncertainty area with central
circular microphone array (DOAC ± βC), for T-shaped microphone array in Figure 2b
(DOAV ± βV) and T-shaped microphone array in Figure 2c ( DOAH ± βH) for q-th speaker,
three areas are generated in three-dimensional space, where the 3D speakers’ locations are
estimated by intersection between these three areas and calculating the closest point in the
intersected area to all of them. This process is repeated for all Q speakers for calculating
the exact 3D locations. The accurate and fast location estimation are provided in our
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proposed TCDMA-AGGPM method by considering the novel T-shaped circular distributed
microphone array in combination with adaptive GCC-PHAT/ML and GEVD algorithms.

4. Results and Discussions
4.1. Data Recording and Simulation Conditions

The proposed TCDMA-AGGPM method is evaluated on real and simulated data
for covering all undesirable environmental scenarios. The Texas Instruments and Mas-
sachusetts Institute of Technology (TIMIT) dataset [31] is selected as an advanced bank
of the speech signals for simulations. One female and two male speakers are selected for
evaluating the proposed algorithm, where one male (S1) and one female (S2) speaker are
considered for two simultaneous speakers’ scenarios, and all three speakers (S1, S2, and S3)
are considered for the scenario with three speakers. In addition, the proposed algorithm is
implemented on real recorded voice data at speech, music, and image processing laboratory
(SMIPL), Universidad Tecnológica Metropolitana (UTEM), Santiago, Chile. The conditions
for real data recording are the same as the simulated data. For example, two speakers were
speaking simultaneously for two overlapped speakers’ scenario. In addition, all speakers
are oriented to the central microphone array. Therefore, the results of evaluation can be
extended to different conditions. The aim of the proposed method is 3D multiple simulta-
neous SSL for noisy and reverberant conditions in real scenarios. Various experiments have
been performed on scenarios in smart meeting rooms. It has been shown in [32], where
in real scenarios for conference events, around 90% of the overlapped signal are for two
simultaneous speakers, 8% of the time for three overlapped simultaneous speakers, and the
rest for four speakers and up. Therefore, the evaluations are structured for two and three
simultaneous speakers for covering a wide range of meeting events in real environments.
In the simulations, 58.84 seconds of speech signal are recorded for each speaker (S1, S2,
and S3), where there are the silent areas in recorded signal, which are used for updating
noise covariance matrix Bb

D in the proposed algorithm. In addition, 26.80 and 21.57 seconds
of the recorded signals belong to two (S1 and S2) and three (S1, S2, and S3) simultaneous
speakers, respectively. Figure 4 shows the speech signals in time-domain for all three
speakers, overlapped between two speakers (S1, and S2), and overlapped between three
speakers (S1, S2, and S3). As shown in this figure, the percentage of overlapped signal
between three speakers is less than the overlap between two speakers.

In addition, three speakers are located in the fixed positions in the acoustical room.
The first, second, and third speakers are located at S1 = (115,327,183) cm, S2 = (13,684,165)
cm, and S3 = (461,245,174) cm, respectively. The speakers’ locations are selected in a way
for evaluating the proposed SSL algorithm at different angles in the room. The proposed
DMA, which is the combination of eight microphones circular and T-shaped arrays, is
an important step for preparing the proper signals for the proposed TCDMA-AGGPM
algorithm. The inter-microphone distances are adjusted as d = 2.4 cm for avoiding the
spatial aliasing between microphone signals in the proposed algorithm. In addition, six T-
shaped microphone arrays with five microphones in each one is installed on the walls. Since
the T-shaped microphone arrays play the main role in 3D SSL algorithm, the best places on
the walls are considered for the installation and covering all room angles. Figure 5 shows a
view of the simulated room with the speakers’ locations and microphones. In addition, the
exact location of microphones and speakers with room dimensions are reported in Table 1.
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Table 1. The exact locations of speakers, circular microphones, and room dimensions.

Positions X (cm) Y (cm) Z (cm)

Microphone m1 280 213.2 112
Microphone m2 277.9 212.1 112
Microphone m3 276.8 210 112
Microphone m4 277.9 207.9 112
Microphone m5 280 206.8 112
Microphone m6 282.1 207.9 112
Microphone m7 283.2 210 112
Microphone m8 282.1 212.1 112

