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Abstract. 3D surface matching is fundamental for shape registration,
deformable 3D non-rigid tracking, recognition and classification. In this
paper we describe a novel approach for generating an efficient and opti-
mal combined matching from multiple boundary-constrained conformal
parameterizations for multiply connected domains (i.e., genus zero open
surface with multiple boundaries), which always come from imperfect
3D data acquisition (holes, partial occlusions, change of pose and non-
rigid deformation between scans). This optimality criterion is also used
to assess how consistent each boundary is, and thus decide to enforce or
relax boundary constraints across the two surfaces to be matched. The
linear boundary-constrained conformal parameterization is based on the
holomorphic differential forms, which map a surface with n boundaries
conformally to a planar rectangle with (n− 2) horizontal slits, other two
boundaries as constraints. The mapping is a diffeomorphism and intrin-
sic to the geometry, handles an open surface with arbitrary number of
boundaries, and can be implemented as a linear system. Experimental
results are given for real facial surface matching, deformable cloth non-
rigid tracking, which demonstrate the efficiency of our method, especially
for 3D non-rigid surfaces with significantly inconsistent boundaries.

1 Introduction

In recent decades, there has been a lot of research into surface representations
for 3D surface analysis, which is a fundamental issue for many computer vi-
sion applications, such as 3D shape registration, partial scan alignment, 3D
object recognition, and classification [1,2,3]. In particular, as 3D scanning tech-
nologies improve, large databases of 3D scans require automated methods for
matching and registration. However, matching surfaces undergoing non-rigid de-
formation is still a challenging problem, especially when data is noisy and with
complicated topology. Different approaches include curvature-based representa-
tions [4,5], regional point representations [2,6], spherical harmonic representa-
tions [7,8], shape distributions [9], multi-dimensional scaling[10], local isometric
mapping [11], summation invariants [12], landmark-sliding [13], physics-based
deformable models [14], Free-Form Deformation (FFD) [15], and Level-Set based
methods [16]. However, many surface representations that use local geometric
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(a)Original surfaces (b)Conformal slit mappings to rectangular domains

Fig. 1. Multiple slit mappings. The columns in (b) correspond to mouth, left-eye and
right-eye boundary condition from left to right, where the optimal mouth, left-eye and
right-eye area distortions are induced respectively. Optimal conformal parameteriza-
tions are chosen for different regions on the surface.

invariants can not guarantee a global convergence and might suffer from local
minima in the presence of non-rigid deformations. To address this issue, many
global parameterization methods have been developed recently based on con-
formal geometric maps [17,18,19,20,21,22]. Although the previous methods have
met with a great deal of success in both computer vision and graphics, there
are three major shortcomings in conformal maps when applied to matching of
real discrete data such as the output of 3D scanners: 1) complicated topology of

the inputs, 2) area distortions and 3) inconsistent boundaries. In this paper we
will address the above three issues by introducing a novel linear algorithm for
multiply connected surfaces based on holomorphic differentials.

Most existing conformal mapping methods can only handle surfaces with the
simplest topology, namely, genus zero surface with a single boundary. In reality,
due to partial occlusion, noises, arbitrary surface patch acquired by a single scan
by a camera-based 3D scanner, eg. face frontal scan, cloth, machine parts etc, is
a genus zero surface with arbitrary number of holes, which are called multiply
connected domains. The only previous existing conformal geometric method that
can handle such surfaces is the Ricci Flow (RF) method in [23]. But RF is highly
non-linear, hence much slower than linear methods. All linear methods, such as
harmonic maps [18] and Least-Squares Conformal Maps (LSCMs) [20], are not
guaranteed to generate diffeomorphisms between multiply connected domains. In
this work, we introduce a novel method to handle multiply connected domains,
without any restriction on the number of holes. The mappings generated by the
harmonic maps and LSCMs can have flip overs. The mapping computed by RF
is globally one-to-one, whereas our current method preserves the bijectiveness
and improves the speed by tens of times faster.

