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Abstract

Object class detection has been a synonym for 2D

bounding box localization for the longest time, fueled by

the success of powerful statistical learning techniques, com-

bined with robust image representations. Only recently,

there has been a growing interest in revisiting the promise

of computer vision from the early days: to precisely delin-

eate the contents of a visual scene, object by object, in 3D.

In this paper, we draw from recent advances in object detec-

tion and 2D-3D object lifting in order to design an object

class detector that is particularly tailored towards 3D ob-

ject class detection. Our 3D object class detection method

consists of several stages gradually enriching the object

detection output with object viewpoint, keypoints and 3D

shape estimates. Following careful design, in each stage it

constantly improves the performance and achieves state-of-

the-art performance in simultaneous 2D bounding box and

viewpoint estimation on the challenging Pascal3D+ [50]

dataset.

1. Introduction

Estimating the precise 3D shape and pose of objects in

a scene from just a single image has been a long standing

goal of computer vision since its early days [33, 8, 39, 32].

It has been argued that higher-level tasks, such as scene un-

derstanding or object tracking, can benefit from detailed,

3D object hypotheses [12, 49, 19] that allow to explicitly

reason about occlusion [41, 57, 6] or establish correspon-

dences across multiple frames [52]. As a consequence,

there has been an increasing interest in designing object

class detectors that predict more information than just 2D

bounding boxes, ranging from additional viewpoint esti-

mates [44, 22, 31, 50] over 3D parts that correspond across

viewpoints [42, 47] to the precise 3D shape of the object

instance observed in a test image [56, 55, 35].

So far, these efforts have lead to two main results. First,

it has been shown that simultaneous 2D bounding box lo-

calization and viewpoint estimation, often in the form of

classification into angular bins, are feasible for rigid object

Figure 1. Output of our 3D object class detection method. (Left)

BB, keypoints and viewpoint estimates, (center) aligned 3D CAD

prototype, (right) segmentation mask.

classes [47, 43, 28, 37, 2, 27]. These multi-view object class

detectors typically use view-based [31, 42] or coarse 3D ge-

ometric [51, 40, 18, 35, 34] object class representations that

are designed to generalize across variations in object shape

and appearance. While these representations have shown

remarkable performance through the use of joint training

with structured losses [42, 40], they are still limited with

respect to the provided geometric detail.

Second, and more recently, it has been shown that highly

detailed 3D shape hypotheses can be obtained by aligning

3D CAD model instances to an image [56, 30, 3, 29]. These

approaches are based on a large database of 3D CAD mod-

els that ideally spans the entire space of object instances

expected at recognition time. Unfortunately, the added de-

tail comes at a cost: first, these approaches are targeted only

towards specific object classes like cars and bicycles [56],

chairs [3], or pieces of IKEA furniture [30, 29], limiting

their generality. Second, they are typically evaluated on
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datasets with limited clutter and occlusion [56], such as 3D

Object Classes [43], EPFL Multi-View Cars [37], or par-

ticular subsets of PASCAL VOC [13] without truncation,

occlusion, or “difficult” objects [3].

In this work, we aim at joining the two directions, multi-

view detection and 3D instance alignment, into 3D object

class detection in the wild – predicting the precise 3D shape

and pose of objects of various classes in challenging real

world images. We achieve this by combining a robust,

part-based object class representation based on RCNNs [20]

with a small collection of 3D prototype models, which we

align to the observed image at recognition time. The link

between a 2D image and a 3D prototype model is estab-

lished by means of 2D-3D keypoint correspondences, and

facilitated by a pose regression step that precedes rigid key-

point alignment.

As a result, the presented method predicts the precise 3D

shape and pose of all PASCAL3D+ [50] classes (Fig. 1), at

no loss in performance with respect to 2D bounding box lo-

calization: our method improves over the previous best re-

sults on this dataset [15] by 21.2% in average precision (AP)

while simultaneously improving 12.5% in AAVP (Sect. 4.4)

in joint object localization and viewpoint estimation [42].

In addition, projecting the 3D object hypotheses provided

by our system onto the image plane result in segmenta-

tion masks that are competitive with native segmentation

approaches, highlighting the accuracy of our 3D shape esti-

mates.

This paper makes the following contributions. First, to

our knowledge, we present the first method for 3D object

class detection in the wild, achieving precise 3D shape and

pose estimation at no loss of 2D bounding box localiza-

tion accuracy compared to state-of-the-art RCNN detectors.

