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ABSTRACT This paper addresses the challenge of 3D object detection from a single panoramic image

under severe deformation. The advent of the two-stage approach has impelled significant progress in 3D

object detection. However, most available methods only can localize region proposals by a single-scale

architecture network, which are sensitive to deformation and distortion. To address this issue, we propose

a multi-scale convolutional neural network (MSCNN) to estimate the 3D pose of an object. To be specific,

the proposed MSCNN consists of three steps for effectively detecting the distorted object on the panoramic

images. The MSCNN contains the CycleGAN network that converts rectilinear images into panoramas,

a fused framework that improves both accuracy and speed for object detection, and an adversarial spatial

transformer network (ASTN) that extracts the deformation features of the object on panoramic images.

Additionally, we recover the 3D pose of the object using a coordinate projection and a 3D bounding box.

Extensive experiments demonstrate that the proposed method can achieve a 3D detection accuracy of 38.7%

in high-resolution panoramic images, which is higher than the current state-of-the-art algorithm of 5.2%.

Moreover, the speed of detection is only about 0.6 seconds per image, which is six times faster than Faster

R-CNN (COCO). The code will be available at https://github.com/Yanhui-He.

INDEX TERMS Object detection, panoramic images, multi-scale convolutional neural network,

3D bounding box.

I. INTRODUCTION

The panoramic image visualization platform has enjoyed

popularity in many applications, such as virtual reality, visual

surveillance, autonomous vehicles and virtual interaction [1].

Specifically, the third-generation intelligent video surveil-

lance system and automotive computer vision work have

focused on panoramic object detection [2]. Notably, it is

important to collect the panoramic image and automatically

recognize and detect the objects in them. Panoramic images

are typically represented using an equirectangular projection,

The associate editor coordinating the review of this manuscript and

approving it for publication was Li He .

which creates severe geometric distortions for objects that are

further from the central horizontal line [3]. In this projection,

the image space coordinates are usually projected onto a focal

plane as shown in Fig. 8.

Equirectangular panorama (ERA) can be used to store and

transmit VR video.Meanwhile, ERA images create new chal-

lenges for computer vision and image processing as i) we lack

high-quality annotated 360◦ datasets, ii) imagery is difficult

to treat due to its high-resolution and iii) equirectangular pro-

jection creates severe geometric distortions for objects away

from the central horizontal line [3]. The distortions of objects

vary with distance and viewpoint and reflect randomness to

some extent [4]. Therefore, panoramic images create new

challenges for object detection, which is a crucial procedure

VOLUME 7, 2019
This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ 171461

https://orcid.org/0000-0002-6707-988X
https://orcid.org/0000-0002-6394-1751
https://orcid.org/0000-0002-8049-1457
https://orcid.org/0000-0002-5766-5973
https://orcid.org/0000-0002-6383-7663
https://orcid.org/0000-0001-6534-3205
https://orcid.org/0000-0002-0524-5926
https://orcid.org/0000-0003-0261-4068


D. Wang et al.: 3D Object Detection Algorithm for Panoramic Images With MSCNN

in surveillance videos analysis, industrial inspection, auto-

matic pilot and transportation management [5].

Traditional object detection algorithms are usually based

on hand-crafted features, such as histogram of oriented gradi-

ent (HOG) [6], local binary pattern (LBP) [7], scale-invariant

feature transform (SIFT) [8], frame difference and back-

ground subtraction [5], etc. The features of the traditional

methods are extracted in the image window and processed

with a specific algorithm. However, these sliding-window

based approaches can not achieve satisfactory performance

of detection because the scales of the objects are always

varying significant during moving away from the panoramic

camera [4].

The deep learning methods [9]–[14] use CNNs to achieve

unprecedented progress in object detection. Compared with

traditional features, CNN features are more representative

and abstract [4]. Some of these methods have been applied

to object detection of panoramic images, especially in 3D

object detection in the indoor scene reconstruction, such

as PanoContext by Zhang et al. [15] and Pano2CAD by

Xu et al. [16]. The latter retrieves the object by regression

using CAD (Computer-Aided Design) models. In contrast,

our method does not need any prior knowledge of the object

geometry. Moreover, several extended methods [17], [18]

have been proposed for 3D object detection, which gener-

ated region proposal as an input to the pose network. The

pose network is initialized with VGG [19] and fine-tuned

for pose estimation using ground truth annotations from

Pascal 3D+ [20]. This method is similar to [21] except

that the weights and synthetic images are used for training.