Speaker 1 115 327 183
Speaker 2 136 84 165
Speaker 3 461 245 174

Room dimensions 560 420 315

4.2. The Evaluation’s Scenarios

The environmental undesirable factors decrease the accuracy and precision of the SSL
algorithms in real scenarios. Noise, reverberation, and spatial aliasing are the most impor-
tant undesirable factors in speech recording scenarios. The spatial aliasing is eliminated
with proper placement of microphones by inter-microphone distance calculation based
on the Nyquist theorem. In addition, the proposed TCDMA avoids the spatial aliasing
because the accurate localization is provided by placing the microphones close to each
other and considering the near-field assumption. On the contrary, noise and reverberation
are the permanent undesirable factors in acoustical environments, which is impossible to
eliminate completely. The white Gaussian noise (WGN) is adaptively considered in the
microphones’ places for the simulations. The WGN is similar to real noise in acoustical
environments and the recorded signals in SMIPL at UTEM. The Image model [33] is se-
lected for simulating the reverberation effects in the evaluations. This model provides an
estimation of RIR similar to real scenarios. This model generates the impulse responses
between sound source and microphone by considering the microphone place, source lo-
cation, room dimensions, impulse response length, sampling frequency, environmental
reflection coefficients, and reverberation time (RT60). The recorded microphone’s signal
is generated by convolution between source signal and produced RIR by Image method.
This process is repeated for all microphones and sources to generate the simulated signals.
In addition, the Hamming window with 60 ms length [34] is selected for providing the
stationary samples of speech signal in each time frame, which is an optimal length in SSL
applications. Also, 50% overlap between time frames is considered for taking advantage of
the most appropriate recorded speech signals parts. The sampling frequency is considered
as Fs = 16000 Hz, which is popular in speech processing applications for teleconferencing.
In simulations, the length of room impulse response is selected as D = 960 samples, where
the length of u vector is 2880 samples. Also, the adaptation step in GEVD algorithm is
assumed as µ = 10−7, which provides the fast and appropriate convergence for adaptive
filters. The simulations are performed by MATLAB software, version 2021b (MathWorks,
Natick, MA, USA). In addition, the algorithms are implemented on a laptop with CPU
core i7-10875H (Intel, Santa Clara, CA, USA), 2.3 GHz, and 64 GB RAM. The proposed
TCDMA-AGGPM algorithm is compared with HiGRID [19], SH-TMSBL [21], SF-MCA [24],
and TF-MW-BNP-AHB [25] methods for two and three simultaneous speakers in noisy and
reverberant environments on real and simulated data. The mean absolute estimation error
(MAEE) [35] criteria is selected for measuring the accuracy and robustness of the proposed
TCDMA-AGGPM method in comparison with other previous works. This criteria provides
a measurement scale by calculating the accurate distance between 3D estimated speaker’s
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location (x̂q, ŷq, ẑq) and real speaker’s location (xq, yq, zq) with averaging on Nt continuous
frames of overlapped speech signal, which is expressed as:

MAEEq =
1

Nt

Nt

∑
i=1

∣∣(xq,i, yq,i, zq,i
)
−
(

x̂q,i, ŷq,i, ẑq,i
)∣∣, (33)

where in Equation (33), (xq,i, yq,i, zq,i) is the q-th real speaker’s location, and (x̂q,i, ŷq,i, ẑq,i) is
the q-th estimated speaker’s location in i-th time frames.

4.3. The Results on Simulated and Real Data

The simulations are designed for two and three simultaneous speakers on noisy and
reverberant environments to cover a wide range of real scenarios. Therefore, two categories
of evaluations are considered for comparison between the proposed TCDMA-AGGPM and
other previous works. In the first category, the proposed method is implemented on a series
of defined real environmental scenarios, which happen frequently in real conditions. In
the second category of evaluations, the precision and accuracy of the proposed method in
the first step, is evaluated for fixed SNR and variable RT60, and in the second step on fixed
RT60 and variable SNR. For the first category, three environmental scenarios are defined
for the evaluations. The first scenario is called reverberant environment by SNR = 20 dB
and RT60 = 650 ms. The second scenario is noisy environment, where the effect of the
noise is dominant by SNR = 5 dB and RT60 = 250 ms. The third scenario is named noisy-
reverberant environment by SNR = 5 dB and RT60 = 650 ms, which is very challenging
for most of the SSL algorithms.

Table 2 shows the MAEE results in cm for the proposed TCDMA-AGGPM algorithm
in comparison with HiGRID, SH-TMSBL, SF-MCA, and TF-MW-BNP-AHB methods for
two simultaneous speakers, on real and simulated data for reverberant, noisy, and noisy-
reverberant scenarios. In each part of this table, the results are reported separately for each
speaker (S1 and S2) to show the accuracy and robustness of the proposed method. As shown
in this table, the HiGRID algorithm localizes the speakers less accurate in comparison other
works. After that, the SH-TMSBL and SF-MCA algorithms prepared the better results for
SSL. The proposed TCDMA-AGGPM algorithm is in competition with TF-MW-BNP-AHB
method, where our proposed method localizes the speakers more accurate, but in some
scenarios the results of these two methods are very similar. For example, in reverberant
environment (scenario 1) and for simulated data, the MAEE criteria for proposed TCDMA-
AGGPM and TF-MW-BNP-AHB methods are 32 and 36 cm for speaker S1, respectively,
and the same results are 35 and 38 cm for speaker S2. In addition, in reverberant scenario
and real data, the MAEE criteria for proposed TCDMA-AGGPM and TF-MW-BNP-AHB
methods are 34 and 39 cm for speaker S1, and 37 and 41 cm for speaker S2, respectively.
In addition, in noisy-reverberant environment and for simulated data, the MAEE criteria
for proposed TCDMA-AGGPM and TF-MW-BNP-AHB methods are 42, and 47 cm for
speaker S1, respectively, and the same results are 45 and 52 cm for speaker S2. In noisy-
reverberant scenario and real data, the MAEE criteria for proposed TCDMA-AGGPM and
TF-MW-BNP-AHB methods are 44 and 55 cm for speaker S1, and 47 and 58 cm for speaker
S2, respectively Also, the other results in this table show the superiority of the proposed
method for two simultaneous speakers in comparison with other previous works on real
and simulated data for reverberant, noisy, and noisy-reverberant scenarios.
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Table 2. The MAEE results (in cm) for the proposed TCDMA-AGGPM algorithm in comparison with
HiGRID, SH-TMSBL, SF-MCA, and TF-MW-BNP-AHB methods on real and simulated data, for 2
simultaneous speakers and for reverberant (scenario 1), noisy (scenario 2), and noisy-reverberant
(scenario 3) environments.