Second, we design a four-stage detection pipeline that is ex-

plicitly tailored towards 3D object class detection, based on

a succession of (i) robust 2D object class detection, (ii) con-

tinuous viewpoint regression, (iii) object keypoint detection

and (iv) 3D lifting through rigid keypoint alignment. Third,

we give an in-depth experimental study that validates the

design choices at each stage of our system. Crucially, and in

contrast to previous work [42, 40], we demonstrate that en-

riching the output of the object detector does not incur any

performance loss: the final 3D detections yield the same

AP as stage (i) and improved AAVP over stage (ii), even

though significant geometric detail is added. And fourth,

we demonstrate superior performance compared to state-of-

the-art in 2D bounding box localization, simultaneous view-

point estimation, and segmentation based on 3D prototype

alignment, on all classes of the PASCAL3D+ dataset [50].

2. Related work

Our approach draws inspiration from four different lines

of work, each of which we review briefly now.

2D Object class detection. Recently, RCNNs (re-

gions with convolutional neural network features) have

shown impressive performance in image classification and

2D BB localization [20], outperforming the previous de-

facto standard, the deformable part model (DPM) [15], by

a large margin. Our pipeline is hence built upon an RCNN-

based detector that provides a solid foundation to further

stages. To our knowledge, our model is the first to extend a

RCNN-based object class detector towards 3D detection.

Multi-view object class detection. In recent years,

computer vision has seen significant progress in multi-view

object class detection. Successful approaches are mostly

extensions of proven 2D detectors, such as the implicit

shape model [47, 53, 28, 46], the constellation model [45,

44], an the deformable part model [22, 31, 42, 40, 51, 18,

35, 34], resulting in both view-based [44, 22, 31, 42] and

integrated, 3D representations [38, 40, 51, 18, 35, 56, 55,

34, 4] that reflect the 3D nature of object classes.

Our work follows a different route, and decomposes the

3D detection problem into a sequence of simple, but spe-

cialized pipeline stages, each optimized for performance.

From the multi-view detection literature, we take inspira-

tion mostly from continuous viewpoint regression [37, 22,

40, 56, 4], which we use as the second stage of our pipeline.

In contrast to previous work, however, our pipeline does not

end with a viewpoint estimate, but rather uses it to guide the

next stage, 3D lifting. As we show in our experiments, the

last stage benefits from the intermediate viewpoint regres-

sion, and even improves the regressor’s estimate.

3D Instance alignment. Methods that align 3D CAD

model instances to a test image [56, 30, 3, 29] are receiv-

ing increasing attention, due to their ability to yield highly

precise estimates of 3D object shape and pose (sometimes

referred to as fine pose estimation [30, 29]). These methods

are based on a large number of 3D CAD model instances

that are rendered from a large set of viewpoints, in order to

sufficiently cover appearance variations. While the result-

ing complexity can be alleviated by selecting discriminative

exemplar patches [3] or sharing of 3D parts [29], it is still

linear in the cross-product of instances and viewpoints, lim-

iting scalability. In contrast, we focus on capturing only the

major modes of shape variation in the form of a hand-full

of prototypical 3D CAD models per object class. In addi-

tion, our representation is based on only a small number of

3D keypoints (on average 10 per object class) that are not

only shared among instances, but also matched to image

evidence in a viewpoint-invariant way [57]. As a result, we

can increase the accuracy of our 3D lifting stage by adding

more CAD models, without retraining our pipeline.

Keypoint-based methods. The concept of deriv-

ing 3D information from predicted 2D keypoints is well

known in human body pose estimation [1, 7], and has also



been successfully applied to estimating the rough pose of

birds [14, 5] or fitting deformable 3D shape models [56, 57].

Our work draws from this idea in order to find a rigid align-

ment of a prototypical 3D CAD model to an image.

3. 3D Object class detection

In this section, we describe our 3D object class detection

pipeline. Given a single test image as an input, it can not

only predict the 2D bounding box (BB) of each object in the

image, but also yields estimates of their 3D poses as well as

their 3D shape, represented relative to a set of prototypical

3D CAD models. Fig. 1 gives example results. A schematic

overview of our method is shown in Fig. 2.

The following subsections provide a walk-through of our

pipeline. We start with robust 2D object class detection

(Sect. 3.1). We then add viewpoint information (Sect. 3.2).

Next, we localize a set of 3D object keypoints in the 2D

image plane (Sect. 3.3) that provides the basis for our last

stage: 3D lifting (Sect. 3.4). It combines all estimates of

the previous stages into a final, 3D object class detection re-

sult. Since this last step depends crucially on the quality of

the intermediate stages, we highlight the important design

choices that have to be made in each subsection.