And some methods are to exploit the availability of 3D

shape models and use them for 3D hypothesis sampling and

refinement [22]. For example, Mottaghi et al. [23] sample

the objective viewpoint, position and size and then mea-

sure the similarity between rendered 3D CAD models of

the object and the detection window using HOG features.

Mousavian et al. [22] show the 3D pose can be recovered

without any template assumptions with carefully-expressed

geometrical constraints. Garanderie et al. [24] propose a new

approach which does not has explicitly expressed geomet-

rical constraints. In this paper, we propose a new method

inspired by [24], which has lower computational complexity

and higher precision.

The existing work on panoramic images are focusing on

indoor scene understanding [15], [16], panoramic to recti-

linear video conversion [25], dual camera 360◦ stereo depth

recovery [26], ‘‘compression’’ of wide-angle VR video to

conventional narrow-angle video [27], [28], equirectangu-

lar super-resolution and 360◦ object tracking [29]. A wide

range of research methods on panoramic vision technology

are using active sensing in the form of 360◦ LIDAR, but

it only can perceive object position information. The other

method is fusing camera information from multiple different

angles [30]. However, the method raises the consumption of

computing resources and loses the opportunity of sharing

visual information in the early stages of feature extraction

due to overlapping fields of view. Furthermore, the image

captured from multiple views can also be stitched into a

panorama [31], which may lose certain scenes and objects.

Compared to LIDAR and multi-view camera fusion, an inde-

pendent multi-view panoramic camera can provide ultra-

high-resolution images in 360◦ field of view and keep rich

scene color and texture information to understand compre-

hensively on the high-level semantic information [32]. The

object in the multi-view panoramic image is deformed and

distorted. Object detection tasks have new challenges in this

situation. To solve this problem, we propose a new method

to detect the objects of 360◦ panoramic imagery using a

multi-scale convolutional neural network (MSCNN).

In terms of geometric transformation and distortion,

the features extracted by MSCNN are more robust than the

features extracted by convolutional neural network (CNN).

Garanderie et al. [24] utilized MSCNN to recognize and

locate the vehicle in the panoramic image and effectively

detected the depth information of the object. However, this

approach has a slower detection speed and lower accuracy.

In this paper, the proposed method is to improve the detection

speed and accuracy by minimizing the network’s parameters.

Meanwhile, an improved MSCNN is presented for object

detection processing in panoramic images. This method com-

bines the region proposal and object detection method to

avoid the sliding-window approach altogether and thus it has

become adaptive to our application. In addition, we have

extended the 2D object detectionmethod based onmulti-scale

convolutional neural networks. The 3D bounding box of the

object is estimated using a method of camera coordinate

mapping. Compared with 2D detection, the 3D bounding

box can more accurately predict the actual spatial position

and attitude of the object, including the coordinates, size,

and direction of the object [33]. Alternatively, the 3D object

detection methods introduce a third dimension that reveals

more detailed object’s size and location information [34].

In summary, this work has the following contributions:
• We propose a novel fusion network for 3D object detec-

tion with a Multi-scale Convolutional Neural Network

(MSCNN), which learns a distortional representation for

robust 3D detection localization in panoramic images.

• Based on the predictions from the MSCNN, we pro-

pose to utilize an adversarial spatial transformer net-

work (ASTN) to make the whole training process to

adapt the panorama.

• We create a new dataset for evaluation on multi-scale

panoramic images (4608×3456 image resolution) using

the CycleGAN network. The experiments show that the

proposed approach has a higher accuracy of detection

compared to the state of the art on the panoramic datasets

using the Darknet-53 framework, and has a much faster

learning speed than others in the meanwhile.

II. METHODOLOGY

In this paper, we propose a novel framework for 3D object

detection. Given an image, the task of 3D detection is to detect
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FIGURE 1. Main steps of the 3D object detection based on panoramic images using multi-scale convolutional neural network.

objects and estimate their pose and position. Specifically, 3D

detection is represented by a cube in a panoramic image using

the Multi-scale Convolutional Neural Network (MSCNN).

In a nutshell, we propose the following steps to construct a

panoramic 3D object detection algorithm.