MAEE (cm) HiGRID [19] SH-TMSBL [21] SF-MCA [24] TF-MW-BNP-AHB [25] Proposed
TCDMA-AGGPM

Simulated Data

Speaker S1 S2 S1 S2 S1 S2 S1 S2 S1 S2

Scenario 1
(Reverberant) 57 52 45 51 48 43 36 38 32 35

Scenario 2
(Noisy) 45 41 36 40 39 37 31 34 25 28

Scenario 3
(Noisy-

Reverberant)
74 68 61 67 64 59 47 52 42 45

Real Data

Speaker S1 S2 S1 S2 S1 S2 S1 S2 S1 S2

Scenario 1
(Reverberant) 61 56 49 55 50 47 39 41 34 37

Scenario 2
(Noisy) 47 44 39 43 40 41 32 36 30 33

Scenario 3
(Noisy-

Reverberant)
77 73 68 71 68 65 55 58 44 47

The second category of comparisons are the accuracy and precision measurements
based on the variation of noise and reverberation. Therefore, these scenarios are designed
in a way for evaluating first, for fixed SNR and variable RT60, and second, for the fixed RT60
and variable SNR. In addition, the MAEE criteria is implemented by averaging on 25 time
frames for preparing the reliable results. Figure 6 shows the averaged MAEE results for the
proposed TCDMA-AGGPM algorithm in comparison with HiGRID, SH-TMSBL, SF-MCA,
and TF-MW-BNP-AHB methods for two simultaneous speakers on real and simulated data.
Figure 6a represents the results for SNR = 5 dB and 0 ≤ RT60 ≤ 700 ms on real (dash line)
and simulated (solid line) signals. As shown in this figure, the HiGRID and our proposed
TCDMA-AGGPM methods obtain the highest (lowest accuracy) and lowest (highest ac-
curacy) MAEE values in comparison with other methods, respectively. This figure shows
that the accuracy of all methods decreases by increasing the RT60 value. In addition, almost
in all methods, the real data has lesser accuracy in comparison with simulated data, be-
cause controlling the undesirable factors are easier in simulated conditions in comparison
with real scenarios. In some cases, even measuring the SNR and RT60 for real data is
a challenge in the evaluations, which is performed with some error. The results of our
proposed TCDMA-AGGPM algorithm are closer to the TF-MW-BNP-AHB method, where
in RT60 = 100 ms, the averaged MAEE value for our proposed algorithm and TF-MW-
BNP-AHB method are 23 and 26 cm, and in RT60 = 600 ms are 41 and 47 cm for simulated
data, respectively, where in both cases our proposed method localizes the speakers with
higher accuracy in comparison with other previous works. Figure 6b similarly shows the
results for RT60 = 650 ms and −10 dB ≤ SNR ≤ 25 dB for two simultaneous speakers on
real and simulated data. As shown in this figure, the accuracy of SH-TMSBL and SF-MCA
methods are similar, but the proposed TCDMA-AGGPM algorithm localizes the speakers
more accurately in comparison with other previous works. For example, the averaged
MAEE criteria for simulated data in SNR = 5 dB for the proposed TCDMA-AGGPM is
43 cm, the TF-MW-BNP-AHB method is 50 cm, and for HiGRID, SH-TMSBL, and SF-MCA
algorithms are 72, 64, and 62 cm, respectively. These values show the superiority of the pro-
posed method in comparison with other previous works for variable RT60 in two speakers’
scenarios. As presented in this figure, all methods contain better accuracy in higher SNRs
and weaker accuracy in lower SNRs. This means noise highly decreases the accuracy of the
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localization algorithm. It is important to consider that SNR = 5 dB and RT60 = 650 ms at
the same time generates a very undesirable noisy and reverberant scenario, which rarely
happens in some specific cases in the real environments.
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Figure 6. The averaged MAEE results (in cm) for the proposed TCDMA-AGGPM algorithm in
comparison with HiGRID, SH-TMSBL, SF-MCA, and TF-MW-BNP-AHB methods, for 2 simultaneous
speakers on real and simulated data, (a) for SNR = 5 dB and 0 ≤ RT60 ≤ 700 ms, and (b) for
RT60 = 650 ms and −10 dB ≤ SNR ≤ 25 dB.