3.1. 2D Object class detection

RCNNs [25, 20] have shown remarkable performance

in image classification and 2D BB localization, leading to

state-of-the-art results on the Pascal VOC [13] and Ima-

geNet [11] datasets. As precise BB detection and 2D align-

ment are crucial requirements for being able to infer 3D ge-

ometry, we adopt RCNNs as the first stage of our pipeline.

Specifically, we use the implementation of Girshick et

al. [20] (RCNN). It consists of three steps: generation of BB

proposals, feature extraction using the intermediate layers

of a CNN, and subsequent training of a one-vs-all SVMs.

The selective search method [48] provides several object

candidate regions o ∈ O in an image. These are passed

into a CNN [25] and its unit activations in separate lay-

ers are extracted as feature representation for each region.

The RCNN [20] uses the responses of either the last con-

volutional (conv5) or one of the two fully connected layers

(fc6, fc7). A linear SVM is trained for every object class,

with the positive examples being the regions with a certain

intersection-over-union (IoU) overlap R with the ground

truth and the negative examples the regions with IoU ≤ 0.3
with the ground truth. At test time, the RCNN provides

for each image I a set of object detections o = [ob, oc, os],
where ob is the BB, oc the object class, and os the score.

Empirical results in [20] on the Pascal VOC 2007 and

2010 datasets identify fc7 features and R = 1 as the best set

of parameters. We compared the combination of intermedi-

ate feature responses and values of R on the Pascal3D+ [50]

dataset and found the same setting to perform best.

3.2. Viewpoint estimation

An essential cue for performing the transition from 2D

to 3D is an accurate estimate of the 3D pose of the object,

or, equivalently, of the viewpoint under which it is imaged.

We represent the viewpoint of an object ov ∈ [0, 360) in

terms of azimuth angle a. Several approaches can be taken

to obtain a viewpoint estimate, treating it either as a discrete

or continuous quantity. We discuss the discrete version first,

mainly to be comparable with recent work. However we ar-

gue that due to the continuous nature of the viewpoint the

problem should be treated as a continuous regression prob-

lem. As the experiments will show (Sect. 4.2), this treat-

ment outperforms the discrete variants allowing for a much

finer resolution of the viewpoint estimate.

Discrete viewpoint prediction. A large body of pre-

vious work and datasets on multi-view object class detec-

tion [43, 21, 42, 50] use a discretization of the viewpoint

into a discrete set of V classes, typically focusing on a sin-

gle angle (azimuth). The task is then to classify an object

hypothesis into one of the v ∈ {1, . . . , V } classes. While

this defeats the continuous nature of the problem, it has the

benefit of giving a reduction to a multi-class classification

problem for which efficient methods exist.

We conjecture that a CNN representation will be dis-

criminative also for viewpoint estimation and explore two

different CNN variants to test this hypothesis. First, we use

the pre-trained CNN from Section 3.1 and replace the last

linear SVM layer for object detection with one for view-

point estimation. Discretizing the viewpoints in V classes

results in V different classifiers for every object category.

During test time, we choose the class with the maximum

score. We refer to this method as RCNN-MV. We explore a

second variant (CNN-MV), a multi-view CNN trained end-

to-end to jointly predict category and viewpoint. The CNN

parameters are initialized from a network trained on Im-

ageNet [11] for object category classification and is then

trained using logistic loss and backpropagation [24].

Continuous viewpoint prediction. While discrete

viewpoint prediction is the de-facto standard today, we be-

lieve that angular accurate viewpoint estimation is both

more natural and leads to better performance, which is con-

firmed by the empirical results in Sect. 4.2.

We again use the intermediate layer responses of a CNN,

pretrained for detection (Section 3.1), as the feature repre-

sentation for this task. From these features, we regress the

azimuth angle directly. More formally, let us denote with

φi the features provided by a CNN on region oi depicting

an object of category c. Let oa represent the azimuth of the

region and wa the azimuth regressor for class c. We use a

least squares objective

wa = argmin
w

||oai − φ⊤

i w||
2

2
+ λ||w||2p, (1)



Figure 2. Our 3D object class detection pipeline.

and test three different regularizers: ridge regression (p =
2), lasso (p = 1), and elastic net. We refer to the regressors

as RCNN-Ridge, RCNN-Lasso and RCNN-ElNet. In our

experiments, we found that these are the best performing

methods, confirming that the CNN features are informative

for viewpoint estimation, and that the continuous nature of

the problem should be modeled directly.

