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ABSTRACT: A 3D numerical model with orthogonal curvilinear coordinate in the horizontal 
direction and sigma coordinate in the vertical direction has been developed. This model is 
based on POM (the Princeton Ocean Model). In this model a second moment turbulence 
closure sub-model is embedded, and the stratification caused by salinity and temperature is 
considered. Furthermore, in order to adapt to estuary locations where flow pattern is complex, 
the horizontal time differencing is implicit with the use of a time splitting method instead of 
the explicit method in POM. This model is applied to the Pearl River estuary, which is the 
largest river system in South China with Hong Kong at eastern side of its entrance. The 
computation is verified and calibrated with field measurement data. The computed results 
mimic the field data well. 
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INTRODUCTION 
 

The Pearl River (Zhujiang) is the largest river system in South China. The Pearl River Delta 
Region (PRDR), which includes eight cities (Guangzho, Shenzhen, Dongguan, Huizhou, Foshan, 
Zhongshan, Jiangmen), is one of the most important economic zone in China, even in Asia and the 
world. With the economic boom of PRDR, the resources of the estuary such as the harbor, channel, 
reclamation zone etc. have been exploited. Also, the water quality is deteriorating and red tide (algae 
blooms) has occurred several times in the previous two years.  

On July 1st 1997, sovereigns and administration of Hong Kong were restored to the People 
Republic of China. Since then more projects and concern have focused on the area of PRDR. Some 
models (two dimensional or quasi-three-dimensional) have been developed to simulate the 
environmental hydraulics in PRDR (Binnie and Partners 1988; Walker and Jones 1991; Chen and Li 
1991; Hu and Kot 1997 etc.).  

In this paper, a more complete three-dimensional model is developed, the numerical model is 
based on POM model (the Princeton Ocean Model, Mellor 1996). The principal attributes of the 
model that described in this paper are as follows: 
1. It contains an embedded second moment turbulence closure sub-model to provide vertical mixing 
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coefficients. 
2. The curvilinear orthogonal coordinate is used in the horizontal direction and sigma coordinate in 

the vertical direction. 
3. The horizontal and vertical time differencing are treated semi-implicitly. A time-splitting method is 

used for the horizontal time differencing of the external mode.  
4. Complete thermodynamics have been implemented and the stratification of salinity and 

temperature are considered.   
The main difference between this model and the POM is in the third attribute. In POM the 

horizontal time differencing is entirely explicit, but in this model the horizontal time differencing is 
semi-implicit with the use of a time splitting method. The time step of this model is larger than that in 
POM. This attribute can be used in applications with complex flow pattern and large current caused 
by the tide and river discharges such as Pearl River estuary.  A semi-implicit version of 
Blumberg-Mellor model, ECOMsiz, has also been developed recently. (Quamrul Ahsan and 
Blumberg 1999) In ECOM-siz, the barotropic pressure gradient in the momentum equations and the 
horizontal velocity divergence in the continuity equation are treated implicitly and an untransformed 
vertical coordinate (z-levels) system is used instead of sigma coordinate system. The major 
differences with ECOM-siz are the time-splitting alternating direction implicit scheme in the external 
mode and sigma coordinate system employed in this model. 

The model is applied to the Pearl River estuary, which includes four outlets of Pearl River system 
and the main part of Hong Kong seawaters (Fig. 1). This is probably the first application of this type 
of model (3-D and baroclinic) the PRDR. The model certainly has significance from an engineering 
point of view as a tool for exploring the dynamics and circulation of the PRDR. The computation is 
calibrated and verified with field measurement data.  

 
DESCRIPTION OF THE GOVERNING EQUATION AND SOLUTION METHOD 
 

The model uses a sigma (σ ) coordinate condition in the vertical direction, and an orthogonal 
curvilinear coordinate in the horizontal direction. In the σ stretching system, σ  spans the range from 
σ =0 at the surface of water to σ =-1 at the bottom. The σ coordinate is more suitable for simulating 
current flow and salinity transportation than the Z system (Leendertse et al 1973) since there it 
provides the same number of layers regardless of water depth. This handles well domains of large 
topographic variability.  

