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Abstract 

This work presents a novel method for nonrigid registration of medical images based on 

the Arimoto entropy, a generalization of the Shannon entropy. The proposed method 

employed the Jensen-Arimoto (JA) divergence measure as a similarity metric to 

measure the statistical dependence between the medical images. Free-form 

deformations were adopted as the transformation model and the Parzen window 

estimation was applied to compute the probability distributions. A penalty term is 

incorporated into the objective function to smooth the nonrigid transformation. The goal 

of registration is to optimize an objective function consisting of a dissimilarity term and 

a penalty term, which would be minimal when two deformed images are perfectly 

aligned using the limited memory BFGS optimization method, and thus to get the 

optimal geometric transformation. To validate the performance of the proposed method, 

experiments on both simulated 3D brain MR images and real 3D thoracic CT data sets 

were designed and performed on the open source elastix package. For the simulated 

experiments, the registration errors of 3D brain MR images with various magnitudes of 

known deformations and different levels of noise were measured. For the real data tests, 

four data sets of 4D thoracic CT from four patients were selected to assess the 

registration performance of the method, including ten 3D CT images for each 4D CT 

data covering an entire respiration cycle. These results were compared with the 

normalized cross correlation and the mutual information methods and show a slight but 

true improvement in registration accuracy. 

 

Keywords: Arimoto entropy, divergence measure, free-form deformations, nonrigid 

registration. 
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1. Introduction 

Image registration is a very common and useful technique in numerous fields including 

medical imaging, computer vision, remote sensing, etc. It plays a major role in medicine for 

multimodal diagnosis and computer-aided surgery (Maintz et al 1998, Hill et al 2001). Due to 

the motion of tissue and organ of the patients, nonrigid deformations must be taken into 

account. This problem can be addressed by using nonrigid geometric registration methods 

aimed at finding the optimal elastic transformation between the two images to be aligned. 

Feature-based and intensity-based alignment methods (Khader et al 2011) are classically 

considered for such purpose. 

For the feature-based registration methods, their accuracy largely depends on the choice 

and the extraction of features, which usually include salient image elements such as corner 

points, edges, ridges, surfaces (Maintz et al 1996), and others. Let us mention, among many 

other schemes, SUSAN (Smith et al 1997) based on the minimization of a local image region 

and SIFT (Lowe 2004) that are invariant to scale and orientation. Szeliski and Coughlan 

introduced a fast registration algorithm for 3D anatomical surfaces (Szeliski and Coughlan 

1997). In their approach, a distance criterion was minimized to search the optimal mapping 

between two surfaces. Another feature-based approach consists of using the moment 

invariants. Flusser and Suk described a blurring geometric moment invariant (Flusser and 

Suk 1998) and deduced a combined blurring and rotation invariant of geometric moment 

which were applied to feature extraction in image registration. On the basis of Flusser’s 

work, Bentoutou et al (2002) utilized the combined invariants for image registration in digital 

subtraction angiography (Bentoutou et al 2002). A robust discriminative clustering method 

based on mutual information of supervoxels is presented to extract the features of brain MRI 

(Kong et al 2015). However, the registration accuracy of feature-based approaches is directly 

determined by the feature extraction quality and completeness. This preprocessing step is not 

trivial in particular in medical imaging where low contrast and noise are observed. 

Another kind of registration methods accounts for intensity-based approaches, in which the 

spatial mapping of the images to be registered relies on the image intensity values, without 

any feature extraction or prior segmentation. Hoh et al (1993) used the sum of absolute 

differences (SAD) and the stochastic sign change (SSC) similarity measures for rigid 

registration of cardiac PET images (Hoh et al 1993). Similarly, the sum of squared 

differences (SSD) was also applied to intra-modality image registration. They all assume that 

the corresponding intensity values of the two images to be aligned are similar. To improve 

the robustness of image registration, the correlation coefficient was proposed by Lemieux et 

al (1994). However, it was pointed out that the correlation coefficient is sensitive to outliers 

(Huber 1981). Even a few outliers may greatly degrade the registration quality as it was 

shown later (Kim and Fessler 2002). To overcome this problem, a robust correlation 

coefficient (Kim and Fessler 2004), serving as registration metrics, was described. However, 

the correlation methods, if of interest for monomodal registration, are not suitable for the 

registration of multisensor (i.e. multimodal) images due to their totally different physics used 

(Maurer et al 1993).  

Another popular framework for intensity-based registration methods is based on the 

concept of information theory. The maximization of mutual information (MI) for multimodal 

image registration was independently introduced by Collignon et al (1995), Wells et al 

(1996), Maes et al (1997), Viola and Wells (1997). Collignon et al (1995) applied the MI 

registration algorithm to human head images and achieved a sub-voxel registration accuracy. 

In the paper by Maes et al (1997), a partial volume interpolation was proposed to estimate the 

marginal and joint image intensity distributions, and so, smoothing the objective function and 
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reducing the number of local maxima. Sub-voxel accuracy, high robustness and good 

immunity to noise and geometric distortion were shown. A new way to compute the image 

entropy and mutual information was reported by Viola and Wells (1997). The MI based 

methods do not require any preprocessing and they have found a large variety of applications. 

However, in some applications, mutual information may fail in registering images, especially 

when the image misalignment is due to a change in the field of view (FOV). To address this 

issue, a method called normalized mutual information (NMI) (Studholme et al 1999), robust 

to a partial overlap of the registered images, was proposed. NMI was defined as a ratio of the 

sum of the marginal entropies and the joint entropy. This approach was validated on MRI-CT 

images with different FOVs. Pluim et al (2000) presented a new information measure by 

combining the MI with gradient information. The matching results of MR-T1 and PET 

images indicated that this new method yielded a better registration than MI and NMI. A 

generalized method using the so-called f-information measure was later reported by the same 

group (Pluim et al 2001) and further extended to a series of other similarity measures, 

including V-information, I!-information, M!-information, "!-information and Rényi measure 

(Pluim et al 2004). Another registration criterion, based on cumulative probability 

distributions, called cumulative residual entropy (CRE) (Wang et al 2003) was proposed 

whose theoretical relations (Rao et al 2004) with Shannon entropy were further analyzed and 

compared with MI-based methods (Wang et al 2007). The CRE measure, being based on the 

cumulative distribution functions (CDF) rather than the probability distribution functions 

(PDF), was shown more robust to noise. 