3.3. Object keypoint detection

While an estimate of the 3D object pose in terms of az-

imuth angle (Sect. 3.2) already conveys significant geomet-

ric information beyond a 2D BB, it is not enough to pre-

cisely delineate a 3D prototype model, which is the desired

final output of our 3D object class detection pipeline. In or-

der to ultimately do the lifting to 3D (Sect.3.4), our model

relies on additional geometric information in the form of

object keypoints. They establish precise correspondences

between 3D object coordinates and the 2D image plane.

To that end, we design a set of object class specific key-

point detectors that can accurately localize keypoints in the

2D image plane. In connection with a spatial model span-

ning multiple keypoints, these detectors can deliver reliable

anchor points for 2D-3D lifting.

Keypoints proposal and detection. Recently, it has

been shown that powerful part detectors can be obtained by

training full-blown object class detectors for parts [10]. In-

spired by these findings, we once more turn to the RCNN as

the most powerful object class detector to date, but train it

for keypoint detection rather than entire objects. Since key-

points have quite different characteristics in terms of image

support and feature statistics, we have to perform the fol-

lowing adjustments to make this work.

First, we find that the standard RCNN mechanism for

obtaining candidate regions, selective search [48], is sub-

optimal for our purpose (Sect. 4.3), since it provides only

limited recall for object keypoints. This is not surprising,

since it has been designed to reliably propose regions for

entire objects: it starts from a super-pixel segmentation of

the test image, which tends to undersegment parts in most

cases [23]. We hence propose an alternative way of gen-

erating candidate regions, by training a separate DPM [15]

detector for each keypoint. To generate positive training ex-

amples we need to define a BB around each keypoint. We

use a squared region centered at the keypoint that covers

30% of the relative size of the object BB. At test time, we

can then choose an appropriate number of candidate key-

point regions by thresholding the DPM’s dense sliding win-

dow detections.

Second, we find that fine-tuning the CNN on task-

specific training data makes a difference for keypoint de-

tection (Sect. 4.3). We compare two variants of RCNN

keypoint detectors, both scoring DPM keypoint proposal re-

gions using a linear SVM on top of CNN features. The first

variant re-uses the CNN features trained for 2D object class

detection (Sect. 3.1). The second one fine-tunes the CNN

on keypoint data prior to feature computation.

Spatial model. Flexible part-based models are among

the most successful approaches for object class recognition

in numerous incarnations [17, 16, 15], since they constrain

part positions to overall plausible configurations while at

the same time being able to adapt to intra-class shape vari-

ation – both are crucial traits for the 3D lifting stage of

our pipeline. Here, we start from the spatial model sug-

gested by [3] in the context of localizing mid-level exem-

plar patches, and extend it for 3D instance alignment. This

results in a simple, effective, and computationally efficient

spatial model relating object with keypoint detections.

We define a spatial model that relates the position of key-

points to the position of the object center in the 2D image

plane, resulting in a star-shaped dependency structure as in

previous work [26, 15]. Specifically, for every different

keypoint class p we estimate on the training data the av-

erage relative position around the object center o. Around

this estimated mean position we define a rectangular region

N(o, p) of size proportional to the standard deviation of the

relative keypoint positions in the training set. At test time,

for a given object center o, for every part p we perform max-

pooling in N(o, p). This prunes out all keypoint detections

outside of N(o, p) and only retains the strongest one inside.

As the visibility and relative locations of keypoints

changes drastically with object viewpoint, we introduce a

number of viewpoint-specific components of this spatial

model. During training, these components are obtained by

clustering the viewpoints into C clusters, and estimating the

mean relative keypoint position on each component.

At test time we resort to two strategies to decide on

which component to use. We either use the viewpoint esti-

mation (Sect.3.2) as a guidance for which one to use, or we



use the one with the best 3D detection objective (Sect. 3.4).

Indeed, the guided version performs better (Sect. 4.3).

3.4. 3D Object class detection

The result of the previous stages is a combination of a

2D object BB (Sect. 3.1) plus a set of 2D keypoint locations

(Sect. 3.3) specific to the object class. Optionally, the key-

point locations are also specific to viewpoint, by virtue of

the viewpoint estimation (Sect. 3.2) and the corresponding

spatial model component. This input can now be used to

lift the 2D object class detection to 3D, resulting in a pre-

cise estimate of 3D object shape and pose.

We choose a non-parametric representation of 3D object

shape, based on prototypical 3D CAD models for the ob-

ject class of interest. Assuming known correspondences be-

tween keypoints defined on the surface of a particular model

and 2D image locations, we can estimate the parameters of

the projective transformation that gives rise to the image.