Table 3 shows similar results of MAEE criteria for the proposed TCDMA-AGGPM
algorithm in comparison with HiGRID, SH-TMSBL, SF-MCA, and TF-MW-BNP-AHB
methods for three simultaneous speakers on real and simulated data for reverberant
(scenario 1), noisy (scenario 2), and noisy-reverberant (scenario 3) environments. As shown
in this table, the proposed method localizes the speakers more accurately in comparison
with other previous works. The accuracy of the methods is higher in noisy scenario,
decreases for reverberant and noisy-reverberant conditions, which are the conditions with
the lowest accuracy and precision. For example, on simulated data for noisy-reverberant
scenario and for the third speaker (S3), the proposed method localizes the speaker with
MAEE equal to 46 cm in comparison with HiGRID by 77 cm, SH-TMSBL by 70 cm, SF-MCA
by 65 cm, and TF-MW-BNP-AHB method by 54 cm, which clearly shows that the proposed
TCDMA-AGGPM algorithm localizes the speakers more accurately in comparison with
other previous works, especially in noisy-reverberant environments. The second part in this
table is related to real data, which contain the lower accuracy in comparison with simulated
data based on the mentioned reason. In addition, the proposed method localizes the
speakers more accurately even in real data. For example, in the third scenario for the third
speaker, the MAEE value for proposed TCDMA-AGGPM, HiGRID, SH-TMSBL, SF-MCA,
and TF-MW-BNP-AHB methods are 48, 78, 73, 70, and 59 cm respectively, which clearly
shows the superiority of the proposed method in comparison with other previous works.
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Table 3. The MAEE results (in cm) for the proposed TCDMA-AGGPM algorithm in comparison with
HiGRID, SH-TMSBL, SF-MCA, and TF-MW-BNP-AHB methods on real and simulated data, for 3
simultaneous speakers and for reverberant (scenario 1), noisy (scenario 2), and noisy-reverberant
(scenario 3) environments.