The second major disadvantage of conformal mapping is that while it guar-
antees no angle distortions, it may introduce large area distortions. If a large
portion of the surface shrinks to a tiny area on the parameter domain, which
would make matching problematic. In order to tackle this problem, we propose
to combine multiple mappings. For a given surface, there are infinite conformal
mappings to flatten it onto the plane. For a given area on the surface, the area
distortions induced by different mappings vary drastically. For each part of the
surface, we can pick a specific conformal mapping, which would enlarge this part
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and shrink the remaining parts. For example, Fig. 1 shows different conformal
mappings for the same face surface. Three mappings enlarge the areas surround-
ing the mouth, the left eye and the right eye respectively. By combining matching
results, we can get a better result and overcome the shrinkage problem.

The third issue we address is that conventional conformal geometric methods
cannot handle surfaces with unreliable boundaries. In reality, many surfaces have
multiple boundaries, where matching on the boundaries is crucial. Even more
important, boundaries on 2.5D scans are sensitive to motion, noise, object pose,
etc, and hence methods like harmonic maps [17,18,19] fail when the requirement
for a constant boundary changes.

Hence we present three contributions:

The first contribution of this paper is to develop an algorithm which combines
the results of several matches based on different conformal maps of the surfaces to
be matched. Although a conformal mapping has no angle distortion, it introduces
highly non-uniform area distortion. In order to avoid aliasing problems while
matching, by selecting multiple conformal maps, we can ensure that all parts of
the surface map to areas of equivalent size, albeit not on the same map. We can
then combine all these locally optimal matching results, thus improving overall
matching accuracy.

Our second contribution is to design flexible boundary conditions for match-
ing. Some boundaries of the scanned surfaces are inconsistent among frames
whereas other boundaries are more reliable. In our method, we map reliable
boundaries across surfaces to be matched and allow the image of a boundary to
slide on the target boundary. If the boundary is not reliable, we set it free. We
also integrate feature constraints in the algorithm. Taking advantage of mean-
ingful features is essential for any matching or registration method. In the case of
large non-rigid deformations, matched features allow accurate description of the
deformations. In the extreme case matching can be achieved based on feature
constraints only, without any boundary constraints.

Our final contribution is to introduce a novel matching method for multiply
connected domains based on canonical conformal mappings in conformal geom-
etry. All multiply connected domains can be conformally mapped to canonical
planar domains, which are annuli with concentric circular slits or rectangles with
horizontal slits, as shown in Fig. 2. The resulting map does not have any sin-
gularities and is a diffeomorphism, i.e., one-to-one and onto. These maps are
stable, insensitive to resolution changes, and robust to noise. Hence, the orig-
inal 3D surface-matching problem simplifies to a 2D image-matching problem
of the conformal geometric maps, which is better understood [24,25].This is the
first time this mapping method is applied in the computer vision field. Multiply
connected domains are the most difficult cases in conformal geometry. This first
application of the following theorem leads to a highly efficient method handling
genus 0 surfaces with multiple holes with linear complexity.

Theorem 1 ((Canonical Mappings of Multiply Connected Domain)).
The function φ effects a one-to-one conformal mapping of S onto the annulus

minus n − 2 concentric arcs.
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(a)Multi. conn. (b)Circular slit (c)Conformal text. (d)Parallel slit (e)Conformal text.
domain S map φ mapp. by φ map log φ mapp. by log φ

Fig. 2. Conformal mapping of multiply connected domains (best viewed in color). This
scan of the human face surface is a multiply connected domain with 4 boundaries. It
is conformally mapped to an annulus with concentric circular slits by a circular slit
mapping φ1, shown in (b). The boundaries γ0, γ1 are mapped to outer and inner circles,
γ2, γ3 are mapped to circular slits. The parallel slit map log φ1 is shown in (d). (c) and
(e) show that the circular and parallel slit mappings are conformal.

The rest of the paper is organized as follows: the theoretic background and
linear algorithm for computing the slit mapping of multiply connected domains
are introduced in Sect. 2. The algorithms for 3D surface matching and reliable
boundary selection are proposed in Sect. 3. Experimental results are presented
in Sect. 4, and we conclude with discussion and future work in Sect. 5.