Given an image, we utilize a style transformation method

to train a model that converts the rectilinear image into

a panoramic image. We construct a training dataset of

panoramic images and then annotate the ultra-high-resolution

image. Subsequently, we reconstruct the first stage of the

MSCNN training network on the above dataset by apply-

ing the Darknet-53 framework. Specifically, based on an

adversarial spatial transformer network (ASTN), we extract

deformation features of the object on panoramic images. For

each feature, we estimate the parameters of the corresponding

3D bounding box. Finally, we recover the 3D pose of the

object using a coordinate projection and a 3D bounding box.

A. TRAINING DATASET GENERATION

Our method can handle multi-scale objects based on the

strategy proposed in this section. Due to the high cost of

acquiring a significant number of panoramic images and

annotating labels to them, we present a training dataset gen-

eration method based on CycleGAN [35]. Inspired by the

method, we train a transformation model between KITTI [36]

rectilinear images and panoramic images. In our approach,

the source domain is the KITTI dataset of rectilinear images

captured using a front-facing camera rig (82.5◦ horizontal

FoV and 29.7◦ vertical FoV). Meanwhile, our target domain

consists of 5000 panoramic images from a panoramic camera

with seven fisheye lenses (360◦ × 170◦). The panoramic

image has an angular coverage that is 24.9 times larger than

the source KITTI imagery. Subsequently, the transformation

model is put forward to transfer all images in the source

domain into panoramic style images.

Figure 2 shows some panoramic style images. Most of

these generated images have some degrees of distortion

and distortion, but that’s exactly what we need. Note that,

the model used for transformation is only trained on the

KITTI and panoramic dataset, where the network adapts

to the panoramic image. In the subsequent training model,

a large number of parameters related to the real panoramic

image style are saved, by which we can detect objects in a

real panoramic image.

FIGURE 2. Output of the transformation of images from the KITTI dataset.

Implementation: To improve the adaptability of the pro-

posed network to the panoramic image style, we use the

following technique to update the parameters,

θt+1 = θt −
η

√

v̂t + ε
m̂t , (1)
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FIGURE 3. Feature maps. From left to right are the outputs from training datasets, the results of KITTI [36], transformed
images and real panoramic images.

FIGURE 4. Different loss results. (a)-(b): the train and test loss of YOLO.
(c)-(d): the train and test loss of MSCNN.

where t denotes the parameter value of the t-th iteration, η is

learning rate, ε is a constant used to stabilize the value, m̂t
and v̂t are the deviation correction for the first and second

moment estimates of the gradient respectively in the training

process of CycleGAN [35].

B. NETWORK RECONSTRUCTION

The MSCNN is a general multi-class object detector, which

is suitable for detecting small-scale objects. We applied this

type of network to realize the object classification and detec-

tion processing on panoramic images. Figure 1(c) shows

the proposed pipeline of MSCNN. The network contains a

standard CNN trunk as well as a set of output branches. Fur-

thermore, the network is applicable to detect long-distance

objects (the object becomes smaller in this situation) on

panoramic images. The training network consists of two

stages. In the first stage, the network is trained by the

VGG16 [19] model, which adjusts the size of the anchor, and

the second stage depends on the result of the previous training

stage to provide better initialization.

In order to verify the performance of the style-converted

image in network reconstruction, we analyze the output fea-

ture map after fine-tuning YOLO [12] on the Darknet-53

framework, as shown in Figure 3. The first column is the

KITTI [36] image, the second column is the converted image,

and the third column is the real panorama image. We divide

the entire YOLO network into five convolutional blocks, each

of them consists of 3 to 5 convolutional layers, and all the

feature maps of each convolution block are fused in a scale

of 1:1 to obtain the fused images that are shown in Figure 3.

The Figure 3 indicates the features of the original image, these

features aremore pronounced in the first and fifth convolution

block. The features of the real world panoramic image are

prominent on the third convolution block. More specifically,

most of the features of the style-converted image change

uniformly layer by layer, which reduces the amplitude of the

entire network loss and accelerates convergence. Therefore,

style-converted images are essential for network training.

Additionally, we investigate the impact of different connec-

tions on the feature map of our network. We used a feature

map comprised to images of YOLO [12]. The last row of

Figure 3 reports an intermediate feature map generated by

the MSCNN, while one interesting finding is that the fusion

process still retains most of the information of the feature

map.

Implementation: First, we construct a Darknet-53 frame-

work on panoramic images without any significant archi-

tectural alterations. Then, we use MSCNN instead of the

VGG16 [19] to compile a new training network.