MAEE (cm) HiGRID [19] SH-TMSBL [21] SF-MCA [24] TF-MW-BNP-AHB [25] Proposed
TCDMA-AGGPM

Simulated Data

Speaker S1 S2 S3 S1 S2 S3 S1 S2 S3 S1 S2 S3 S1 S2 S3

Scenario 1
(Reverberant) 48 53 51 44 47 48 41 45 43 33 34 37 27 30 31

Scenario 2
(Noisy) 46 49 47 41 45 46 39 43 42 32 33 35 26 28 28

Scenario 3
(Noisy-

Reverberant)
71 74 77 68 72 70 62 69 65 51 55 54 41 45 46

Real Data

Speaker S1 S2 S3 S1 S2 S3 S1 S2 S3 S1 S2 S3 S1 S2 S3

Scenario 1
(Reverberant) 52 57 55 45 48 50 43 46 44 35 37 38 31 33 34

Scenario 2
(Noisy) 49 53 51 44 46 49 41 45 40 37 40 43 30 32 31

Scenario 3
(Noisy-

Reverberant)
75 79 78 71 74 73 68 72 70 53 57 59 45 47 48

Figure 7 shows the averaged MAEE values for the proposed TCDMA-AGGPM algo-
rithm in comparison with HiGRID, SH-TMSBL, SF-MCA, and TF-MW-BNP-AHB methods
for three simultaneous speakers on real and simulated data for different ranges of SNR and
RT60 to evaluate the precision and robustness of the algorithms in noisy and reverberant
scenarios. Figure 7a shows the results for SNR = 5 dB and 0 ≤ RT60 ≤ 700 ms on real
(dash line) and simulated (solid line) data. As shown in this figure, the proposed TCDMA-
AGGPM algorithm has lower averaged MAEE values in comparison with other previous
works, which means that the algorithm localizes the speakers more accurately. For example,
in RT60 = 100 ms, the proposed TCDMA-AGGPM method localizes the speaker with
averaged MAEE equal to 25 cm, where its accuracy is higher in comparison with the best
other previous works like TF-MW-BNP-AHB method with 29 cm error on simulated data.
In addition, the averaged MAEE in RT60 = 600 ms for proposed TCDMA-AGGPM and
TF-MW-BNP-AHB methods are 44 and 51 cm, respectively, which shows the superiority
of our proposed method in high reverberant scenario. Also, this figure represents that the
accuracy of all methods decreases by increasing the reverberation time and the real data has
lower accuracy in comparison with simulated data. Figure 7b shows the averaged MAEE
values for RT60 = 650 ms and −10 dB ≤ SNR ≤ 25 dB in three speakers’ scenario. As
represented in this figure, the proposed TCDMA-AGGPM method localizes the speakers
more accurately in comparison with HiGRID, SH-TMSBL, SF-MCA, and TF-MW-BNP-AHB
algorithms. For example, in SNR = 5 dB,the averaged MAEE value for the proposed
method is 46 cm in comparison with TF-MW-BNP-AHB algorithm with 54 cm, where
the other algorithms localize speakers less accurately. Most of the methods have higher
accuracy in high SNRs, but the proposed method with averaged MAEE 31 cm even works
better in comparison with TF-MW-BNP-AHB algorithm with 35 cm in SNR = 20 dB. In
addition, this figure clearly shows that the accuracy of all methods decreases in low SNRs,
and the simulated data has better results in comparison with real data. These results show
the superiority of the proposed TCDMA-AGGPM algorithm in comparison with other
previous works. Our localization method can have a challenge if two speakers are exactly
in the same direction to the central microphone array with different distances. In this
condition, the algorithm may estimate the position of one the speakers wrongly. This
scenario happens just in the case the two speakers are speaking at the same time and they
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are in the same direction. For this reason, we avoid the speakers to be in the same direction
at the same time.
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Computational complexity is an important parameter for implementing the SSL al-
gorithms in real scenarios. The algorithms with high level of complexity are not able to
practically localize the speakers in real conditions. Most of the SSL algorithms only increase
the accuracy of estimated locations without attending to the complexity, which makes
the method unimplementable in real scenarios. In this article, the MATLAB run-time in
seconds is considered as a scale for comparing the complexity of the algorithms. Table 4
shows the program’s run-time in seconds for the proposed TCDMA-AGGPM algorithm
in comparison with HiGRID, SH-TMSBL, SF-MCA, and TF-MW-BNP-AHB methods for
two and three simultaneous speakers in noisy-reverberant environments on real data. As
shown in this table, the HiGRID and SH-TMSBL methods require more time for localiz-
ing the speakers, which means more calculating in programming, but the SF-MCA and
TF-MW-BNP-AHB algorithms localize the speakers with less complexity. The proposed
TCDMA-AGGPM algorithm decreases the computational complexity due to parallel signal
processing in combination with using the uniform CMA as a part of DMA and a T-shaped
microphones on the walls, where both arrays are performing separately at the same time.
This important advantage prepares the condition for implementing the proposed algorithm
in real environments, which is critical in pseudo real-time systems. The program’s run-time
can be decreased by using faster processors, which is an important improvement for future
works. Based on the results in the last figures and tables, not only does the proposed
TCDMA-AGGPM method localize the simultaneous speakers in three-dimensions with
more accuracy in noisy and reverberant scenarios, but it also highly decreases the compu-
tational complexity of 3D SSL, which is an important advantage in implementing the 3D
simultaneous SSL algorithms in real scenarios.
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Table 4. The run-time (in seconds) comparison between the proposed TCDMA-AGGPM, HiGRID,
SH-TMSBL, SF-MCA, and TF-MW-BNP-AHB methods for 2 and 3 simultaneous speakers on real
data in noisy-reverberant environments.

Run-Time (s) HiGRID [19] SH-TMSBL [21] SF-MCA [24] TF-MW-BNP-AHB [25] Proposed
TCDMA-AGGPM

2 Simultaneous Speakers

Scenario 1
(Reverberant) 627 530 384 443 245

Scenario 2
(Noisy) 584 508 352 419 213

Scenario 3
(Noisy-Reverberant) 665 567 401 468 259

3 Simultaneous Speakers

Scenario 1
(Reverberant) 651 559 399 465 262

Scenario 2
(Noisy) 632 526 374 457 248

Scenario 3
(Noisy-Reverberant) 683 592 422 476 271

5. Conclusions

The 3D multiple simultaneous SSL is one of the most important and challenging topics
in the speech processing applications. The accuracy and precision of most algorithms
are decreased in noisy and reverberant conditions. In this article, a novel 3D multiple
simultaneous SSL algorithm was proposed based on the T-shaped circular DMA in com-
bination with GEVD and adaptive GCC-PHAT/ML methods for noisy and reverberant
environments. The proposed TCDMA array provided more accurate locations’ estimations
with low computational complexity. Firstly, the central uniform CMA is considered in
combination with GCC method for estimating the speakers’ directions. In addition, the
weighing PHAT and ML filters are adaptively implemented based on the SNR of recorded
signals for decreasing the undesirable environmental factors. Then, the two closest T-
shaped arrays are selected for each speaker due to the directions’ estimations in the first
step. Each of these two T-shaped arrays is considered in combination with GEVD algorithm
for estimating the horizontal and vertical directions, respectively. An uncertainty area (β)
is selected based on the SDs of estimated directions of microphone pairs for circular (βC),
horizontal (βH), and vertical (βV) T-shaped microphone arrays around the estimated DOAs.
Finally, the 3D location of each speaker is estimated by intersection between these three
areas and finding the closest point to all DOAs. The proposed TCDMA-AGGPM algorithm
was compared with HiGRID, SH-TMSBL, SF-MCA, and TF-MW-BNP-AHB methods based
on the averaged MAEE criteria for two and three simultaneous speakers. In addition, the
proposed method localizes the speakers with less complexity in comparison with other
previous works based on the measured program’s run-time. The only disadvantage of this
method is the primary installation cost, since we use 38 microphones in both T-shaped and
circular microphone arrays, which is higher in comparison with other previous works.