2 Algorithm for Slit Mapping

All surfaces embedded in R
3 have the induced Euclidean metric g. A conformal

structure is an atlas, such that on each local chart, the metric can be represented
as g = e2u(dx2+dy2). A surface with a conformal structure is a Riemann surface,
therefore, all surfaces in R

3 are Riemann surfaces.
A harmonic 1-form τ on a Riemann surface can be treated as a vector field

with zero circulation and divergence. A holomorphic 1-form ω can be treated
as a pair of harmonic 1-forms, ω = (τ1, τ2), such that τ2 can be obtained by
rotating τ1 about the normal by 90◦. We say τ2 is conjugate to τ1, and denoted
as ∗τ1 = τ2. It is convenient to use the complex representation of holomorpic
1-forms, ω = τ1 +

√
−1τ2. All the holomorphic 1-forms form a group, which is

isomorphic to the first cohomology group H1(S, R).
A topological genus zero surface S with multiple boundaries is called a mul-

tiply connected domain. Suppose the boundary of S is a set of loops ∂S =
{γ0, γ1, · · · , γn}, where γ0 is the exterior boundary. Then a set of basis of holo-
morphic 1-forms can be found, ω1, ω2, · · · , ωn, such that the integration of ωi

along γj equals to δij . Special holomorphic 1-forms can be found, such that

Im(

∫

γi

ω) =

⎧

⎨

⎩

2π i = 0
−2π i = 1

0 otherwise

(1)

then if we choose a base point p0 on the surface, for any point p, we choose

arbitrary path γ on the surface, define a complex function φ(p) = e
R

γ
ω, which
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maps the surface to an annulus. γ0 is mapped to the outer boundary, γ1 to the
inner boundary, and all other boundaries are mapped to the concentric circular
slits. Then the (complex) logarithm of φ maps the surface periodically to a
rectangle, with all the circular slits mapped to horizontal slits. We call φ a
circular slit mapping, log φ a horizontal slit mapping.

The algorithm for computing slit mapping is straight forward, first we compute
a set of holomorphic 1-form basis of the surface, {ωi}. Then we find a holomorpic
1-form represented as the linear combination of the basis ω =

∑

λiωi, such that
Equation (1) holds. Details can be found in [26].

3 Algorithm for Surface Matching

Suppose S1 and S2 are two multiply connected domains, then our goal is to find
an one to one map f : S1 → S2, which is as close to an isometry as possible.
Instead of matching the two surfaces in R

3 directly, we find two conformal maps
φk : Sk → Dk, k = 1, 2 which map the surface to the planar domains Dk, then
we compute a planar map between the planar domains f̃ : D1 → D2. Then the
matching is the composition f = φ−1

2 ◦ f̃ ◦ φ1, also described in [23].
In theory, if f is isometric and the boundary conditions are consistently set,

then f̃ is an identity. In our applications for face matching and cloth tracking,
the mappings are close to isometry. Therefore, the planar mappings are near to
the identities. This greatly simplifies the matching process.

We first explain the metric to measure the matching quality of a simple match-
ing, then how to choose good parameterizations for optimal area distortions and
how to detect the consistency between boundaries. Then we explain in detail the
matching process based on a single parameterization, and finally the algorithm
to fuse multiple matching results.

3.1 Optimality Criterion

Since we want to combine matching results, a metric is needed to measure the
quality of the match. Let S1, S2 be the surfaces, f : S1 → S2 be the match
(non-rigid in general), we want our criterion to measure the distance between
the match f and a rigid motion. Our proposed criterion is based on the theorem
[27]:

Theorem 2. Suppose S is a surface with conformal parameters (u, v), the Rie-

mannian metric is represented as e2λ(u,v), the mean curvature is H(u, v). Then

S is determined by λ and H uniquely up to a rigid motion in R
3.

where e2λ measures the area distortion, and called the conformal factor. Suppose
S1, S2 have been conformally mapped to the plane with conformal factors λ1, λ2,
and their mean curvatures are H1 and H2, p ∈ S1 and mapped to f(p) ∈ S2.
Therefore, we define the match energy as our optimality criterion:

E(f) =

∫

S1

|λ1(p) − λ2(f(p))|2 + |H1(p) − H2(f(p))|2dp. (2)
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If the matching energy is 0, then the match must be rigid motion. Thus, the
smaller the energy the better the match.