The curvilinear coordinate has become more popular in recent years because it can eliminate the 
stagger grid in Cartesian coordinate system and improve the representation of the numerical model. 
There are two kinds of curvilinear coordinate, orthogonal and non-orthogonal. The orthogonal 
coordinate has the advantage that the motion equation is simpler but it cannot generate grid for a 
domain with complex geometry. Consequently, if the model is applied to a domain with a complex 
boundary, a non-orthogonal coordinate system is highly recommended.  

The equations, which govern the dynamics of coastal cycle, contain fast moving external gravity 
waves and slow moving internal gravity waves.  A splitting technique has been used (Simons 1974) to 
divide the three-dimensional motion equations into two-part sub-mode where one part is an internal 
mode (vertical structure), and the other part is an external mode (vertically averaged). The advantage 
of this technique is that it permits the calculation of free surface elevation with little sacrifice in 
computational time. This is achieved by solving the velocity transport separately from the 
three-dimensional calculation of velocity and the thermodynamic properties (Mellor 1996). The 
governing equations of two sub-modes are written below: 
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Internal Mode 
 

The internal model is a vertical structure mode described by the original three-dimensional 
equations based on the σ  coordinate system 
Continuity equation: 
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Temperature and salinity transport equation:  
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Turbulence energy equation: 
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The horizontal viscosity and diffusion terms are defined according to: 
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In the above equations, ω,,VU are mean fluid velocities in the σ,, yx direction respectively; η  is 

the elevation of sea surface above the undisturbed level; f is the Coriolis parameter; HD +=η , 

H is the depth of the water, and g is the Earth’s gravitational acceleration; 0ρ is the fluid density; ρ is 

the fluid density after subtraction of the horizontally averaged density, ρ~ is the buoyant fluid density; 

T is temperature; S is salinity; 2q is the turbulence energy; l is the mixing length; qHM KKK ,, are 

vertical turbulent flux coefficients; HM AA ,  are horizontal turbulent coefficients; W~ is wall proximity 

function and 3,11, EEB are constants determined from laboratory experiments. 

From these equations, it can be seen that a q2 ~q2l turbulence model is considered. It involves two 
prognostic equations, in essence being identical to that used in the ε~K approach (Davis et al 1995). 
 
External Mode 

 
The external mode, which is integrated vertically by the continuity and momentum equations, 

can be written as two-dimensional dynamic equations: 
The Continuity equation: 
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where ( ) ( ) ( ) 1,,)1(),1( 2/122 −→+−=−− σVUVUCwvwu Z . VU , are the vertically integrated 

velocities; ( ) ( )∫−=
0

1
,, σdVUVU ; yx FF ~,~ are horizontal turbulence diffusion term, the <wu(-1)> and 

<wv(-1)> are bottom stress components; ZC is Chezy’s coefficient.  

 
The Interaction of Internal and External Modes 
 

The velocity advection (the second and third terms of the above momentum equations 12 and 13), 
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horizontal diffusion (the fourth term) and density gradient (the eighth term) are integrated vertically 
from the corresponding terms of internal equations. In equations 12 and 13, the bottom stress is 
derived from the velocity of internal mode. On the other hand when computing the internal mode, the 
elevation of the water surface is obtained from the external mode directly. The internal and external 
modes have different truncation errors, so the vertical integrals of the internal mode velocity may 

differ slightly from VU , . In order to eliminate the current velocity of internal mode (U,V) is  

adjusted to fit the following condition : UUd =∫−
0

1
σ .  

 
Structure of the Internal Mode Calculation 

 
For a detailed description of internal mode, refer to Blumberg and Mellor (1980 and 1987) and 

Mellor (1996). The method is semi-implicit and all terms of momentum equations (2) and (3) are 
treated explicitly except for the vertical flux  (the first term in the right hand side) that is treated 
implicitly. All equations here are based on Cartesian coordinate; readers can refer to Chau and Jin 
(1995) for equations under the orthogonal curvilinear coordinate. 