An alternative information-based approach was introduced by Studholme et al (2006). 

They defined a nonrigid viscous fluid registration scheme, which uses a new similarity 

measure calculated over a set of overlapping sub-regions of the image. A third channel, 

representing a spatial label to extend the intensity joint histogram, was estimated by B-spline 

Parzen windows (Thévenaz et al 2000). A similarity measure called conditional mutual 

information (cMI) (Loeckx et al 2010) was presented. Similarly, cMI was calculated by 

extending the joint histogram to a third dimension, representing the spatial distribution of the 

joint intensities. The Shannon entropy possesses the additivity property, which means that the 

joint entropy of a pair of independent random variables is the sum of the individual entropies.  

However, as correctly indicated by Antolin et al (2010), this property does not take the 

correlation between the variables into account. To overcome this problem, they introduced 

the pseudo-additive Tsallis entropy. 

Inspired by Antolin’s work, we have presented a novel divergence measure called the 

Jensen-Arimoto (JA) divergence as the registration metric for 2D-2D rigid medical 

registration (Li et al 2014).  It was shown that the classic mutual information is a particular 

case of JA divergence as ! = 1, where ! is a parameter appeared in JA divergence measuring 

the departure degree from pseudo-additivity. In this paper, we further investigate the 

concavity of Arimoto entropy and boundedness property of JA divergence and apply it for 

3D nonrigid image registration. We introduce a 3D nonrigid registration technique with JA as 

the similar measure term and bending energy selected as the regularization term. Free-form 

deformations (FFDs) are employed as the transformation model and the limited memory 

Broyden-Fletcher-Goldfarb 

-Shanno (L-BFGS) optimization method is used to optimize the JA divergence. In our 

optimization scheme, we estimate the continuous probability distributions using the B-splines 

Parzen window, so that the analytical gradient of JA divergence can be obtained. 

The rest of this paper is organized as follows. In section 2, we introduce the new 

divergence measure based on Arimoto entropy. The subsequent nonrigid registration method 
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is detailed in section 3. Section 4 provides our experimental results on simulated 3D MR 

brain images and real 3D thoracic CT data with a comparison to the standard nonrigid 

methods based on the mutual information. Concluding remarks and perspectives are sketched 

in section 5. 

2. Theory 

In this section, the Arimoto entropy is introduced and its properties are examined. Then, a 

new divergence called the Jensen-Arimoto divergence is presented and some basic properties 

are derived. 

2.1.  Arimoto Entropy 

Given a random variable X, the Shannon entropy of X is a measure of the amount of 

uncertainty included in the random variable (Cover et al 2006), ( ) ( ) log ( ).
x X

H X p x p x
!

= "#  

Consider another random variable Y, the conditional entropy of X given Y is defined as the 

amount of uncertainty left in X when knowing Y (Maes et al 1997). The mutual information is 

related to the reduction of the entropy of X by the conditional entropy of X given Y, and 

accounts for the degree of disparity between the two random variables. That is, when two 

random variables are independent from each other, the entropy of X is equal to the 

conditional entropy of X given Y so that the value of MI equals to zero, while MI achieves its 

maximum if Y is completely dependent on X. MI has been widely used in statistical 

applications. 

The Arimoto entropy (Arimoto 1971), a generalization of Shannon entropy, was introduced 

by Arimoto and further developed by other researchers (Boekee et al 1980, Liese et al 2006). 

Its definition is given by 

                                      
1

1

( ) 1 ( ) 0, 1
1

M

i

i

A X p
! !

!
! ! !

! =

" #
= $ > %& '$ ( )

*                                    (1) 

where P = (p1, p2, …, pM) denotes the M probability distributions on X. 

Some significant properties of the Arimoto entropy were deduced (Boekee et al 1980). 

Here, we only consider three of them. 

Non-negativity: 

( ) 0 0, 1A X! ! !" > #                                                       (2) 

Pseudo-additivity: 

1
( , ) ( ) ( ) ( ) ( )A X Y A X A Y A X A Y! ! ! ! !

!
!
"

= + "                                   (3) 

Concavity: 

1 2 1 2( (1 ) ) ( ) (1 ) ( ) (0,1)A tX t X tA X t A X t! ! !+ " # + " $                                (4) 

The detailed proof of these properties can be found in Liese et al (2006). In (3), X and Y are 

two independent random variables, A!(X, Y) is the joint Arimoto entropy between X and Y, 

for !!(0, 1) " (1, +#). Unlike the pseudo-additivity of the Arimoto entropy, the joint 

Shannon entropy has the property of additivity when two random variables are independent, 

i.e., H(X, Y) = H(X) + H(Y). Pseudo-addivity means that the Arimoto entropy is a 

nonextensive entropy and the nonextensive property signifies that the correlations between X 

and Y are considered. To demonstrate the utility of this property in image registration 

problem, an illustration will be given in section 4.2. 

As mentioned in section 1, the parameter ! in (3) weights the degree of nonextensivity. The 

nonextensivity gradually becomes weak as the parameter is tending to 1, and the Arimoto 
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entropy also approximates to Shannon entropy that accounts for the complete extensive 

entropy. Figure 1 illustrates the Arimoto entropy of a Bernoulli distribution, P = (p, 1–p), for 

various ! values. It was shown that Arimoto entropy is concave if !!(0, 1) or !!(1, +#). 

Moreover, the limit of the Arimoto entropy is equal to the Shannon entropy when !$1. The 

curve for ! = 1 in figure 1 represents the Shannon entropy, computed using the natural 

logarithm. As shown in figure 1, the measure of uncertainty by Arimoto entropy increases as 

! decreases and is not less than Shannon entropy for 0 < ! < 1, and decreases as ! increases 

and is equal or less than Shannon entropy for ! > 1. 

 

 

Figure 1.  Arimoto entropy A!(p) of a Bernoulli distribution p=(p, 1–p) for various ! values. 

 

2.2.  The Jensen-Arimoto Divergence 

Following the derivation reported in Lin et al (1991), we define a new divergence measure 

based on the Arimoto entropy called the Jensen-Arimoto (JA) divergence and study its 

properties in the sequel. The Jensen-Shannon (JS) divergence was used to measure the 

distance of two random variables and, as we will see, the JA divergence has the same nature 

as JS divergence. 