The conformal factor can be approximated in the following way: Suppose

v ∈ S is a vertex, φ : S → D is a conformal map, λ(v) =
P

v∈f A(f)
P

v∈f A(φ(f)) , where

f is a face adjacent to v, A(f) is the original area of the face f , A(φ(f)) is the
area of the planar image of f .

The mean curvature can be approximated as H(p)n(p) = 1
2∆r(p), where n(p)

is the normal vector at p, r(p) is the position vector, ∆ is the Laplace-Beltrami
operator, which can be approximated using the cotan formulae [19].

3.2 Choice of Conformal Parameterization

In theory, there are infinite conformal mappings for a given surface. We can only
afford to compute few of them. The following is our method to choose optimal
parameterizations for different regions on the surface.

First, we partition the surface to regions using the curved surface equivalent
of Voronoi Diagrams. We compute the shortest distance from each vertex to all
interior boundaries, choose the closest boundary, and label the vertex. We put all
the vertices with the same label in the same region. The outer boundary of the
scanned surface is usually noisy and inconsistent, therefore, we do not compute
the Voronoi region adjacent to it.

Second, for each interior boundary γi, we choose a conformal parameteriza-
tion, which maps the γi as the exterior boundary on the parameter domain.
Then the region associated with γi has the optimal area distortion on the pa-
rameterization.

For example, for a human face with eyes and mouth open, we partition the
face into 3 regions, surrounding the left, right eyes and the mouth respectively.
As shown in Fig. 1, the conformal parameterizations in the 2nd, 3rd and 4th
columns have optimal area distortions for the mouth region, the left eye and the
right eye regions respectively.

3.3 Boundary Consistency Checking

Suppose Sk, k = 1, 2 are two surfaces with the same number of boundaries,
∂Sk = {γk

1 , γk
2 , · · · , γk

n}, where γk
i is the i-th boundary loop on Sk. Also we

assume the correspondence between boundaries (i.e. mouth to mouth, left eye to
left eye, etc.) is known. Then we choose two boundary loops and without loss of
generality, assume they are γk ∈ ∂Sk. The following procedure detects whether
the two boundaries are consistent or not.

1. Compute conformal mapping φk : Sk → Dk, which maps γk to the outer
boundary of planar domain Dk.

2. Compute the conformal factor λk and mean curvature Hk for Sk.
3. Find an affine mapping f : D1 → D2. Measure the matching energy of

Equation (2) in the neighborhood of the outer boundary of Dk, and if this
energy is greater than a given threshold, then the boundary loops γ1 and γ2

are inconsistent, otherwise, they are consistent.
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According to conformal geometric theory, the image of each conformal map-
ping must be a rectangle; affine mapping can match different rectangles with
minimal stretching energy. Our process can detect inconsistencies by trying all
boundary combinations, and picking the one with least matching energy.

3.4 Simple Matching

The following steps explain the process for a matching based on a single param-
eterization:

1. Compute a conformal mapping φk : Sk → Dk.
2. Let the corresponding feature points on Sk be Fk = {pk

1 , p
k
2 , pk

3 , · · · , pk
m}.

Compute a harmonic map f̃ : D1 → D2, such that ∆f = 0, with the
following constraints:
(a) Feature constraints: f̃(φ1(p

1
i )) = φ2(p

2
i ), ∀pk

i ∈ Fk.
(b) Boundary constraints: f̃(φ1(γ

1
i )) = φ2(γ

2
i ), if γ1

i ∈ ∂S1 and γ2
i ∈ ∂S2 are

consistent.
3. The simple matching is given by f = φ−1

2 ◦ f̃ ◦ φ1.