One of the important fields for the future work in this research area is reviewing
the other microphone arrays in combination with sound source localization algorithms.
Decreasing the number of microphones without affecting the localization accuracy is
considered as an aim of the future work in this SSL application because it can decrease the
installation cost. In addition, increasing the accuracy of this SSL algorithm by using some
subband techniques in noisy and reverberant environment is another area for future work.
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Abbreviations
The following abbreviations are used in this manuscript:

ADMM Alternative direction method of multipliers
AHB Acoustical holography beamforming
AOA Angle of arrival
BNP Bayesian nonparametric
CC Cross-correlation
CMA Circular microphone array
DMA Distributed microphone array
DNN Deep neural networks
DOA Direction of arrival
F-CRNN Full-band recurrent neural networks
FIR Finite impulse response
GCC Generalized cross-correlation
GCC-PHAT Generalized cross-correlation-phase transform
GCC-PHAT/ML Generalized cross-correlation-phase transform/maximum likelihood
GEVD Generalized eigenvalue decomposition
IFT Inverse Fourier transform
IGMM Infinite Gaussian mixture model
LMS Least mean square
LTI Linear time-invariant
MAEE Mean absolute estimation error
ML Maximum likelihood
MSE Mean square error
MUSIC Multiple signal classification
PDF Power density function
PHAT Phase transform
RIR Room impulse response
RT60 Reverberation time
SD Standard deviation
SF-MCA Sound field morphological component analysis
SH Spherical harmonic
SHC Spherical harmonic domain
SH-TMSBL Temporal extension of multiple response model of sparse

Bayesian learning with spherical harmonic
SMIPL Speech, music, and image processing laboratory
SNR Signal-to-noise ratio
SRP Steered response power
SRPD Steered response power density
SRP-PHAT Steered response power-phase transform
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SSL Sound source localization
TCDMA-AGGPM T-shaped circular distributed microphone array-adaptive generalized

eigenvalue decomposition, generalized cross-correlation-phase
transform/maximum likelihood

TDOA Time difference of arrival
TF Time-frequency
TIMIT Texas Instruments and Massachusetts Institute of Technology
UTEM Universidad Tecnológica Metropolitana
VAD Voice activity detection
W-DO Windowed-disjoint orthogonality
WGN White gaussian noise
WM Mixture weight

References
1. Lee, R.; Kang, M.S.; Kim, B.H.; Park, K.H.; Lee, S.Q.; Park, H.M. Sound Source Localization Based on GCC-PHAT With Diffuseness

Mask in Noisy and Reverberant Environments. IEEE Access 2020, 8, 7373–7382. [CrossRef]
2. Knapp, C.; Carter, G. The generalized correlation method for estimation of time delay. IEEE Trans. Acoust. Speech Signal Process.

1976, 24, 320–327. [CrossRef]
3. Yao, K.; Chen, J.C.; Hudson, R.E. Maximum-likelihood acoustic source localization: Experimental results. In Proceedings of the

IEEE International Conference on Acoustics Speech and Signal Processing, Orlando, FL, USA, 13–17 May 2002; pp. 2949–2952.
[CrossRef]

4. Brandstein, M.; Ward, D. Microphone Arrays: Signal Processing Techniques and Applications; Springer: Berlin, Germany; New York,
NY, USA, 2013.

5. Hafezi, S.; Moore, A.H.; Naylor, P.A. Augmented Intensity Vectors for Direction of Arrival Estimation in the Spherical Harmonic
Domain. IEEE/ACM Trans. Audio Speech Lang. Process. 2017, 25, 1956–1968. [CrossRef]

6. Yilmaz, O.; Rickard, S. Blind Separation of Speech Mixtures via Time-Frequency Masking. IEEE Trans. Signal Process. 2004, 52,
1830–1847. [CrossRef]

7. Li, X.; Girin, L.; Horaud, R.; Gannot, S. Estimation of the Direct-Path Relative Transfer Function for Supervised Sound-Source
Localization. IEEE/ACM Trans. Audio Speech Lang. Proces. 2016, 24, 2171–2186. [CrossRef]

8. Hu, Y.; Samarasinghe, P.N.; Abhayapala, T.D.; Gannot, S. Unsupervised Multiple Source Localization Using Relative Harmonic
Coefficients. In Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Barcelona,
Spain, 4–8 May 2020; pp. 571–575. [CrossRef]