Definition 1: Let X(x1, x2, …, xM) be a random variable, and 
1 2( , , , )

M
P !!!p p p  be M 

probability distributions on X. The Jensen-Arimoto divergence is defined as 

1 2

1 1

( , , , ) ( )
M M

M i i i i

i i

JA A A! ! !" "
= =

# $% % % = &' (
) *
+ +p p p p p                                 (5) 

 where ( )A! "  is the Arimoto entropy for ! > 0, ! % 1 and "i are weight factors such that 

1
1

M

ii
!

=
="  and "i & 0. When the nonextensive parameter ! tends to 1, Arimoto entropy 

converges to the standard Shannon entropy and the limit of JA divergence in (5) is identical 

to the traditional mutual information using L’Hopital’s rule. In the following, we study the 

properties of the JA divergence. 

Proposition 1: The JA divergence is nonnegative, symmetric and equal to zero if and only 

if all probability distributions are identical to each other for ! !(0,1) " (1,+#). 

Proof: For a real concave function! , with numbers x1, x2, …, xM in its domain, and 

positive weights !i, the Jensen inequality can be stated as 

( ) ( )
i i i i
x x! " "!#$ $ .                                         (6) 
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Due to the concavity of Arimoto entropy, we replace the function " in (6) by the Arimoto 

entropy function and we can easily verify the non-negativity of JA divergence over the 

interval !!(0, 1) " (1, +#). In addition, the JA value will not be changed when we exchange 

any two probabilities of equation (5), which leads to the symmetry of JA divergence. And it 

vanishes (with the identity axiom as a distance) if and only if all probability distributions are 

equal to each other. Here, we can set every pi equal to 1/M, and substitute them into (5), we 

obtain 
1 2( , , , ) 0.

M
JA! " " " =p p p  

Four requirements must be fulfilled for a distance (Li et al 2004): non-negativity, identity 

axiom, symmetry axiom and triangle inequality. The JA divergence is not a true distance 

since it does not satisfy the triangle inequality. Nevertheless, this does not degrade the 

performance of JA as a measure of the disparity among probability distributions. JA has 

similar properties as the mutual information, which measures the amount of information that 

one random variable includes in another random variable. Thus, we can use the JA 

divergence to evaluate the similarity between the two images to be registered. 

Proposition 2: For !! (1, 2], the JA divergence is a convex function of p1, p2,…, pM. 

A detailed proof can be found in Li et al (2014). In the optimization scheme of JA 

divergence, its derivative can be analytically calculated. To ensure the correct image 

alignment during the optimization and to guarantee the feasibility of the optimization method, 

! is restricted to the interval (1, 2] in the rest of this paper. 

Proposition 3: The maximum of JA divergence is obtained when p1, p2, …, pM are 

degenerated distributions, that is, pi = #ij, #ij denoting the Kronecker symbol, and this 

maximum equals to A$(!). 

Since JA divergence is a convex function of p1, p2, …, pM, The proof can be easily verified 

(He et al 2003). Combining propositions 1 and 3, we can see that the JA divergence is 

bounded, 
1 20 ( , , , ) ( )

M
JA A! ! "# $$ $ #p p p . 

3.  Description of the proposed method 

We detail here our nonrigid registration method. Firstly, we need to choose an appropriate 

transformation model. Then, in this transformation space, the JA divergence measure used as 

the registration criterion is derived together with the L-BFGS optimization method. 

 

 
(a)                           (b)                           (c)                          (d) 

 

Figure 2.  Two corresponding slices in MR T1 and MR T2 volumes and the deformation between 

them. (a) The reference image; (b) the deformed float image; (c) a known smooth deformation field to 

generate (b); (d) the corresponding deformation vector. 

  

3.1. Registration Framework 

Given two misaligned images to be registered, one is selected as the float image F, and the 

other considered as the reference image R. As an example, figure 2 depicts the corresponding 

slices in two volumes to be registered: there are, from left to right, the T1-weighted MR and 
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T2-weighted MR images, the true deformation field and the vector field between the two 

images. The image registration process consists to search the optimal transformation between 

F and R. Let x and x' be an arbitrary point in R and its corresponding point in F, respectively. 

The spatial mapping function between the corresponding points in R and F can be formulated 

by 

x (x)Tµ! = ,                                                           (7) 

where Tµ is the transformation function (the global function for rigid or affine registration and 

the local function in case of deformation) with parameters µ. 

 For the 3D case, x = (x, y, z)
T
 and x' = (x', y', z')T

, the registration of F to R can be simply 

described as an optimization problem 

 

* argmin ( o , )

argmin ( ( (x)), (x)),

T D F T R

D F T R

µ
µ

µ
µ

=

=
                          (8) 

where D denotes a suitable dissimilarity measure that achieves its minimum when R(x) and 

F(Tµ(x)) are completely aligned. The symbol “ o ” stands for an operation such that the float 

image is transformed by the space mapping Tµ. 

However, the nonrigid deformation should be generally characterized by a smooth 

transformation. For that, a penalty term is introduced for regularizing the local deformation. 

Taking the regularization term into account, the objective function E is written as 

( )( ( (x)), (x))+ (x) ,E D F T R S Tµ µ!=            (9) 

where # is the weight parameter balancing the tradeoff between D and the smoothness term S. 

To align the deformed float image F(Tµ(x)) with the reference image R(x), the optimal 

parameter set µ minimizing the objective function E must be searched. So, in our registration 

framework, three crucial issues are concerned: the transformation model, the registration 

metrics (i.e. objective function) and the optimization scheme. In the next sections, these 

factors are examined in detail. 

3.2. Transformation Model 

Several popular transformation models including rigid, affine, perspective and curve (elastic) 

mapping models have been reported (Pluim et al 2003). In this paper, we address a nonrigid 

transformation dealing with organ or tissue motion. The local deformations though 

parameterized transformations can be preferably described by the free form deformation 

(FFD) model. In addition, a number of desirable properties of B-splines for modeling the 

deformation, including the inherent control of smoothness and separability in the 

multidimensional case, have been introduced (Wang et al 2007). Therefore, to simulate this 

elastic deformation, the FFD
 

(Mattes et al 2003) based on cubic B-splines as the 

transformation model, is employed. For 3D images, let ( be a nx)ny)nz mesh along the x, y 

and z directions of control points ["i, "j, "k]
T
 with a uniform spacing $. Note that to improve 

the registration efficiency and save calculation time, a rigid or affine registration is often 

applied as a rough initial step before implementing nonrigid registration (Klein et al 2010), 

especially in the presence of a large global displacement (translation or rotation) between two 

images to be registered. In our work, we have chosen two phases of one respiration cycle as 

two registered images, and the large global displacement between them does not exist. So a 

rigid registration is not necessary prior to the nonrigid registration. 