The algorithm is applied on discrete meshes. We refer readers to [18] for details
of computing harmonic maps, which is equivalent to solve a Dirichlet problem
with boundary conditions. The final mapping is represented as follows: Suppose
v ∈ S1 is a vertex on the first mesh, f(v) is a point p ∈ S2 on the second surface,
and p is on a face [v1, v2, v3] ∈ S2, such that p = µ1v1 + µ2v2 + µ3v3, where
(µ1, µ2, µ3) are the barycentric coordinates of p in [v1, v2, v3]. Then we represent
f(v) as a pair

f(v) = ([v1, v2, v3], (µ1, µ2, µ3)), (3)

and call it a natural representation of the matching f .
Figure 3 illustrates a simple matching. The face surfaces in the first column

need to be matched. The second column shows a conformal mapping to a rect-
angular domain, where γk

0 are mapped to the top, γk
1 are mapped to the bottom.

Our algorithm found that γ1
0 and γ2

0 are inconsistent, γ1
1 and γ2

1 are consistent.

γ2 γ3

γ1

γ0

(a)
γ0

γ1

γ2 γ3

(b)

γ0

γ1

γ2 γ3

(c)
γ0

γ1

γ2 γ3

(d)

Fig. 3. Matching using boundary and feature constraints (best viewed in color). SIFT
points [28] on the texture are color encoded. (a) is mapped to (b). (c) slit map for (b).
(d) simple matching result. In (d), boundary γ1 (mouth boundary) is deemed consistent
using the algorithm in Sect. 3.3 and enforced to match, whereas boundary γ0 (outer
boundary) is deemed inconsistent and left free. Hence the quality of the match is due
to the combination of boundary and interior feature point constraints.
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Therefore, the harmonic map aligns the feature points as well as φ1(γ
1
1) with

φ2(γ
2
1), but φ1(γ

1
0) remains free.

3.5 Fusion of Matches

Suppose we have computed several simple matchings fi : S1 → S2, with natural
representations given by Equation 3. By selecting multiple conformal maps, we
can ensure that all parts of the surface map to areas of equivalent size, albeit
not on the same map. We can then combine all these locally optimal matching
results, using the following algorithm: Given a vertex v ∈ S1,

1. Find a neighborhood of v on S1, Nk(v) = {[v1, v2, v3] ∈ S1|d(v, vi) < k, i =
1, 2, 3}, where d(v,vi) is the number of edges of the shortest path from v to
vi. In our implementation, we choose k around 4.

2. Compute the matching energy of fi restricted on N(v), denoted as E(fi|N(v)).
If there is no image of v in fi, we set E(fi|N(v)) be ∞. The energy is repre-
sented as an integration and computed by conventional Monte Carlo method.
(a) Randomly generate N sample points {p1, p2, · · · , pN} in Nk(v) with uni-

form distribution.
(b) Compute their images {q1, q2, · · · , qN}, qj = fi(pj).
(c) Estimate the energy as

∑N
j=1[λ(pj) − λ(qj)]

2 + [H(pj) − H(qj)
2]

N
.

3. Set the combined map as f(v) = fk(v), k = minj E(fj |N(v)).

In extensive testing of the combined matching algorithm for fine enough input
meshes, the combined mappings are one-to-one and onto.

4 Experimental Results

This work handles 3D moving deformable data with complex topologies, which
are very difficult to acquire. Data availability limits our experimental datasets,
which however are still very challenging for existing methods. We thoroughly
tested our algorithms on 50 facial scans (Face1-4, each set including more than
10 faces) with different expressions and posture, and 15 scans for deformable
clothes. The face surfaces are topological three-hole annuli, the cloth surfaces
are topological disks. These surfaces are representative because of their general
topologies, with big distortions and very inconsistent boundaries. Such difficult
experiments sufficiently support the generality and effectiveness of our method.