C. NETWORK FUSION

This paper focuses on 3D object detection for panoramic

images. Given an equirectangular image, the proposed net-

work predicts the pose of objects that are suffering from

severe geometric distortions. As for a convolutional neural
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network (CNN), the fully connected layer can not possess

the characteristics of translation invariance in the panoramic.

More exactly, the regions of the feature map extracted by

CNNwill change slightly when the distortions of objects vary

with distance and viewpoint. Meanwhile, these errors accu-

mulate continuously when training the network on panoramic

images, which leads to poor robust stability of the detection

model. For each object, it always has distortions caused by

lens distortion and stitching. At run-time, the network is

required to have a strong fault-tolerant capability. To avoid

the distortion of panoramic images, we utilize the adversarial

spatial transformer network (ASTN) as an explicit processing

module to extract the features fromCNN, which can indepen-

dently learn the translation and rotation invariance.

Implementation: We add the ASTN network as an input

after the ROI-pooling layer of MSCNN. Panoramic images

are deformed and divided into four blocks by the ASTN. For

each block, we estimate four different rotation angles.

D. 3D BOUNDING BOX GENERATION

We train a multi-scale convolutional neural network for

detecting objects in panoramic images, which helps us to

handle small object localization errors made during detection.

The model includes three types of information: position,

category, and spatial features. Here, we use coordinate pro-

jection to emphasize the geometric relationship between the

rectilinear image and the panorama. Moreover, we utilize the

bounding box to estimate the spatial feature of the object.

We detail these steps in the sub-sections below.

1) COORDINATE PROJECTION

In order to project the spatial coordinates of the panoramic

image to the plane, we provided the Cartesian coordinates of

a 3D scene point in camera space. To simplify the calculation,

the longitude and latitude are defined as:

(λ, φ)−1 = Ŵ

[

(x, y, z)−1
]

= Ŵ

[

(α, β, 1)−1
]

, (2)

where α = x/z and β = y/z.

We define an image transformation matrix Tp which trans-

forms the longitude and latitude to image space coordinates

(up,vp):




up
vp
1



 = Tp ·





λ

φ

1



 =





γ 0 cλ
0 γ cφ
0 0 1



 · Ŵ









α

β

1







, (3)

where γ and (cλ,cφ) are the angular resolution parameter and

the principal point of the camera respectively. The equirect-

angular imagery generated by a panoramic camera with

seven fisheye cameras can be readily used without any prior

calibration.

2) 3D BOUNDING BOX ESTIMATION

In order to estimate the 3D bounding box accurately and

robustly, we present an improved method based on MSCNN.

We remove the final fully connected MSCNN layer and then

regress the direction of objects by the last fully connected

ASTN layer. In contrast to directly regressing object loca-

tions from the 3D CAD models [15], [16], we can recover

the object’s 3D bounding box using the constraints of the

2D detection window. Specifically, we directly regress the

3D dimensions (width, length, and height). As a result,

we are able to recover the actual 3D position from the

panorama by:

(x, y, z)−1 = r · u
[

Ŵ−1
[

T−1
p ·

(

up, vp, 1
)−1

]]

. (4)

Implementation: Here, the angular resolution γ is defined

as γ = 2π/w, where w is the width of the image. To simplify

the computation, r is set as r = γ h, where h is the height

of the region proposal generated by the Region Proposal

Network (RPN). The operation u[·] is defined as u[φ] =

φ/‖φ‖.

The proposed framework of 3D object detection model

for panoramic images is shown in Figure 1. The Fig. 1(a) is

the technique to generate the dataset for training by Cycle-

GAN [35]. The Fig. 1(b) is the method to generate the

pre-trained model by Darknet-53. The Fig. 1(c)-(d) are the

approach to generate the object detection model by MSCNN.

The Fig. 1(e) is the method to estimate the parameters of

the 3D bounding box. We combine different structural net-

work frameworks by adopting a multi-stage training strategy.

CycleGAN is used to enhance the training set to achieve con-

version between different data source domains. Subsequently,

we fine-tune the YOLO [12] network on the DarkNet-53 to

train the network. In the next phase, the ASTN module is

added to the MSCNN to improve the robustness of the model

to detect objects on the panoramic dataset. Finally, the 3D

bounding box of the object is estimated by the coordinate

map.

III. EVALUATION

Some technical details of the training network:

1. In the training process of CycleGAN [35], we set the ini-

tial learning rate to 0.0002, the parameter of the first moment

and second moment are respectively 0.5 and 0.999, ε uses the

default value of 1e-8.