3D Lifting. We adopt the camera model from [50]

and use a pinhole camera P always facing the center of the

world, assuming the object is located there. Assuming a

fixed field of view, the camera model consists of 3D rotation

(pose) and 3D translation parameters. We parameterize the

3D pose as ov ∈ [0, 360) × [−90,+90) × [−180, 180), in

terms of azimuth angle a, elevation angle e and the in-plane

rotation θ. These three continuous parameters, fully specify

the pose of a rigid object. The 3D translation parameters

consist of the distance of the object to the camera D and the

in-plane translation t.

The 3D lifting procedure jointly estimates the camera

and the 3D shape of the object. Let us denote with {ki}
the set of 2D keypoint predictions. Let {Ki

j} be the corre-

sponding 3D keypoints on the CAD model j and k̃ij = PKi
j

denote the image projection of Ki
j . Then the CAD proto-

type c∗ and camera P ∗ are obtained by solving

c∗, P ∗ = argmin
c,P

L∑

i

||ki − k̃ic||. (2)

We perform exhaustive search over the set of CAD models

and solve for P using an interior point solver as in [50].

Initialization. The object viewpoint estimate is used

to initialize the azimuth. The elevation is initialized using

the category mean. We initialize θ = 0. For the in-plane

translation and 3D distance parameters, we solve Eq. 2 op-

timizing only for these parameters. This gives a good coarse

initialization of the distance and the in-plane translation that

is used later for the joint optimization of all parameters.

4. Experiments

In this section, we give an in-depth experimental study of

the performance of our 3D object class detection pipeline,

highlighting three distinct aspects. First, we validate the

design choices at each stage of our pipeline, 2D object

class detection (Sect. 4.1), continuous viewpoint regression

(Sect. 4.2), keypoint detection (Sect. 4.3) and 3D lifting

(Sect. 4.4), ensuring that each stage delivers optimal per-

formance when considered in isolation. Second, we verify

that adding geometric detail through adding more pipeline

stages does not come at the cost of losing any performance,

as it is often observed in previous work [27, 42, 40, 56].

And third, we compare the performance of our method

to the previous state-of-the-art art, demonstrating signifi-

cant performance gains in 2D BB localization, simultane-

ous localization and viewpoint estimation, and segmenta-

tion based on 3D prototype alignment. In contrast to previ-

ous work [56, 30, 3, 29], we evaluate the performance of our

method for a variety of classes on challenging, real-world

images of PASCAL VOC [13, 50].

Dataset. We focus our evaluation on the recently pro-

posed Pascal3D+ [50] dataset. It enriches PASCAL VOC

2012 [13] with 3D annotations in the form of aligned 3D

CAD models. The dataset provides aligned CAD mod-

els for 11 rigid classes (aeroplane, bicycle, boat, bus, car,

chair, dining table, motorbike, sofa, train, and tv monitor)

of the train and val subsets of PASCAL VOC 2012. The

alignments are obtained through human supervision, by first

selecting the visually most similar CAD model for each in-

stance, and specifying the correspondences between a set

of 3D CAD model keypoints and their image projections,

which are used to compute the 3D pose of the instance in the

image. Note that, while the 3D lifting stage of our pipeline

(Sect. 3.4) is in fact inspired by this procedure, it is entirely

automatic, and selects the best fitting 3D CAD model proto-

type without any human supervision. Throughout the eval-

uation, we use the train set for training and the val set for

testing, as suggested by the Pascal3D+ [50].

State-of-the-art. We compare the performance of

our pipeline to previous state-of-the-art results on the PAS-

CAL3D+ dataset as reported in [50]. Specifically, we com-

pare our results to two variants of the deformable part model

(DPM [15]) that predict viewpoint estimates in the form of

angular bins in addition to 2D BBs: (i) VDPM [50] trains

dedicated mixture components for each angular viewpoint

bin, using standard hinge-loss, and (ii) DPM-VOC+VP [42]

optimizes mixture components jointly through a combined

localization and viewpoint estimation loss 1. This method

has been shown to outperform previous work in multi-view

detection by significant margins on 3D Object Classes [43]

and PASCAL VOC 2007 cars and bicycles.

1The DPM-VOC+VP detections were provided by the authors of [42].



Figure 3. 3D CAD prototype alignment examples. (Blue) good alignments, (red) bad alignments. RCNN-Ridge-L fails mainly on truncated

and occluded cases. For more 3D alignment visualizations please see the supplemental material.