The mesh points serve as parameters of the free form transformation based on B-splines 

and the choice of mesh points determine the amount of nonrigid deformation. Usually, a large 
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spacing of mesh points allows for global nonrigid deformation, while a small spacing 

accounts for local nonrigid deformation. Therefore, we need to choose the mesh point set 

according to the degree of nonrigid deformation between the two test images. 

Then, the 3D transformation at point x = [x, y, z]
T
 can be stated using a linear combination 

of cubic B-spline kernels as 

(3) (3) (3)(x) ,
ji k

ijk

ijk

yx z
Tµ

!! !
µ " " "

# # #
$% &$ $% & % &

= ' (' ( ' () * ) *) *
+                            (10) 

where µijk denotes the vector of deformation coefficients related to the mesh and the control 

points (for its computation, the reader can refer to (Mattes et al 2003)). In the following, we 

adopt the transformation model defined by (10). 

3.3. Registration Criteria 

In the image registration process, the value of the similarity measure for two images is 

expected to be maximum when they are perfectly aligned. However, as stated in section 3.1, 

our purpose is searching for the minimum of a dissimilarity measure. Therefore, in 

accordance with section 3.1, a negative sign is assigned to the JA divergence measure in (5) 

and a new dissimilarity measure D is produced.  

1 2( ( (x)), (x)) ( , , , )
M

D F T R JAµ != " ###p p p          (11) 

Combining (11) and (9), the optimal spatial mapping between F(Tµ(x)) and R(x) can be 

formulated as 

( ) { }*

1 2argmin ( (x)), (x) argmin ( , , , ) ( ( ))
M

E F T R JA S T xµ ! µ
µ

µ "= = # $$ $ +p p p          (12) 

where µ
*
 is the estimated parameters set, pi = pi(F(Tµ(x))|R(x)), 1 * i * M, represents the 

conditional probability distribution of the transformed float image given the reference image. 

Let f = (f1, f2, …, fM) and r = (r1, r2, …, rM) be two sets of the intensity values in F(Tµ(x)) 

and R(x) respectively and M the number of the chosen intensity bins to estimate the 

histogram. Then, the conditional probability can be rewritten as pi = p(F=fj|R=ri) = p(fj|ri). 

The dissimilarity measure D shown in (11) represents the opposite number of the JA 

divergence with different weights and ! values. In (5), we use the marginal probability 

distribution of the reference image as the weight (a prior), that is, "i = p(R(x)) = p(R=ri) = 

p(ri). Substituting "i and pi into (11), the new dissimilarity measure D used in our method is 

given by 

( )

1 2 1 2

1 1

1 1 1 1

1 1

1 1 1

( , , , ) ( , , , )

( ) ( | ) ( ) ( | )
1

= ( , )
1

M M

M M M M

i j i i j i

j i i j

M M M

j i j

j i j

D JA

p r p f r p r p f r

p f p r f
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S(Tµ(x)) in (12) is the penalty term aimed at smoothing the transformation and its expression 

is 
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where V denotes the volume of image domain in which the deformation T defined in (10) is 

estimated. X, Y and Z denote the dimensions of the image domain along the three directions, 

respectively. Generally, the histogram method is used to calculate the marginal probability 

p(ri) and the conditional probability p(fj|ri) involved in (13). Then, the new registration 

criterion defined in (12) is minimized using an optimization method. 

3.4. Optimization 

The search algorithm mainly influences the accuracy and calculation time of a registration 

method. Hence, selecting an appropriate optimization method plays a crucial role in a 

registration framework. Compared to the gradient descent methods, the use of second-order 

information in Newton Raphson algorithm can provide better theoretical convergence 

properties (Klein et al 2007). However, the computation of the Hessian matrix and its inverse 

is time-consuming. As for the quasi-Newton methods, the inverse of Hessian matrix is 

approximated and the second order derivatives of the objective function are not calculated. In 

this paper, we adopt the L-BFGS (Nocedal et al 1980), a popular variant of the quasi-Newton 

approach, to minimize the objective function shown in (12). A second-order Taylor 

approximation (Press et al 2007) of the objective function E at µ is derived as follows 

21
( ) ( ) ( )+ ( ) ,

2

T T
E E E Eµ µ µ µ µ µ µ µ+ ! " + ! #$ ! #$ #!                        (15) 

where E(µ) denotes the objective function in (12) for simplicity, #µ  represents the increment 

of the parameter vector µ and superscript T is the transpose operator. The second term on the 

right hand side of (15) is the directional derivative of E at µ in the direction #µ. For the 

L-BFGS optimization algorithm, the parameter vector µ is updated at iteration number k+1 

using the previous iteration number k as 
( 1) ( ) ( ) 1 ( )( ) ( ),k k k k

H Eµ µ µ+ !
= ! "#                                 (16) 

where the superscript k stands for the iteration number, (H
(k)

)
-1

 is the inverse of Hessian 

matrix for every iteration, and $ denotes the gradient operator. Here, note that the elements 

of (H
(k)

)
-1

 are computed using an approximation instead of the actual Hessian matrix at each 

iteration. In the sequel, we need to compute the derivative of the objective function E with 

respect to µ. An important prerequisite of this method is the calculation of gradients of the 

objective function. The derivative of E is given by 

1 2

, , , ,
n

E E E E

µ µ µ µ

! "# # # #
= $ $ $% &# # # #' (

                                (17) 

where n denotes the number of parameters (degree of freedom, DoF) in the transformation 

model. In our scheme, for the non-rigid registration, the amount of DoFs depends on the size 

of the chosen mesh in FFD model. For example, if the mesh is selected with the size 10 ) 10 

) 10, the number of DoFs can reach about 3000 for 3D images as reported by Rueckert et al 

(1999). The derivative of the penalty term S in the objective function has been already 

reported in Rohlfing et al (2003). Therefore, we only provide in this work the derivative 

calculation of the dissimilarity measure. 

Note that the L-BFGS optimization scheme is stopped if either the difference of objective 
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function value between two consecutive iterations is less than 0.01 or the number of iterations 

reaches a prefixed value NMAX. In our work, NMAX was set to 100. 