Tracking Deformable Cloth Surfaces. We tested our algorithm for tracking de-
formable cloth surfaces. The cloth surfaces are captured by the 3D scanner in-
troduced by [29]. Each frame has about 10K vertices and 20K faces. The cloth
surface is a quadrilateral (i.e., only one simple boundary). Its parallel slit map-
ping can be automatically computed through the preprocessing of double cover-
ing [19], which makes the surface a topological annulus (with two boundaries).
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(a) (b) (c) (d) (e) (f) (g) (h)

Fig. 4. Matching deforming cloth surfaces. (a) and (c) are two cloth surfaces, (b) and
(d) are each rectangular parameter domain. The computing process for (c) is shown
by (e-h): (e) double-covered surface, (f) circular map, (g) rectangular map, (h) half-
circular map, then get the rectangular domain (d).

A B C D E F

Fig. 5. Cloth tracking sequences (A-F) with consistent texture coordinates. The con-
sistently deformable tracking can be observed from the checker board texture motion.

Fig. 6. Non-rigid matching and registration for Face1(A1-C1 with expression change
and mouth closed, visualized by consistent checkerboard texture)

Fig. 4 illustrates the process of computing the rectangular mapping. It also
demonstrates the simple matching between two frames. The tracking is based
on the matchings frame by frame. In order to visualize the tracking results, we
put checkerboard textures to the first frame, and propagated the texture param-
eters to the other frames, through the correspondences from tracking, see Fig. 5.
The checkerboard textures are consistent across frames, without oscillating ef-
fects, or checker collapse. Thus we demonstrate that the matching between two
frames is a diffeomorphism, and the tracking is stable and automatic.

Matching Facial Surfaces. Figures 6, 7 and 8 illustrate our experimental results
on matching and registering two human faces with different expressions and
inconsistent boundaries, acquired by the method in [18] with greyscale texture.
The feature points were computed directly using SIFT [28] algorithm on the
textures. The figures show how the boundaries are noisy and inconsistent.
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Fig. 7. Non-rigid matching and registration for Face2(A2-C2 with eye, mouth motion)

Fig. 8. Non-rigid matching and registration for Face3(A3-C3 with mouth motion, pose
change). The rotation is about 30◦. The snapshots in the left and right are taken from
the original and frontal view respectively. The boundaries are significantly different.

(a) (b)

Fig. 9. Combined matching (best viewed in color): (a) the combined map, where the
image of each vertex is selected from three simple matchings. The choices are color
encoded; (b) the complete and zoomed in meshes.

Figure 9 shows the combined matching, where the colors indicate the choices
from simple matchings. The selection metric depends on the matching energy
defined in Equation 2. Intuitively, the energy measures the matching distortion.
According to differential geometry, if the number is 0, then the matching must
be a rigid motion. Thus the smaller the energy the better the matching. Table 1
demonstrates that the combined matching has the optimal accuracy.

Matching for Faces with Pose Change. Figure 8 shows our matching results for
three faces scanned from different poses. The rotation is about 30◦. Even though
the exterior boundaries are very different as can be seen in the right, the matches
are consistent in the mapped textures.

For the surfaces with significantly inconsistent outer boundaries, we tested two
kinds of simple matching conditions on them, enforced and relaxed matching.
Figure 10 illustrates both of the matching results.

We compared our current method based on holomorphic differentials (HD)
with several other existing methods.
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Fig. 10. Matching of significantly inconsistent boundaries of Face4

(a) Surfaces (b) Harmonic Map (c) LSCM (d) Ricci Flow (e) Holo. Diff.

Fig. 11. Comparison of geometric mappings for multiply connected domains. (b) HM
makes the boundary areas much stretched. (c) LSCM generates self-intersections de-
pending on two prescribed feature points. (d) and (e) are one-to-one and onto.

Table 1. Matching energy: R1,2,3 are the areas around the mouth, the left eye and
the right eye respectively, and Map1,2,3 are the slit maps induced by each area. The
number represents the matching energy of each region under each simple matching.