4.1. 2D Bounding box localization

We start by evaluating the first stage of our pipeline, 2D

object class detection (Sect. 3.1), in the classical 2D BB

localization task, as defined by PASCAL VOC [13]. Fig 4

(left) compares the performance of our RCNN in its discrete

multi-view variant RCNN-MV (cyan) to CNN-MV (green)

and the state-of-the-art methods on this dataset, VDPM [50]

(blue) and DPM-VOC+VP [42] (light blue). It reports the

mean average precision (mAP) over all 11 classes of Pas-

cal3D+ (per-class results are part of the supplemental mate-

rial) for different numbers of discrete azimuth bins, as sug-

gested by the PASCAL3D+ benchmark: VP1, VP4, VP8,

VP16 and VP24 denote the number of discrete viewpoint-

dependent components of the respective model. Note that

for the VP1 case, the VDPM model reduces to the standard

DPM [15] and RCNN-MV to the standard RCNN.

Results. We make the following observations. First,

for VP1, both RCNN (51.2%) and CNN (47.6%) outper-

form the previous state-of-the-art result of VDPM (29.6%)

by significant margins of 21.6% and 18.0%, respectively, in

line with prior reports concerning the superiority of CNN-

over DPM-based detectors [20]. Second, we observe that

the performance of VDPM and DPM-VOC+VP remains

stable or even slightly increases when increasing the num-

ber of components (e.g., from 29.6% to 30.0% for VDPM

and from 27.0% to 28.3% for DPM-VOC+VP and VP16).

Curiously, this tendency is essentially inverted for RCNN

and CNN: performance drops dramatically from 51.2% to

30.8% and from 47.6% to 27.6% for AP24, respectively.

Conclusion. We conclude that, while the training of

per-viewpoint components is a viable strategy for DPM-

based methods, RCNN-MV and CNN-MV both suffer from

the decrease in training data available per component. We

hence elect RCNN as the first stage of our 3D detection

pipeline, leaving us with the need for another pipeline stage

capable of estimating viewpoint.

4.2. Simultaneous 2D BB and viewpoint estimation

The original PASCAL3D+ work [50] suggests to quan-

tify the performance of simultaneous 2D BB localization

and viewpoint estimation via a combined measure, average

viewpoint precision (AVP). It extends the traditional PAS-

CAL VOC [13] detection criterion to only consider a de-

tection a true positive if it satisfies both the IoU BB over-

lap criterion and correctly predicts the ground truth view-

point bin (AVP ≤ AP). This evaluation is repeated for dif-

ferent numbers of azimuth angle bins VP4, VP8, VP16 and

VP24. While this is a step in the right direction, we be-

lieve that viewpoint is inherently a continuous quantity that

should be evaluated accordingly. We hence propose to con-

sider the entire continuum of possible azimuth angle errors

D ∈ [0◦, . . . , 180◦], and count a detection as a true positive

if it satisfies the IoU and is within D degrees of the ground

truth. We then plot a curve over D, and aggregate the re-

sult as the average AVP (AAVP). This measure has the ad-

vantage that it properly quantifies angular errors rather than

equalizing all misclassified detections, and it alleviates the

somewhat arbitrary choice of bin centers.

Fig. 4 (center) gives the results according to this

measure, averaged over all 11 classes of PASCAL3D+



Figure 4. (Left) 2D BB localization on Pascal3D+ [50]. (Center, right) Simultaneous 2D BB localization and viewpoint estimation. (Center)

continuous mAAVP performance, (right) discrete mAVP performance for VP4, VP8, VP16 and VP24.

(per-class results are part of the supplemental material).

Fig. 4 (right) gives the corresponding results in the origi-

nal AVP measure for discrete azimuth angle binnings [50]

as a reference. In both cases, we compare the performance

of our different RCNN-viewpoint regressor combinations,

RCNN-Ridge, RCNN-Lasso, and RCNN-ElNet, to the dis-

crete multi-view RCNN-MV and CNN-MV, and the state-

of-the-art methods VDPM and DPM-VOC+VP.

Results. We observe that in the mAAVP measure

(Fig. 4 (left)), the RCNN-viewpoint regressor combinations

outperform the previous state-of-the-art methods VDPM

and DPM-VOC+VP by large margins. The best perform-

ing combination RCNN-Ridge (35.3%, brown) outperforms

the best VDPM-16V (20.9%) by 14.4% and the best DPM-

VOC+VP-16V (23.0%) by 12.3%, respectively.

The performance of VDPM and DPM-VOC+VP is sta-

ble or increasing for increasing numbers of components:

VDPM-4V (15.5%) improves to VDPM-16V (20.9%), and

DPM-VOC+VP-4 (20.1%) improves to DPM-VOC+VP-

16V (23.0%). In contrast, performance decreases for

RCNN-MV and CNN-MV: RCNN-MV-4V (26.8%) de-

creases to RCNN-MV-24V (23.0%), and CNN-MV-4V

(22.1%) decreases to CNN-MV-24V (16.2%). Even though

the best performing RCNN-MV-4V (26.8%) outperforms

the previous state-of-the-art DPM-VOC+VP-16V (23.0%),

it can not compete with the RCNN-viewpoint regressor

combinations.