3.4.1. Probability estimation 

To avoid the discretization errors and to carry out a robust optimization scheme, the 

analytical gradient of the new dissimilarity measure D needs to be calculated. As the form of 

the probability distributions in (13) is not continuous and differentiable, we adopted a 

Parzen-window to estimate the continuous probability distribution function from the image 

data. Many kernel functions can be used as far as they meet the requirements to be smooth, 

symmetric, to have zero mean and integrate to one (Khader et al 2011). Some popular kernel 

functions involve Gaussian
 
(Tustison et al 2011) and B-spline functions (Thévenaz et al 

2000). In this study, the B-spline functions are used to estimate the marginal and conditional 

probabilities. Let %(0)
 be the zero-order B-Spline function and %(3)

 the cubic B-Spline function. 

Due to the independence of the reference image to the transformation parameters µ, a 

zero-order B-spline was used and the marginal probability distributions of R(x) is expressed 

by 
0

(0)

x

1 (x)
( ) .i i

R

R R
p r r

V b
!

"#

$ %&
= &' ()* +

,!                                           (18) 

For the transformed float image, the cubic B-spline function was used to estimate the 

probability distribution as previously proposed (Wang et al 2005, Khader et al 2011). In this 

case, the estimated probability of F(Tµ(x)) is given by 
0

(3)
( ( ))1

( ) ,j

x

j

F

F T x F
p f f

V b

µ!
"#

$ %&
= &' (' ()* +

,!                                    (19) 

and the joint probability of F(Tµ(x)) and R(x) by 

  

00
(0) (3)

x

( (x))1 (x)
( , ; ) ,i j i j

R F

F T FR R
p r f r f

V b b

µ
µ ! !

"#

$ %&$ %&
= & ' &( )( ) ( )* *+ , + ,

-!                (20) 

where + denotes the image domain in which the marginal and joint probability density 

functions were estimated. V is the total number of voxels in +. In (18), (19) and (20), 

intensity values of the two images are normalized by the minimal intensity values, R
0
, F

0
 and 

the range of the chosen bins width ,bR, ,bF of the reference and float image, respectively.  

3.4.2. Derivative of the proposed dissimilarity measure 

The derivatives of the marginal probability ( )jp f!  and of the joint one ( , ; )i jp r f µ!  with respect 

to µ are 
0

)
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and 
0

(0)

x

0

(3)

(x)

( , ; ) 1 (x)

( (x)) ( (x))( )
|

i j

i

F R

j t T

F

p r f R R
r

V b b

F T F TF t
f

b t µ

µ µ

µ
!

µ

!
µ

"#

=

$ % &'
= ' '( )$ *+ +, -

% &' $$% &.* ' * *( ) ( )( )+ $ $, -, -

/
!

              (22) 

where %'(3)
 is the derivative of the cubic B-Spline function, ( )F t t! !  denotes the simple 

gradient of the transformed float image F(Tµ(x)), ( (x))Tµ µ! !  is calculated by the selected 
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3D FFD transformation model. Referring to the expression of dissimilarity measure in (13) 

and combining it with (21) and (22), we can easily show that the derivative of D is 
1
1

1
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1
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where ( )jp f µ! !!  and ( , )i jp r f µ! !!  represent respectively the derivatives of the estimated 

marginal probability of the transformed float image in (21) and the joint probability stated in 

(22). 

4.  Experiments and results 

To evaluate the nonrigid registration method, two groups of experiments were conducted on 

simulated 3D brain MRI images and real 3D thoracic CT data, respectively. In section 4.1, 

these datasets are described. The simple registration experiments are carried out on several 

model images in section 4.2. The performance of our method in terms of registration 

accuracy and noise immunity is exemplified through simulations in section 4.3 and compared 

with MI technique. Its interest in solving the elastic registration of real CT data is shown in 

Section 4.4. Finally, the overall results are analyzed. 

Our nonrigid registration method based on JA divergence was implemented in the 

registration package elastix (Klein et al 2010) available at http://elastix.isi.uu.nl. This 

package is based on the Insight Toolkit (ITK) (Ibáñez et al 2005). In this work, all 

experiments were performed on a 2.33 GHz and 6 GB memory PC. 
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Figure 3.  Three orthogonal central planes in the simulated MR brain volumes. Columns: axial, sagittal 

and coronal slices of the MR volumes. Rows 1 to 3 denote MR T1, MR T2 and MR PD images, 

respectively. 

 

4.1. Test data 

4.1.1 Simulated brain MRI images 

The simulated data were obtained from the Brainweb database of the Montreal 

Neurological Institute (Cocosco et al 1997). They contain 3D brain MRI volumes simulated 

through three different protocols: T1-weighted, T2-weighted and Proton Density-weighted 

(PD-weighted) with various slice thicknesses, noise levels and intensity non-uniformities. 

The size of the volumes (with voxel coding on 8 bits) is 181 ) 217 ) 181 voxels with a voxel 

size 1mm ) 1mm ) 1mm. All corresponding slices in these volumes were aligned with each 

other. In the simulated experiments, the corresponding volumes from MR T1 & MR PD pairs 

were chosen for evaluation. MR T1 volume served as the reference image and MR PD 

volume as the float image to be aligned using a known 3D nonrigid transformation (with the 

true value T0). Figure 3 depicts three orthogonal central slices (i.e. axial, sagittal and coronal) 

used in our protocol. 
 

4.1.2  Real 3D thoracic CT data 

Experiments were also conducted on forty 3D thoracic CT images acquired from four 4D CT 

sequences of four patients. These data were obtained on a Brilliance Big Bore 16-slice CT 

scanner (Philips Medical Systems, Cleveland, OH) and were part of a radiotherapy planning 

process at the Léon Bérard Cancer Center in Lyon, France. The 4D datasets were 

reconstructed to yield forty phases of 3D CT images (Vandemeulebroucke et al 2011, 

Vandemeulebroucke et al 2012). The first three datasets have 512 ) 512 pixels in plane. The 

number of slices varies from 141 to 170, with an in-plane resolution ranging from 0.8789 ) 

0.8789 mm
2
 to 0.9766 ) 0.9766 mm

2
 and 2mm interslice. The fourth dataset has the size of 

482 ) 360 ) 141 with the voxel dimension of 0.9766 ) 0.9766 ) 2mm
3
. For each phase image 

of the data, a number of landmarks features were labeled manually by an expert. The image 

information and landmarks for each case are shown in Table 1. More detailed descriptions of 

the data can be found in (Vandemeulebroucke et al 2011, Vandemeulebroucke et al 2012). 