Face1 R1 R2 R3 Total

Comb 0.439 0.217 0.076 0.732
Map1 0.439 18.788 21.422 40.649
Map2 13.645 0.217 13.995 27.857
Map3 24.259 8.646 0.076 32.981

Face2 R1 R2 R3 Total

Comb 0.138 0.094 0.117 0.349
Map1 0.138 37.634 29.920 67.692
Map2 35.151 0.094 14.228 49.473
Map3 34.990 24.672 0.117 59.779

Matching Accuracy. We tested the matching accuracy of three methods: Iterative
Closest Point (ICP) [30], Holomorphic Differentials (HD) and Ricci Flow (RF)
[23]. As a baseline system, ICP is one of the most popular 3D shape matching
method and has relatively good performance. RF is the only previous method
to compute the matching for multiple connected domains. Our current method
combines multiple mappings, which overcomes the area distortion issue, whereas
RF only uses one mapping. The matching error is measured for facial surfaces and
cloth surfaces by computing the relative Hausdorff average distance (RHAD) un-
der ICP, HD and RF. We matched the first frame to others within each class and
got the average match error as follows: Face1(0.028, 0.009, 0.007), Face2(0.021,
0.014, 0.010), Face3(0.089, 0.020, 0.016) and Face4(0.074, 0.015, 0.012) for (ICP,
RF, HD); Cloth(0.0258, 0.0003) for (ICP, HD). For all the tested experiments,
our method HD outperforms both the ICP and RF methods.
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Table 2. Computational time

Name Face1 Face2 Face3 Face4 Cloth

Faces 15,000 28,800 14,387 28,148 20,998
Verts 7,698 14,778 7,385 14,376 10,667

Time(s) Face1 Face2 Face3 Face4 Cloth

HD 21 140 20 138 41
RF 610 4412 580 4236 N/A

Table 3. Performance comparison of geometric mapping methods

Harmonic Map LSCM Ricci Flow Holo. Diff.

Is one-to-one map No No Yes Yes

Time complexity Linear Linear Non-linear Linear

Boundary occlusion Sensitive Not sensitive Sensitive Not sensitive

Boundary constraint Needed Not needed Needed Needed

Feature constraint Not needed Two points needed Not needed Not needed

Resolution change Not sensitive Not sensitive Not sensitive Not sensitive

Topology limited Topological Topological Arbitrary Multiply
disk disk surface conn. domain

Efficiency. We implemented our algorithm using generic C++ on Windows XP
and used conjugate gradient optimization without using any linear package. Ta-
ble 2 reports the computational time on a Laptop with CPU 2.00 GHZ, RAM
3.00 GB. RF method is non-linear, while our work is LINEAR and 30 times
FASTER. Other mapping methods for computing such surfaces, like HM and
LSCM, can not guarantee one-to-one map and may generate intersections (see
Fig. 11). The comparison among each mapping method is illustrated in Table 3.

Automaticity and Uniqueness. The method is completely automatic. The set
of holomorphic differential generators are computed automatically. The choice
of holomorphic 1-form for matching is also automatic; basically, each pair of
boundaries uniquely determines a unique 1-form and a unique conformal map.
There is no ambiguity. The best choice of the mapping for each region on the
surface is automatically determined by our algorithm as the one minimizing
Equation (2). Therefore, the choice is unique and rigorous.

5 Conclusion

This work introduces novel methods for 3D surface matching based on multiple
conformal mappings using holomorphic differentials (HD) for multiply connected
domains. We propose a method to choose conformal parameterizations which
minimize area distortions for each region and then combine the local optimal
parameterization to cover the whole surface. An optimality criterion is designed
to assess how consistent each boundary is across the two surfaces to be matched.
That allows us to enforce matching between consistent boundaries while relax-
ing constraints between inconsistent ones. Compared with harmonic maps and
LSCMs, HD method can generate one-to-one mapping and is linear. We tested
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our matching and tracking algorithm on a large amount of 3D facial surfaces and
deformable cloth surfaces with significantly inconsistent boundaries. The exper-
iments demonstrated that our combined matching method got more accuracy
and more efficiency than Ricci Flow method, which is the only previous one-
to-one mapping for multiply connected domains. In the future, we will explore
linear methods for surfaces with more complicated topologies, and the matching
and tracking among surfaces with inconsistent topologies.
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