The same tendencies are also reflected in the origi-

nal mAVP measure [50] (Fig. 4 (right)). While DPM-

VOC+VP has a slight edge for the fine binnings (it outper-

forms RCNN-Ridge by 0.9% for VP16 and 1.9% for VP24),

RCNN-viewpoint regressor combinations dominate for the

coarser binnings VP4 and VP8, followed by RCNN-MV,

CNN-MV, VDPM, and DPM-VOC+VP.

Conclusion. The combination of RCNN and view-

point regressor RCNN-Ridge provides a pronounced im-

provement in simultaneous 2D BB localization and view-

point estimation compared to previous state-of-the-art

(12.3% in mAAVP). Notably, it retains the original perfor-

mance in 2D BB localization of the RCNN (51.2% in AP).

Figure 5. Left: 2D Keypoint region proposal quality. Right: Si-

multaneous 2D BB and viewpoint estimation with 3D lifting.

4.3. 2D Keypoint detection

We proceed by evaluating the basis for our 3D lift-

ing stage, 2D keypoint detection (Sect. 3.3), in isolation.

We use the keypoint annotations provided as part of Pas-

cal3D+ [50], and train an RCNN keypoint detector for

each of 117 types of keypoints distributed over 11 object

categories. Since the keypoints are only characterized by

their location (not extent), we evaluate localization perfor-

mance in a way that is inspired by human body pose es-

timation [54]. For computing a precision-recall curve, we

replace the standard BB IoU criterion for detection with an

allowed distance P from the keypoint annotation, normal-

ized to a reference object height H . We refer to this mea-

sure as Average Pixel Precision (APP). In all experiments,

we use H = 100 and P = 25.

Region proposals. We first evaluate the keypoint re-

gion proposal method (Fig. 5 (left)), comparing selective

search (SS) with the deformable part model (DPM [15])

at K = 2000 and K = 10000 top-scoring regions per

image. The DPM is trained independently for each key-

point (for that purpose, we define the BB of each keypoint

to be a square centered at the keypoint with area equal to

30% of the object area). Both DPM versions outperform

the corresponding SS methods by large margin: at 70% IoU

DPM with K = 10000 gives 30% more recall than SS-10K
which is why we stick with these keypoint proposals for our

3D object class detection pipeline.

Part localization. Tab. 1 compares the performance

of our RCNN keypoint detectors with the DPM keypoint

proposal detectors alone, in APP. On average, the RCNN-

FT keypoint detectors trained using the features from the



APP aero

plane

bike boat bus car chair din.

table

mot.

bike

sofa train tv AVG

DPM 19.2 36.2 8.9 26.4 14.3 3.1 4.0 24.2 7.6 8.5 6.1 14.4

RCNN 24.6 43.1 9.8 47.8 34.1 5.7 4.6 36.7 14.3 22.5 21.5 24.1

RCNN FT 30.4 48.9 12.4 50.8 39.5 9.5 6.3 41.6 14.0 24.5 22.8 27.3

Table 1. Part detection performance in APP.

CNN fine-tuned on keypoint detection (27.3%) outperform

the DPM (14.4%) by 12.9% APP providing a solid basis for

our 3D lifting procedure.

4.4. 2D to 3D lifting

Finally, we evaluate the performance of our full 3D ob-

ject class detection pipeline that predicts the precise 3D

shape and pose. We first give results on simultaneous 2D

BB localization and viewpoint estimation as before, but

then move on to measuring the quality of our predicted 3D

shape estimates, in the form of a segmentation task. We

generate segmentation masks by simply projecting the pre-

dicted 3D shape (Fig. 1 (right)). We compare the perfor-

mance of a direct 3D lifting (RCNN-L) of detected 2D key-

points with a viewpoint guided 3D lifting (RCNN-Ridge-

L), and a baseline that regresses keypoint positions (RCNN-

KeyReg) on top of an RCNN object detector rather than us-

ing keypoint detections.

Simultaneous 2D BB & VP estimation. Fig. 5 (right)

compares the mAAVP performance of the lifting meth-

ods with the best viewpoint regressor RCNN-Ridge and

the best previously published method DPM-VOC+VP-16V.

Fig. 4 (right) gives the AVPV [50] performance in compar-

ison with all viewpoint classifiers and regressors.