2. In the first stage of MSCNN, we make use of the

framework of Darknet-53 to train a new model. To prevent

overfitting, we set the momentum and the weight decay to

0.9 and 0.005. The initial learning rate is set to 0.001 and a

multi-distribution strategy was employed.

3. In the second stage of training, we joined ASTN net-

work. We set the initial learning rate to 0.0005, the momen-

tum and the weight decay are respectively 0.9 and 0.0005.

Training platforms are as follows: GPU Titan XP ×4,

CUDA9.0, CUDNN7.0, Ubuntu16.04. The following sec-

tions are the results of training and evaluation.

A. DATASETS
1) CARLA

We evaluate our approach both qualitatively and quanti-

tatively on panoramic images from using synthetic data
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FIGURE 5. 3D object detection results. (Use only the data generated by CycleGAN.)

FIGURE 6. 3D object detection results. (Only the fusion framework of Darknet-53 and MSCNN is used.)

FIGURE 7. 3D object detection results. (Use only ASTN networks.)

generated using the CARLA [37] automotive environment

simulator. A total of 200 panoramic simulation images

(2048 × 300 image resolution). It is represented by C

in Table 1.

2) KITTI

KITTI [36] is the current computer vision algorithm evalu-

ation dataset under the largest autopilot scene in the world.

We utilize 7482 images (1242 × 375 image resolution)

as the data source for the style conversion image, and

another 7519 images for the test. It is represented by K1 in

Table 1.

3) PANORAMA

The panorama is a real-world panoramic image captured

by a 7-mesh panoramic camera. We evaluate our method

with 5,000 of the panoramic images (4608 × 3456 image

resolution). It is represented by P in Table 1.

B. TRAINING RESULTS

The converting results from the KITTI [36] image style to

the panoramic using the CycleGAN [35] model are shown

in Fig. 2. Compared with the original images, the scale trans-

formation of the object is significantly increased. However,

the converted image retains the texture and color information

on objects very well.

Some loss results are shown in Figure 4. In the first stage

of the MSCNN, we find that the training loss based on the

Darknet-53 is much smaller compared with VGG16 [19].

Meanwhile, the amplitude of the loss is smaller and the

convergence speed is faster than the original network. Espe-

cially we found that even though the final test loss results

are almost the same during the test, the intermediate pro-

cess of loss is much stable than the VGG16-based network.

In the second stage of the MSCNN, the net loss of joining

ASTN is significantly smaller. When the number of iterations

171466 VOLUME 7, 2019
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FIGURE 8. 3D object detection results. (a) Synthetic images. (b) Transformed images. (c) Real-world images.

TABLE 1. The accuracies of our method and the time consumption (ms)
on the different datasets.

is less than 5000, the loss value of the proposed method

has stabilized. The final loss value is much smaller than

the unimproved MSCNN. The test loss of the entire net-

work is less than 0.6. These results indicate that the perfor-

mance of the proposed network is better than the original

network.

C. QUALITATIVE EVALUATION

Our approach is evaluated on panoramic images by the auto-

motive environment simulator. Meanwhile, we also give the

detection results of a certain module in the proposed method

(Fig 5.-Fig 7.). Figure 5 shows the detection results on the

simulated data and the KITTI dataset. This model is trained

only with data generated by CycleGAN. It is indicated that

the 3D bounding box has caused a serious deformation in

the target area of the object, and marked the object incor-

rectly. Figure 6 is the detection results on simulated data

and the KITTI dataset by the fusion network in our pro-

posed method. The improved model demonstrates that the

proposed method has robust detection performance on the

KITTI, but the accuracy on the panoramic dataset is not ideal.

Figure 7 shows the result of our detection on a real panoramic

image by the ASTN network. The model has large errors

and false detection. In specific the entire map is completely

disrupted when the object scale changes seriously, where

the model does not provide enough information to infer the

poses. It is indicated that the single ASTN network can not

adapt to panoramic images without the training of multi-scale

networks.

Some qualitative results are shown in Figure 8. It illus-

trates that the 3D object detection results of the images in

representative scenes. The proposed method can detect the

target that appears at the edge of the image in Fig 8(a), which

demonstrates that our method enables the model to learn the

relationship between parts of the object. For a transformed

image, the model can wrap small objects in small cuboids

for 3D detection. Even the image background is complex in a

real panoramic image, our method robustly detects the object.