9. Nadiri, O.; Rafaely, B. Localization of Multiple Speakers under High Reverberation using a Spherical Microphone Array and the
Direct-Path Dominance Test. IEEE/ACM Trans. Audio Speech Lang. Process. 2014, 22, 1494–1505. [CrossRef]

10. Hu, Y.; Samarasinghe, P.N.; Abhayapala, T.D. Sound Source Localization Using Relative Harmonic Coefficients in Modal Domain.
In Proceedings of the IEEE Workshop on Applications of Signal Processing to Audio and Acoustics (WASPAA), New Paltz, NY,
USA, 20–23 October 2019; pp. 348–352. [CrossRef]

11. Benesty, J. Adaptive eigenvalue decomposition algorithm for passive acoustic source localization. J. Acoust. Soc. Am. 2000, 107,
384–391. [CrossRef]

12. Sun, H.; Teutsch, H.; Mabande, E.; Kellermann, W. Robust localization of multiple sources in reverberant environments using
EB-ESPRIT with spherical microphone arrays. In Proceedings of the IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), Prague, Czech Republic, 22–27 May 2011; pp. 117–120. [CrossRef]

13. Vallet, P.; Mestre, X.; Loubaton, P. Performance Analysis of an Improved MUSIC DoA Estimator. IEEE Trans. Signal Process. 2015,
63, 6407–6422. [CrossRef]

14. Liaquat, M.U.; Munawar, H.S.; Rahman, A.; Qadir, Z.; Kouzani, A.Z.; Mahmud, M.A.P. Sound Localization for Ad-Hoc
Microphone Arrays. Energies 2021, 14, 3446. [CrossRef]

15. Jo, B.; Choi, J.W. Direction of arrival estimation using nonsingular spherical ESPRIT. J. Acoust. Soc. Am. 2018, 143, EL181–EL187.
[CrossRef]

16. Birnie, L.I.; Abhayapala, T.D.; Samarasinghe, P.N. Reflection Assisted Sound Source Localization Through a Harmonic Domain
MUSIC Framework. IEEE/ACM Trans. Audio Speech Lang. Process. 2020, 28, 279–293. [CrossRef]

17. Williams, E.G. Fourier Acoustics: Sound Radiation and Nearfield Acoustical Holography; Academic Press: San Francisco, CA, USA, 1999.
18. Stefanakis, N.; Pavlidi, D.; Mouchtaris, A. Perpendicular Cross-Spectra Fusion for Sound Source Localization with a Planar

Microphone Array. IEEE/ACM Trans. Audio Speech Lang. Process. 2017, 25, 1821–1835. [CrossRef]
19. Coteli, M.B.; Olgun, O.; Hacihabiboglu, H. Multiple Sound Source Localization with Steered Response Power Density and

Hierarchical Grid Refinement. IEEE/ACM Trans. Audio Speech Lang. Process. 2018, 26, 2215–2229. [CrossRef]
20. Ma, N.; Gonzalez, J.A.; Brown, G.J. Robust Binaural Localization of a Target Sound Source by Combining Spectral Source Models

and Deep Neural Networks. IEEE/ACM Trans. Audio Speech Lang. Process. 2018, 26, 2122–2131. [CrossRef]
21. Dai, W.; Chen, H. Multiple Speech Sources Localization in Room Reverberant Environment Using Spherical Harmonic Sparse

Bayesian Learning. IEEE Sens. Lett. 2019, 3, 7000304. [CrossRef]

http://doi.org/10.1109/ACCESS.2019.2963768
http://doi.org/10.1109/TASSP.1976.1162830
http://doi.org/10.1109/icassp.2002.5745267
http://doi.org/10.1109/TASLP.2017.2736067
http://doi.org/10.1109/TSP.2004.828896
http://doi.org/10.1109/TASLP.2016.2598319
http://doi.org/10.1109/icassp40776.2020.9053656
http://doi.org/10.1109/TASLP.2014.2337846
http://doi.org/10.1109/waspaa.2019.8937221
http://doi.org/10.1121/1.428310
http://doi.org/10.1109/icassp.2011.5946342
http://doi.org/10.1109/TSP.2015.2465302
http://doi.org/10.3390/en14123446
http://doi.org/10.1121/1.5026122
http://doi.org/10.1109/TASLP.2019.2953000
http://doi.org/10.1109/TASLP.2017.2718733
http://doi.org/10.1109/TASLP.2018.2858932
http://doi.org/10.1109/TASLP.2018.2855960
http://doi.org/10.1109/LSENS.2018.2890129


Sensors 2022, 22, 1011 23 of 23

22. Yang, B.; Liu, H.; Pang, C.; Li, X. Multiple Sound Source Counting and Localization Based on TF-Wise Spatial Spectrum Clustering.
IEEE/ACM Trans. Audio Speech Lang. Process. 2019, 27, 1241–1255. [CrossRef]