 
Structure of the External Mode Calculation 
 

The solution of the external mode in the POM is entirely explicit and use C grid. The time step is 
based on Courant-Friendrichs-Lewy (CFL) condition, which requires the condition: 

2/2 MAXUgh
dxdt

+
< . For small grid sizes, the corresponding time step will be set small to keep 

the computation stable, this will require large amount of time.   
In order to develop a three-dimensional numerical model that can represent the Pearl River 

estuary (the smallest size of generated orthogonal curvilinear grid is 50m) and can operate on 
personal computer with Pentium II, a semi-implicit method is used in the external mode. This 
method is expressed as a time-splitting alternating direction implicit scheme (ADI) on the “Arakawa 
C” grids as shown in Fig. 2 (Chau and Jin 1995). 
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Momentum equation: 
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y-direction: 
Continuity equation: 
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Momentum equation: 
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At the end of each time step the following equation is assured: 
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where *η and *U are two middle unknowns in first time-splitting step in the x-direction. An,Bn are the 

terms which can be obtained from the internal sub-mode. Equations in each direction can be written 
in tri-diagonal matrix and solved with the use of double-sweep algorithm method (Leendertse and 
Crittion 1971). The solution consists of two time-splitting steps which advances the solution first 

from time level nt to t* in the x-direction and gets **,ηU , and the second from t* to (n+1)t in the 

y-direction and 11, ++ nnV η are obtained. Finally let *1 UU n =+ . 

 
Numerical Stability 
 

Since the numerical scheme used here is semi-implicit, the terms of vertical diffusion in the 
internal mode and the elevation gradation term in the external mode are treated implicitly. The time 
step of numerical computation cannot exceed the limits associated with the advection terms, the 
Coriolis term, the baroclinic pressure gradient term and horizontal diffusion term. The semi-implicit 
numerical algorithm permits the time step many times greater than that based upon the CFL 
condition. From the computational experiments of this model applied in Pearl River estuary, the 
maximum time step of the external mode is 100 seconds and the maximum time step of the internal 
mode is 60 seconds. Simply, this model uses the same time step—60 seconds in both of the two 
sub-modes.  If the POM is applied in the research area with the same grid, the maximum time steps 
are 6 seconds and 100 second for external and internal modes respectively.  The model described 
here requires a core memory of 14.8 mega words and about 20 seconds per hour run. On the other 
hand the POM needs 14.2 mega words memory and 28 seconds per hour run based on a PII-450 PC. 

 
The Errors Caused by the Sigma Coordinate Pressure Gradient 
 

Numerical models using sigma coordinates have the capability of dealing with ocean application 
with large topographic variability. The disadvantage of this model, however, is its hydrostatic 
inconsistency due to the bottom topography effect. This inconsistency is caused by the horizontal 
density gradient along the constant σ layer. Mellor et al (1997) utilized some strategies to reduce 
them which have been used in this model. The first is to examine the topography and adjust H (depth 
of water) so that H can fit the equation given by Haney (1990) δσδσ

<
∂
∂ x

x
H

H
. The second method 

adopted in this model is to subtract a climatological density (or temperature and salinity) before 
computing fluxes and the climatological density (or temperature and salinity) fields can be set to: 

 )(/ limlim cc adtd ρρρ −=  (19) 

where a  is the inverse of decay time. ρ  and limcρ are density and climatological density respectively. 

The value of a  adopted in this Pearl River estuary model is (1/t), where t is the period of major tidal 
constituent. In this model we choose t=0.5175 day, which is the period of M2 (Ip and Wai 1990). 
 
Application of the Model to Pearl River Estuary 



 7

 
The Pearl River estuary has been established as a very important zone in South China. With the 

economy quickly developing in this area, the environment has been deteriorating and hence more 
and more attentions put on this research area estuary. As the hydrodynamic numerical model is an 
efficient tool for environmental impact assessment and feasibility study of projects, the model has 
been applied to this estuary and calibrated. 