Figure 4 displays three orthogonal planes of the maximal exhale and inhale phases of 4D CT 

image of the forth dataset. 
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Figure 4.  Two frames of 3D thoracic CT images extracted from a 4D CT scan. The top row represents 

the maximum exhalation frame and the bottom row, the maximum inhalation frame. Columns 1 to 3 in 

each row display the axis, coronal and sagittal slices of two phases of the CT volumes, respectively. 

 

4.2. Illustration 

To illustrate the effect of the pseudo-addivity property in image registration, we applied 

our method as well as the mutual information method to register the MR T1 images shown in 

figure 5, with different degrees of deformations (various levels of correlation) between two 

images to be registered. Here, we chose figure 5 (a) as the reference image and the others as 

float images. Note that when warping indexes are increased, the correlation coefficients 

between them are gradually decreased. Figure 6 exhibits the registration results using mutual 

information (MI) based on the standard Shannon entropy and our similarity measure based on 

the Arimoto nonextensive entropy. Only slight differences between our measure and MI are 

observed when registering figure 5 (a) and (b), (c), (d) with relative small deformations. 

However, due to the non-extensibility of the Arimoto entropy, our measure (figure 6 (d), (e) 

and (f)) gives a much more accurate alignment in the presence of large deformations than MI 

(figure 6 (g), (k) and (l)). This is particularly visible at the level of the cerebral ventricles, a 

major structure of the brain (see red arrows). 

 

   
(a)                                  (b)                                    (c) 

 

    
  (d)                                    (e)                                   (f)                                    (g) 

 

Figure 5. The MR T1 images. (a) Reference image, (b)-(g) float images, with different deformations 

with respect to (a), along with the correlation coefficients between them being 0.9055, 0.8492, 0.8059, 

0.7745, 0.7543 and 0.7399. 
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 (a)                   (b)                   (c)                    (d)                    (e)                  (f) 

 

      
 (g)                    (h)                   (i)                    (j)                    (k)                   (l) 

 

Figure 6. Registration results of the MR T1 images displayed in figure 5. (a)-(f) The transformed float 

images superimposed with the edges (Canny’s operator) of the reference image (a) when registering 

figure 5 (a) and (b)-(g) using JA measure, (g)-(l) the corresponding results when employing MI 

method. 

 

4.3. Simulated Data Experiments 

The performance of our JA registration method is first assessed using the simulated 3D 

brain data through a three-level hierarchical multiresolution scheme. The role of the several 

parameters involved in our method is examined and a comparison with mutual information 

(MI) is also reported. 

 
Table 1. CT images information and landmarks of four datasets.  

CT 

properties 
Volume sizes Voxel dimensions(mm) Landmarks 

Dataset 1 512 ) 512 ) 141 0.9766 ) 0.9766 ) 2 100 

Dataset 2 482 ) 360 ) 141 0.9766 ) 0.9766 ) 2 41 

Dataset 3 512 ) 512 ) 169 0.9766 ) 0.9766 ) 2 100 

Dataset 4 512 ) 512 ) 170 0.8789 ) 0.8789 ) 2 100 

 

4.3.1. Parameters setting 

The registration parameters were chosen by means of trial-and-error on the simulated data. 

To demonstrate the effect of these parameters, the experiment process was performed as 

follows.  Using the pair of MR T1 and MR PD volumes mentioned in Section 4.1.1, the 

former volume was chosen as reference image while the latter volume was elastically 

deformed and considered as the float image. This deformation is based on the following 

warping function being analogous as that of (Lu et al 2008) 

sin sin +sin
48 48 48

x y z
x x m

! ! !" #" # " # " #$ = + +% &% & % & % &' ( ' ( ' (' (
                                      (24) 

sin sin sin
48 48 48

x y z
y y m

! ! !" #" # " # " #$ = + + +% &% & % & % &' ( ' ( ' (' (
                                      (25) 
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sin sin sin
48 48 48

x y z
z z m

! ! !" #" # " # " #$ = + + +% &% & % & % &' ( ' ( ' (' (
                                     (26) 

 

where (x, y, z) and ( x! , y! , z! ) denote respectively the original coordinates before and after 

deformation. The parameter m accounts for the warping index, and also determines the 

magnitude of the deformation field. 

To evaluate quantitatively the registration results, the difference between the true values 

and the estimated values (magnitude of the displacement vector) was calculated as the 

registration error. In all experiments of this section, sixty warping indexes were selected 

randomly from a wide-range interval [1, 7], along with sixty pairs of test images being 

produced consequently. We set the weighting parameter # = 0.005 that provides a good 

tradeoff between the dissimilarity measure D and the regularization term S in the objective 

function E. 

These studied parameters include the nonextensive parameter !, the number of bins M, the 

spacing of mesh points $ and the amount of random samples N. Figure 7 displays the mean 

and standard deviation of the registration errors when varying these four parameters. As 

illustrated in figure 7 (a), the lowest mean of registration error is obtained when ! = 1.50 

(here, M = 32, $ = 16)16)16, N = 2000).  The difference in mean running time (about 4min) 

is not so large when varying ! values, hence, we set ! = 1.50 for the remaining experiments. 

The average calculation times when varying the other three parameters are tabulated in Table 

2. It can be observed from figure 7 (b) and Table 2 that the errors and the computation times 

gradually increase with a higher number of bins M. Although a larger value of M leads to a 

better estimation of the probability density functions, a compromise has to be set. The value 

M = 16 has been retained here. The mesh spacing with value of 16)16)16 provides the better 

registration results in figure 7 (c) and has been selected. Figure 7 (d) shows that the lowest 

registration error is obtained when N = 5000. However, the computation times increase 

rapidly with a higher number of random samples (Table 2), thus the value N = 2000 was 

preferred.  
 