Some examples are shown in Figure 8(c). Meanwhile, the 3D

boxes are approximately enwrapping the object with a white

cuboid.

Note that the white 3D bounding box is always not regu-

lar cubes in the results. A real panoramic image consist of

multiple fisheye images, and the scale of the target varies

with distance continuously within a 360-degree horizontal

field of view. The improved performance demonstrates that

VOLUME 7, 2019 171467



D. Wang et al.: 3D Object Detection Algorithm for Panoramic Images With MSCNN

the proposed method enables our network to detect the object

in a panorama so that the 3D pose can be robustly recovered

by the coordinate mapping.

D. QUANTITATIVE EVALUATION

Table 1 indicates the mean average precision (MAP) and

the average time consumption of each image. To validate

the validity of the algorithm, we retrain our models with

different datasets and the object detection performance is

shown in Table 1.

Compared with the method proposed in [24], we only

fine-tune the YOLO network on the Darknet-53 deep learning

framework, and the accuracy of obtaining the 3D bound-

ing box of the object by coordinate mapping technique is

increased by 2.9% (image resolution is 715× 256) and 1.8%

(image resolution is 1242 × 375), and the detection time

of each image is reduced by 75 milliseconds. If the ASTN

network is cascaded only based on MSCNN, the detection

accuracy is increased by 5.2% (image resolution is 715×256)

and 2.4% (image resolution is 1242×375), and the detection

time is reduced by 85 milliseconds. Finally, we integrated the

YOLO and ASTN networks in the MSCNN network, with

detection accuracy increased by 4.0% (image resolution is

715 × 256) and 3.3% (image resolution is 1242 × 375), and

detection time reduced by 75 milliseconds.

We also find that the accuracy and speed of the detec-

tion do not change when using only the YOLO framework

(image resolution is 1242 × 375, the accuracy is about

35% and the speed is about 575 milliseconds per image).

To validate the benefit of considering the YOLO in solving

the 3D detection problem, we report the extracted feature

maps of the Darknet-53 in Figure 3. It is indicated that

in high-resolution panoramic images, the learning frame-

work based on multi-scale convolutional neural networks

will extract similar features with little effect on the final

results. Also, Table 1 shows that the detection accuracy

can be improved significantly by training the network with

CARLA [37] dataset.

Figure 9. shows the experiment MAP results with com-

parisons of different resolutions and datasets. We make

the following conclusions for each step of the method we

propose. The accuracy of network reconstruction using the

Darknet-53 framework alone increased by 1.2% (image

resolution is 715 × 256) and 1.8% (image resolution is

1242 × 375), respectively. The accuracy of the ASTN net-

work alone was increased by 3.0% (image resolution is

715 × 256) and 2.5% (image resolution is 1242 × 375),

respectively. Both methods reduce the detection time by

65 milliseconds (ms). Although the MAP obtained after inte-

grating all the methods is not the highest, the final fusion

algorithm performs best in high-resolution panoramic image

testing (36.8%).

Our best results are derived from the combined training

dataset consisting of KITTI, CARLA, and panoramic images

obtained through a panoramic camera with seven fisheye

FIGURE 9. Comparison of experimental results of different methods MAP.

cameras. Table 1 shows the comparison of our methods

with the method [24] in terms of MAP metric. Note that

the best detection result of the proposed algorithm has an

improvement of 5.2% compared to the original network.

Mainly attribute to the ASTN enhances the robustness of the

network.Meanwhile, the average detection time is reduced by

80ms.Moreover, the time consumption is directly reduced by

75 ms when we reconstruct the framework with Darknet-53.

Even though the resolution of the best images is very high,

the detection speed of the proposed network is 6 times faster

than the Faster R-CNN [10]. Additionally, the experiment

results indicate that the fusion network (pre-trained by the

MSCNN and ASTN) has better performance than that of the

MSCNN network.

IV. CONCLUSION

In this paper, we proposed a novel framework for 3D

object detection in panoramic images, which consists of

the panorama style transformation for training dataset gen-

eration and the fusion network for final 3D object detec-

tion. We showed that pre-training the network with the

transformed image followed by the fusion network for

3D detection gained a superior performance than direct

regression of 3D detection by the single MSCNN, espe-

cially for multi-scale objects. We also showed that consid-

ering the 3D bounding box of predicted object location in

the high-resolution image further improved 3D detection.

We reported the state-of-the-art performances on different

datasets and demonstrated the robustness of the proposed

approach on the real panoramic dataset.
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