RCNN-L (31.2% mAAVP) and RCNN-Ridge-L (35.5%)

outperform both the RCNN-KeyReg (28.5%) and the DPM-

VOC+VP-16V (23.0%) by considerable margins. RCNN-

Ridge-L consistently outperforms RCNN-Ridge in terms of

AVPV (by 1.6%, 2.2%, 2.2%, and 4.1% for increasing V ),

thus improving over the previous pipeline stage. Further-

more, with 18.6% AVP16 and 15.8% AVP24 it also outper-

forms DPM-VOC+VP-16V (17.3%,13.6%, respectively),

and achieving state-of-the-art simultaneous BB localization

and viewpoint estimation results on Pascal3D+.

Segmentation. Tab. 2 reports the segmentation accu-

racy on Pascal3D+. We use the evaluation protocol of [50]

with two differences. First, we evaluate inside the ground

truth BB only to account for truncated and occluded ob-

jects. Second, we focus the evaluation on objects with ac-

tual ground truth 3D prototype alignment as that constitutes

the relevant set of objects we want to compare on. There-

fore, we report the performance of the ground truth aligned

3D CAD prototypes (GT) as well.

With 41.4% performance across all classes, RCNN-

Ridge-L outperforms RCNN-L (36.9%) and the baseline

RCNN-KeyReg (36.4%) by 4%, confirming the quality of

sAcc aero

plane

bike boat bus car chair din.

table

mot.

bike

sofa train tv AVG

GT 58.3 32.0 57.9 84.9 79.6 53.5 63.1 69.3 64.7 70.5 80.7 65.0

RCNN-KeyReg 27.1 20.2 19.1 56.2 47.7 23.0 18.6 41.3 46.4 30.9 70.0 36.4

RCNN-L 30.3 22.0 27.9 60.5 44.2 24.9 24.4 46.3 41.9 37.5 45.6 36.9

RCNN-Ridge-L 35.1 22.2 26.9 66.4 53.9 26.8 28.6 49.0 44.8 42.5 58.7 41.4

Table 2. Segmentation accuracy on Pascal3D+.

sAcc aero

plane

bike boat bus car chair din.

table

mot.

bike

sofa train tv AVG

GT 40.3 27.9 36.2 75.0 59.3 34.9 16.0 59.0 25.2 57.0 72.5 45.7

O2P [9] 48.2 32.5 29.6 61.1 46.7 12.4 12.4 46.0 17.0 36.7 41.6 34.9

O2P+ [36] 52.4 32.8 33.1 60.5 47.8 12.8 13.0 44.5 16.7 40.1 40.7 35.9

RCNN-KeyReg 21.9 17.2 15.1 49.5 39.2 16.4 11.8 37.3 21.9 28.2 60.9 29.0

RCNN-L 26.7 18.8 17.5 53.9 36.7 16.2 6.4 43.5 16.3 35.5 49.7 29.2

RCNN-Ridge-L 27.7 20.1 19.9 59.0 41.7 18.2 7.8 44.4 18.5 37.9 51.1 31.5

Table 3. Segmentation accuracy on Pascal-context [36] dataset.

the alignment. Fig. 3 illustrates successful 2D-3D align-

ments for different object classes, along with failure cases.

Truncated and occluded objects represent a major part of

the failures.

In Tab. 3 we go one step further and compare to native

state-of-the-art segmentation methods (O2P [9]), this time

on the Pascal-context [36] dataset. We report the perfor-

mance on the 11 classes from Pascal3D+ only. RCNN-

Ridge-L with 31.5% is only slightly worse than O2P+

(35.9%) although the latter is designed for segmentation.

Conclusion. We conclude that RCNN-Ridge-L

achieves state-of-the-art simultaneous BB localization and

viewpoint estimation performance on Pascal3D+ [50], out-

performing the DPM-VOC+VP and the RCNN-Ridge re-

gressor. It successfully predicts the 3D object shape which

is confirmed by it’s segmentation performance.

5. Conclusions

In this work we have build a 3D object class detector,

capable of detecting objects of multiple object categories

in the wild (Pascal3D+). It consists of four main stages:

(i) object detection, (ii) viewpoint estimation, (iii) keypoint

detection and (iv) 2D-3D lifting. Based on careful design

choices, our 3D object class detector improves the perfor-

mance in each stage, achieving state-of-the-art object BB

localization and simultaneous BB localization and view-

point estimation performance on the challenging Pascal3D+

dataset. At the same time, it predicts the 3D shape of the

objects, as confirmed by it’s segmentation quality. The final

result is a rich 3D representation, consisting of 3D shape,

3D viewpoint, and 3D position automatically estimated us-

ing only 2D image evidence.
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