 
(a)                                                               (b) 
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      (c)                                                               (d) 

 

Figure 7.  The non-rigid registration results of the simulated 3D brain MR T1 and MR PD images 

when choosing various values of four parameters, !, M, $ and N. The deformations parameters were 

generated randomly from the range [1, 7], with the unit of deformation and errors being also 

millimeters. (a) Registration errors for several various ! values, ! ! {1.01, 1.10, 1.25, 1.50, 1.75, 

2.00} and M = 32, $ = 16)16)16, N = 2000; (b) The results of different bins size, M ! {8, 16, 32, 64, 

128} with ! = 1.50, $ = 16)16)16, N = 2000; (c) The effect of mesh points with $ ! {5)5)5, 8)8)8, 

12)12)12, 16)16)16, 20)20)20},! = 1.50, M = 32, N = 2000; (d) Statistics of registration errors for 

the number of random samples, N ! {2000, 3000, 5000, 8000, 10000} and ! = 1.50, M = 32, $ = 

16)16)16. 

 

Table 2. Average calculation times of the registration shown in Figure.5. Here, cases 1 to 5 denote {8, 

16, 32, 64, 128} for the number of bins M, {5)5)5, 8)8)8, 12)12)12, 16)16)16, 20)20)20} for the 

spacing of mesh points $ and {2000, 3000, 5000, 8000, 10000} of random samples N. 

Parameters Case 1 Case 2 Case 3 Case 4 Case 5 

Bins M  3min20s 3min30s 4min 5min 9min 

Spacing $ 13min 6min 4min30s 4min 3min40s 

Samples N 4min 6min 8min 14min 17min 

 

4.3.2. Accuracy 

To illustrate the registration accuracy of our method, MI is compared to the JA divergence 

on three groups of 3D brain data sets, MR T1 & MR T2, MR T1 & MR PD and MR T2 & 

MR PD. In each group, the former volume is used as reference image. We selected sixty 

warping indexes generated randomly from the same range [1, 7] as in section 4.3.1, resulting 

in sixty pairs of test images produced for each group of data and 360 nonrigid registrations of 

these three groups of data sets for the two methods in total.  
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Figure 8.  The registration results of the simulated 3D brain MR T1 & MR T2, MR T1 & MR PD and 

MR T2 & MR PD volumes using two algorithms. Experimental parameters are set by ! = 1.50, M = 

16, $ = 16)16)16, N = 2000. 

 

 
(a)                    (b)                     (c)                    (d) 

 
(e)                    (f)                     (g)                    (h) 

Figure 9.  The checkboard of non-rigid registration results using JA method (! =1.50). (a) central slice 

of the reference MR T1 volume; (b) central slice of the deformed float MR PD volume; (c) checkboard 

of middle axial slice in reference and float volumes before registration; (d) checkboard of middle axial 

slice in reference and float volumes after registration; (e)-(f) and (g)-(h) shows the checkboard of the 

sagittal and coronal planes, respectively. 

 

Figure 8 displays the resulting box-and-whisker plots of the registration errors for all 360 

trials. For each box, the central red mark is the median of the registration errors of the ten 

tests, with two edges of each box denoting the 25% and 75%, the upper and below whisker 

being the maximum and minimum without considering outliers. In addition, these outliers are 

represented by the red color crosses for each box. As it can be observed, the registration 

errors for MR T1 & MR PD are relative high when compared to those of other two groups 

while the lowest errors are obtained for MR PD to MR T2. The JA method leads to a slight 

improvement in registration accuracy.  

Figure 9 depicts the checkboard of one non-rigid registration example resulting from our 

method for a MR T1 & MR PD registration case when the warping index m =5 (! = 1.50). 

The shape of the registered float image appears visually close to the reference image. 
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4.3.3. Noise immunity 

In this section, we assess the performance of our method and MI-based algorithms in 

presence of different levels of noise. The three groups of data sets are those already exploited 

in section 4.3.2. The warping index m has been set to 5. Sixty levels of Gaussian noise with 

zero-mean were randomly generated along with their standard deviations chosen from the 

range [0, 60]. These different levels of Gaussian noise were added to the deformed float 

images, and sixty pairs of test images were obtained for each group of data (MR T1 & MR 

T2, MR T1 & MR PD and MR T2 & MR PD). 

Altogether, 360 registrations were performed. In order to accelerate the optimization 

process, we adopted a three-level multi-resolution strategy. For each resolution level, the 

L-BFGS optimization method was used to minimize the objective function with the 

registration parameters specified in section 4.3.1. The calculation times for registration are 

almost the same: 3min 20s for our method and 3min 30s for the MI method. Figure 10 shows 

the box-and-whisker plots of the resulting registration errors. As it can be seen, the average 

registration errors obtained using the two methods are less than one millimeter, i.e. a 

subvoxel accuracy. The difference between MI and our method is higher than the one 

reported figure 10 which means that the JA approach is more robust to noise effect.  
 

 
 

Figure 10.  The registration errors of the simulated 3D brain MR T1 & MR T2, MR T1 & MR PD and 

MR T2 & MR PD volumes using MI and our approach in the presence of different levels of noise. The 

parameters have the same values than before (! = 1.50, M = 16, $ = 16)16)16, N = 2000). 

 

4.4. Real Data Experiments 

In this section, a series of experiments on real 3D thoracic CT data were carried out. Forty 

phases of four 4D CT from four patients were selected as test images. For each phase image, 

a certain number of landmark features (Table 1) were labeled manually by an expert, and 

these landmarks correspond to each other during the forty phase images. A three-level 

hierarchical method was used to achieve the best compromise of registration accuracy and 

calculation time. 

The ten frames for each 4D CT, designated as T00-T90, cover the time sequence between 

the maximum inhalation (marked as T10) and the maximal exhalation (indicated by T60). To 

evaluate the performance of our method, the experiments were designed as follows: for each 

4D CT set, the T60 phase served as the reference image and the float image was selected 

from the residual nine phases. Thus, 36 pairs of nonrigid registrations were performed for the 
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total four data sets, resulting in 108 registrations using our approach and the normalized cross 

correlation (NCC) and MI methods. The deformation registration accuracy was evaluated 

using the target registration error (TRE) (Vandemeulebroucke et al 2011, 

Vandemeulebroucke et al 2012) calculated as the 3D Euclidean distance between the 

manually marked landmarks in the maximum exhalation image and the ones estimated by 

exploiting the registration approach to the corresponding location in the inhale image 

(Castillo et al 2010).  