The study area (Fig. 1) is a delta estuary. The depth of the open side of the estuary ranges from 
20-28m, and becomes shallower toward the inner bay. The mean depth of the estuary is 7 meters. 
There are four river outlets in the northwest of the estuary (Hu men, Jiao men, Heng men, Hongqi 
men). According to the published data (Pang and Li 1998), the net discharges of the four outlets in 
different seasons are listed in Table 1. It can be seen that the discharges in different year vary very 
much. The tide in Pearl River estuary is semi-diurnal and irregular. The mean tidal range is about 1.0 
m. At the entrance of the estuary, the mean tide range is 0.85-0.95 m, and the range is higher in the 
inner estuary. The mean tide range in Hu men is 1.6m (Kot and Hu 1995). In the wet season (May to 
September) the runoff of the rivers becomes the strongest to become the predominant hydrodynamic 
forcing in Pearl River estuary, and while in the dry season (December to March) the tidal current is 
the main force (Lu 1997).  

The horizontal grid of the orthogonal curvilinear coordinate system is displayed in Fig.3, and the 
corresponding transformed grid is shown in Fig.4. There are 3400 grids in each of the 6 vertical 
layers. Each layer has the sameδσ  which value is 1/6. The number of layer and grid points are 
chosen such that reasonable accuracy is achieved in both horizontal and vertical discretizations while 
simultaneously computational efficiency is not deterred. 
 
Open Boundary Condition 
 

At the open boundary (southern boundary and eastern boundary), the tide elevation is the model 
forcing. It can be interpolated from the observed data at two stations (Macau and North Point) 

according to tidal wave propagating speed gh (Huang and Lu 1995). The velocity values of 

external and internal modes at the open boundary are derived from the radiation condition; for 

example 0=− ∂
∂

∂
∂

y
v

it
v c , maxHHci = at the southern open boundary. The values of salinity, 

temperature and turbulence kinetic and turbulence dissipation at the open boundary condition are 
derived from the following equations: 

Ebb time: 0=
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t
A  (20) 

Flood time: ),( σtAA set=  (21) 

“A” represents the salinity, temperature, turbulence kinetic and turbulence dissipation. During ebb, 
at open boundaries, A are calculated using the “upwind” differenced advection equation. During 
flood the A is linearly interpolated from its value at end of ebb to a fixed A that depends on the depth 
and observed data. The open boundary conditions of four outlets in the northwest of the research area 
are governed by water discharges. 
 
Closed Boundary Conditions: 
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The convection and diffusion terms require the value of velocity at the outer boundary to close 
the motion equations. Two kinds of closed boundary conditions have been tested in this model. For  

y
u
∂
∂ , the first is no-slip condition that assumes 0=u , and the second is free slip condition in which 

0=
∂
∂

y
u . The model applied to the Pearl River estuary weighs two methods together and gets the 

semi-slip boundary condition: 10, ≤≤
∆

=
∂
∂ ββ

y
u

y
u . Sensitivity tests with different β  values have 

been conducted, with little change in results. 
 

CALIBRATIONS 
 

In June to July 1990, the Hong Kong Civil Engineering Department Port Development Division 
carried out a hydrological survey. The survey data observed at three tidal elevation stations and three 
tidal current stations were used for calibration of this model. Fig.1 shows the location of these 
stations. The observed data from 21st June to 20nd July, 1990, of tidal elevation on two stations, 
Macau and Northpoint, are available to be used as boundary conditions. The model simulated one 
month’s hydrodynamics of Pearl River estuary in this period. 

To calibrate the simulations, the computational results of three components have been verified 
with the corresponding observed data. The three components are tidal elevation, flow velocity and 
direction. For lack of detailed salinity data, only the contour of salinity contour is shown. 

 
Calibration of Tidal Elevation 
 

The entire month’s comparison of elevation result versus the observation (from 21st June to 20th 
July 1990) at West Lamma is shown in Fig. 5. However, a typical 25 hours of comparison can 
illustrate the slight differences between the computed results and the observations more effectively. 
Fig. 6 illustrates the computational and measured results of tidal elevation at 3 different elevation 
stations from 15:30 21st to 22nd June 1990. It appears that the computational results concur well with 
the measured data. From this figure it is clear that the amplitude of inner station (such as Tap Shek 
Kok) is larger than the outer stations (such as West Lamma).  