23. Kraljevic, L.; Russo, M.; Stella, M.; Sikora, M. Free-Field TDOA-AOA Sound Source Localization Using Three Soundfield
Microphones. IEEE Access 2020, 8, 87749–87761. [CrossRef]

24. Chu, N.; Ning, Y.; Yu, L.; Liu, Q.; Huang, Q.; Wu, D.; Hou, P. Acoustic Source Localization in a Reverberant Environment Based
on Sound Field Morphological Component Analysis and Alternating Direction Method of Multipliers. IEEE Trans. Instrum. Meas.
2021, 70, 6503413. [CrossRef]

25. SongGong, K.; Chen, H.; Wang, W. Indoor Multi-Speaker Localization Based on Bayesian Nonparametrics in the Circular
Harmonic Domain. IEEE/ACM Trans. Audio Speech Lang. Process. 2021, 29, 1864–1880. [CrossRef]

26. Hu, Y.; Abhayapala, T.D.; Samarasinghe, P.N. Multiple Source Direction of Arrival Estimations Using Relative Sound Pressure
Based MUSIC. IEEE/ACM Trans. Audio Speech Lang. Process. 2021, 29, 253–264. [CrossRef]

27. Stoter, F.R.; Chakrabarty, S.; Edler, B.; Habets, E.A.P. CountNet: Estimating the Number of Concurrent Speakers Using Supervised
Learning. IEEE/ACM Trans. Audio Speech Lang. Process. 2019, 27, 268–282. [CrossRef]

28. Dehghan Firoozabadi, A.; Abutalebi, H.R. SRP-ML: A Robust SRP-based speech source localization method for Noisy
environments. In Proceedings of the 18th Iranian Conference on Electrical Engineering (ICEE), Isfahan, Iran, 11–13 May
2010; pp. 2950–2955.

29. Dehghan Firoozabadi, A.; Irarrazaval, P.; Adasme, P.; Zabala-Blanco, D.; Palacios-Játiva, P.; Durney, H.; Sanhueza, M.; Azurdia-
Meza, C. Three-dimensional sound source localization by distributed microphone arrays. In Proceedings of the 29th European
Signal Processing Conference (EUSIPCO), Dublin, Ireland, 23–27 August 2021; pp. 196–200. [CrossRef]

30. Doclo, S.; Moonen, M. Robust Adaptive Time Delay Estimation for Speaker Localization in Noisy and Reverberant Acoustic
Environments. EURASIP J. Adv. Signal Process. 2003, 2003, 495250. [CrossRef]

31. Garofolo, J.S.; Lamel, L.F.; Fisher, W.M.; Fiscus, J.G.; Pallett, D.S.; Dahlgren, N.L.; Zue, V. TIMIT Acoustic-Phonetic Continuous
Speech Corpus LDC93S1; Web Download; Linguistic Data Consortium: Philadelphia, PA, USA, 1993. Available online: https:
//catalog.ldc.upenn.edu/LDC93S1 (accessed on 15 August 2021).

32. Cetin, O.; Shriberg, E. Analysis of overlaps in meetings by dialog factors, hot spots, speakers, and collection site: Insights for
automatic speech recognition. In Proceedings of the Interspeech, Pittsburg, PA, USA, 17–21 September 2006; pp. 293–296.

33. Allen, J.B.; Berkley, D.A. Image method for efficiently simulating small-room acoustics. J. Acoust. Soc. Am. 1979, 65, 943–950.
[CrossRef]

34. Momenzadeh, H. Speaker Localization Using Microphone Arrays. Master’s Thesis, Yazd University, Yazd, Iran, 2007.
35. Jia, M.; Wu, Y.; Bao, C.; Wang, J. Multiple Sound Sources Localization with Frame-by-Frame Component Removal of Statistically

Dominant Source. Sensors 2018, 18, 3613. [CrossRef]

http://doi.org/10.1109/TASLP.2019.2915785
http://doi.org/10.1109/ACCESS.2020.2993076
http://doi.org/10.1109/TIM.2021.3077670
http://doi.org/10.1109/TASLP.2021.3079809
http://doi.org/10.1109/TASLP.2020.3039569
http://doi.org/10.1109/TASLP.2018.2877892
http://doi.org/10.23919/EUSIPCO54536.2021.9616326
http://doi.org/10.1155/S111086570330602X
https://catalog.ldc.upenn.edu/LDC93S1
https://catalog.ldc.upenn.edu/LDC93S1
http://doi.org/10.1121/1.382599
http://doi.org/10.3390/s18113613

	Introduction 
	Distributed Microphone Array 
	Microphone Signal Model in SSL Applications 
	The Proposed T-Shaped Circular Distributed Microphone Array for SSL 

	The Proposed SSL Algorithm in Combination with Distributed Microphone Array 
	Results and Discussions 
	Data Recording and Simulation Conditions 
	The Evaluation’s Scenarios 
	The Results on Simulated and Real Data 

	Conclusions 
	References