Figure 11 illustrates the box-and-whisker plots of TREs for 108 registrations. For visual 

inspection, figure 12 displays an example of registration using our method for T10 and T60 

images of the dataset 1. The mean and standard deviation of 3D TREs before and after 

registration are exhibited in figure 13. To evaluate the significance of differences in 

registration errors of JA, MI and NCC, a statistical test based on the Wilcoxon signed-ranks 

was conducted on the TREs of four real CT datasets. At the significance level of 0.05, a p 

value less than 0.05 indicates a rejection of null hypothesis, and a p value larger than 0.05 

means an acceptation of null hypothesis. The results of Wilcoxon signed-ranks tests between 

JA and the other two methods on four datasets are reported in Table 3. They show that the 

registration errors of four groups of data when adopting JA are significantly lower than NCC 

(p < 0.05). From Table 3, a significant difference between JA and MI on TREs of datasets 1 

and 3 is found (p < 0.05); no significance for datasets 2 and 4 (p > 0.1). However, for datasets 

2 and 4, if we only consider those cases in which the deformations between the two 3D CT 

images to be registered are relatively large, a significant difference of JA with MI can be 

observed (p < 0.05). 
 

Table 3.  p-values of Wilcoxon signed-ranks tests of JA with MI and NCC on four sets of CT data. The 

significance level is 0.05. A p-value less than 0.05 means that the difference between two methods is 

significant, otherwise no significance is found. 

Methods Dataset 1 Dataset 2 Dataset 3 Dataset 4 

JA and MI  0.0195 0.1641 0.0442 0.2031 

JA and NCC 0.0477 0.0273 0.0391 0.0441 

 

 

Figure 11.  The target registration errors (TRE) obtained when employing JA algorithm, MI and NCC 

method for 3D thoracic CT images from four 4D CT data sets.  

 

The limited memory BFGS scheme was applied as in section 4.3 with a three-level 

multiresolution strategy, the maximum number of iterations being 100 per level. Besides, 
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3000 samples were selected randomly by the image sampler at each iteration. The runtimes of 

our method, MI and NCC were approximately 6, 5.5 and 6.5 minutes, respectively. 
 

 

 
 

Figure 12.  Difference images in orthogonal central planes before registration (row 1) and after 

registration (row 2) between T10 and T60 phase images of data set 1 using the JA algorithm (! = 

1.50). From left to right in each row, the transverse, coronal and sagittal slices. 

 

 
 

Figure 13.  The mean and standard deviation of target registration errors before registration and after 

registration exploiting the JA, MI and NCC methods for the four groups of 3D thoracic CT images.  

 

4.5. Analysis of Results 

The objective of the nonrigid registrations performed on simulated data was to evaluate the 

effect of the parameters on the performance of the JA method. These parameters include ! 

values, the number of bins, spacing of mesh points and random samples. Several experiments 

on three pairs of simulated MR volumes, MR T1 & MR T2, MR T1 & MR PD and MR T2 & 

MR PD were conducted and the results were compared with the classic information based 

measure (i.e. MI method). The test datasets were initially aligned with each other, that is to 

say, the true transformations (the “gold standard”) were known. In our case, we utilized in 

each image pair, the former MR T1 or MR T2 volume and the latter MR T2 or MR PD 

volume as the reference and float images, respectively. To compare the registration accuracy 

of our method, sixty trials were carried out based on deformations using distortion parameters 

randomly generated within a large range. Smaller errors and a better behavior with respect to 

convergence were observed for the JA method. To assess the immunity of noise, sixty levels 
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of noise were added to the float images and 60 trials were performed. For these sixty tests, in 

which we fixed the magnitude of elastic deformations, a better robustness to noise was 

observed, showing thus the effectiveness of our approach.  

The goal of the second set of experiments was to assess its performance on real data. 3D 

thoracic CT data sets corresponding to an entire breath cycle were used. We considered the 

geometric transformation between two phases of 3D CT images. In such case, the so-called 

“ground truth” is unknown. To estimate the registration accuracy of our method, a number of 

landmarks were first defined in four groups of 4D CT data. This allowed exploiting the 3D 

target registration errors (TRE) between the corresponding landmark locations as a measure 

of performance. In all ten frames of the breath cycle of one 4D data, T60 was chosen as the 

reference image, the remainder frames being the float images. Nine groups of experiments 

were generated for each 4D CT data and 36 pairs of test images in total were considered. The 

experimental results show a better behavior of our JA algorithm with low TREs when 

compared to MI and NCC methods, achieving a sub-voxel registration accuracy in almost all 

cases. 

5.  Conclusion 

In this work, a novel similarity measure based on the Arimoto entropy, called the 

Jensen-Arimoto divergence (JA) has been proposed for nonrigid registration of medical 

images. This new similarity measure is a generalization of the well-known Jensen-Shannon 

divergence measure. Based on the properties introduced in section 2.2 of the JA divergence, a 

new non-rigid registration technique has been presented. We employed free-form 

deformations as the parameter space along with the negative JA divergence as the 

dissimilarity measure and a penalty term to smooth the deformation constituting the entire 

registration criteria (objective function). To search the minima of this objective function, the 

L-BFGS optimization approach was used. We applied the Parzen window estimation 

algorithm with zero order and cubic order B-spline function as the kernel function to estimate 

the marginal probability distribution of the two volumes to be registered. The joint 

probability distribution between them was obtained in the same way. 

Experiments were carried out on two groups of data sets, the former using simulated brain 

data (MR T1 & MR T2, MR T1 and MR PD and MR T2 & MR PD volumes), the latter 

including four time sequences of real 3D thoracic CT data highlighting an entire respiratory 

cycle. The results obtained on simulated sets have shown that our alignment technique leads 

to lower registration errors in the presence of various magnitudes of deformation and levels 

of noise when compared to the standard MI method. It has been assessed through the tests 

made on real 3D data and using the 3D target registration error as quality criterion that the JA 

method provides sub-voxel registration accuracy. As mentioned above, the parameter ! in 

Arimoto entropy weights the nonextensive degree. The nonextensivity gradually becomes 

weak as ! tending to 1, and the JA divergence also approximates to mutual information that 

accounts for the complete extensivity property. While in this paper ! value is a self-defined 

constant by real experiments, its choice determines in some extent the quality of the 

registrations. So ! value is a sensitive factor and how to select a suitable ! value is an 

existing difficulty when choosing JA as registration criteria. In the next future, we will extend 

our applications to other multimodal medical images such as ultrasound and MR images and 

also to other organs. 
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