 
Calibration of Tidal Flow 
 

Fig 7 shows the horizontal tidal current pattern during an ebb tide in mean season (April, 
October and November) at the surface, middle, and bottom layers, respectively, in the Pearl River 
estuary.  

In this figure, the current velocities at the surface are slightly larger than that in the bottom. The 
flow directions at the surface layer and bottom layer may be slightly nonuniform, especially when 
the current is not too fast. The maximum flow velocity occurs at narrow channels in Ma Wan 
Channel and Kap Shui Mun where the water depth is larger than 20m with a maximum speed of 
2.5m/s. The current speed in northwest Lantau Island water areas, Urmston Road and West East 
Channel are higher than other locations, since the bathymetry of these locations cause lateral 
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contraction in the flow channel. Hence faster flow are also expected there. In general, the simulated 
current pattern agrees well with the observed data (Kot and Hu 1995). 

The depth-averaged velocities at three tidal stations are compared with the observed data. Fig. 8 
shows the results of comparison of direction and magnitude velocity between computed and 
observed data from 15:30 21st to 22nd June 1990. The root-mean-squares errors (rms) of the 
computed tidal level, flow direction and velocity for the one month comparisons are 0.14m, 17 
degree, and 0.07m/s respectively. The computed flow direction and velocity coincide well with the 
observed data, which indicate that the model can simulate well the observed data. 

As can be seen in Figure 6 and Figure 8, start up of the simulation requires about 2 to 3 hours 
before it converges to the accurate solution and matches with the observations well. 

 
The Distribution of Salinity 

 
The distribution of salinity in the wet and dry season is simulated. The measured data such as 

tidal level and salinity at open boundary from 21st June to 20nd July 1990 are used as boundary 
condition in wet season. Due to lack of data in winter, same tidal levels are used to simulate the 
salinity distribution in dry season. The salinity at open boundary is derived from the dry season 
salinity horizontal and vertical patterns given by Kot and Hu (1995); Broom and Ng (1995). The 
discharges of the four rivers are used as the data for wet and dry season in 1990 (see Table 1) 

As seen from the distribution of salinity during ebb tide in three layers during the wet season 
(Fig. 9), sharp change of salinity is a common phenomenon in Pearl River estuary during the wet 
season. This figure indicates that the stratification is only discernable in outer bay and breaks down 
in the inner bay because the water depth becomes shallower and the turbulence becomes stronger. In 
the dry season (Fig. 10), the sharp gradient of salinity or stratification is not so notable and the 
seawater intrusion is farther into the inner delta area. Therefore in the inner delta the gradient of 
salinity is smaller but the averaged salinity is higher than that in summer. The pattern of the 
distribution of salinity shows no discrepancy with the pattern described by Kot and Hu (1995). 

 
CONCLUSIONS 
 

A three-dimensional curvilinear hydrodynamic model has been formulated, verified and applied 
to the Pearl River estuary. This region is the most quickly developing in China with Hong Kong and 
Macau at its entrance. 

In this model, the external and internal gravity waves have been split in the analysis, and the 
former becomes a two-dimensional mode (external mode), the latter forms a three-dimensional mode 
(internal mode). In the external mode, the term of tidal elevation gradient is treated implicitly and the 
other terms are integrated or obtained from the internal mode. In the internal mode, the vertical flux 
term of momentum equation is treated implicitly and tidal elevation values comes from the external 
mode directly. The same time step is adopted in both internal and external mode. With the use of 
these methods, the time step is larger than the POM model and hence less computational time is 
needed to keep the computation stable. 

The model is applied to the Pearl River estuary with the stratification, caused by the salinity and 
temperature, considered. The computational results of tidal elevation, direction and magnitude of 
current velocity are compared with the measured data in July 1990. The result shows fairly good 
agreement between the simulated and survey measured data. The distribution of salinity in different 
layers during the wet and dry seasons has been illustrated. 
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Above all, a complicated and efficient three-dimensional model has been developed. It works 
well when applied to the Pearl River estuary, which is a typical estuary domain. 
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