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Abstract: This paper presents a novel representation for
three-dimensional objects in terms of affine-invariant im-
age patches and their spatial relationships. Multi-view con-
straints associated with groups of patches are combined with
a normalized representation of their appearance to guide
matching and reconstruction, allowing the acquisition of
true three-dimensional affine and Euclidean models from
multiple images and their recognition in a single photograph
taken from an arbitrary viewpoint. The proposed approach
does not require a separate segmentation stage and is appli-
cable to cluttered scenes. Preliminary modeling and recog-
nition results are presented.

1 Introduction
This paper addresses the problem of recognizing three-

dimensional (3D) objects in photographs. Traditional
feature-based geometric approaches to this problem, for ex-
ample alignment and interpretation trees [6, 8], enumerate all
triples of image features before pose consistency constraints
can be used to confirm or discard competing match hypothe-
ses. Appearance-based techniques, on the other hand, use
rich local descriptions of the image brightness pattern to
select a relatively small set of promising potential matches
before using geometric consistency constraints to retain the
correct ones. However, they normally either require storing a
large number of views for each object (e.g., [15, 17, 20]), or
limiting the range of admissible viewpoints (e.g., [21, 25]).

Viewpoint invariants (or invariants for short) provide a
natural indexing mechanism for object recognition tasks.
Unfortunately, although planar objects and certain simple
shapes (e.g., bilaterally symmetric ones) admit invariants,
general 3D shapes do not [2], which is the main reason why
invariants have fallen out of favor after an intense flurry of
activity in the early 1990s [13, 14]. We propose in this
paper to revisit invariants as a local object description: In-
deed, although smooth surfaces are almost never planar in
the large, they are always planar in the small—that is, suf-
ficiently small surface patches can always be thought of as
being comprised of coplanar points. The surface of a solid

can thus be represented by a collection of small patches, their
invariants, and a description of their 3D spatial relationship.

We propose such a surface representation in terms of
the affine-invariant patches introduced by Mikolajczyk and
Schmid [12] and geometric consistency constraints related
to the multi-view geometry studied in the structure-from-
motion literature [3, 5, 23]. The detection and represen-
tation of affine-invariant patches is discussed in Section 2.
We show in Section 3 that it is possible to exploit the multi-
view geometry of affine projection to impose effective pose-
consistency constraints on matching patches (see [10, 19, 22,
24] for related work). Thus, different views of the same
scene can be matched by checking whether groups of po-
tential correspondences found by correlation are geometri-
cally consistent. This matching strategy is used in modeling
tasks, where matches found in pairs of successive (unregis-
tered) images of the same object are used to create a global
3D (affine or Euclidean) model of this object. We show in
Section 4 that multi-view consistency constraints imposed
on potential correspondences between these 3D models and
image patches can also be used to identify 3D objects in pho-
tographs taken from arbitrary viewpoints. In practice, mod-
eling is done in controlled situations with little or no clutter;
the stronger consistency constraints associated with 3D mod-
els make up for the presence of significant clutter in object
recognition tasks, avoiding the need for a separate segmen-
tation stage. The proposed approach to 3D object modeling
and recognition has been implemented, and preliminary ex-
periments are presented in Section 5. We conclude in Section
6 with a brief discussion of its promise and limitations.

2 Affine-Invariant Patches
Operators capable of finding rotation- [20], scale- [9, 11]

and affine-invariant [1, 12, 18, 24] image descriptors in the
neighborhood of salient image features (“interest points” [4])
have recently been proposed in the context of wide-baseline
stereo matching and image retrieval. In this paper, we use
an implementation of the affine-invariant region detector de-
veloped by Mikolajczyk and Schmid [12] for low-level im-



age description. In this approach, the dependency of an im-
age patch’s appearance on affine transformations of the im-
age plane is eliminated by an iterative rectification process
based on using (a) the second-moment matrix computed in
the neighborhood of a point to normalize the shape of the cor-
responding image patch in an affine-invariant manner; (b) the
local extrema of the normalized Laplacian over scale to de-
termine the characteristic scale of the local brightness pat-
tern; (c) an affine-adapted Harris detector to determine the
patch location; and (d) image gradient information to elimi-
nate any remaining rotational ambiguity.

The output of the interest point detection/rectification pro-
cess is a set of image patches in the shape of parallelograms,
together with the corresponding affine rectifying transforma-
tions. The transformation� associated with each patch maps
the corresponding parallelogram onto a square with unit edge
half-length centered at the origin (Figure 1). The rectified
patch is a normalized representation of the local surface ap-
pearance that is invariant under planar affine transforma-
tions. We will assume from now on an affine—that is, ortho-
graphic, weak-perspective, or paraperspective—projection
model (the full perspective case will be briefly discussed in
Section 6). Under this model, our normalized appearance
representation is invariant under arbitrary changes in view-
point. For Lambertian patches and distant light sources, it
can also be made invariant to changes in illumination (ignor-
ing shadows) by subtracting the mean patch intensity from
each pixel value and normalizing the sum of squared inten-
sity values to one (or equivalently using normalized correla-
tion to compare patches).
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Figure 1: Geometric interpretation of the rectification matrix �
and its inverse � .

The rectifying transformation associated with a planar
patch and its inverse can be represented by two � � � ma-
trices � and � that map homogeneous (affine) plane coor-
dinates onto non-homogeneous ones. These transformations
will play a fundamental role in the rest of this paper. For the
time being, let us note that the columns vectors of the matrix
� admit a simple geometric interpretation: Since they are
respectively the images of the vectors ��� �� ��� , ��� �� ��� ,
and ��� �� ��� under that mapping, the third column � of � is
the (non-homogeneous) coordinate vector of the patch cen-
ter �, and its first two columns � and � are respectively the
(non-homogeneous) coordinate vectors of the “horizontal”
and “vertical” vectors joining � to the sides of the patch (Fig-
ure 1). These two vectors can also be interpreted as the po-

sitions of the points, dubbed normalized side points in the
sequel, where the “horizontal” and “vertical” axes of a copy
of the image patch placed at the origin pierce its right and
top side.

In particular (and not surprisingly), a match between� �
� images of the same affine invariant patches contains ex-
actly the same information as a match between � triples of
points. It is thus clear that all the machinery of structure
from motion [3, 5, 23] and pose estimation [6, 8] from point
matches can be exploited in our modeling and object recog-
nition tasks. Reasoning in terms of multi-view constraints as-
sociated with the matrix � will provide in this paper a unified
and convenient representation for all stages of both tasks, but
one should always keep in mind the simple geometric inter-
pretation of the matrix � and the deeply rooted relationship
between these constraints and those used in motion analy-
sis and pose estimation. We will come back to this issue in
Section 6.

3 3D Object Modeling
In this section, we exploit the multi-view geometry of

affine projection to impose effective pose-consistency con-
straints on matching patches. This allows us to match dif-
ferent views of the same scene by checking whether groups
of potential correspondences found by correlation are geo-
metrically consistent. Matches found in pairs of successive
(unregistered) images of the same object are finally stitched
into a global 3D (affine or Euclidean) model of this object.
3.1 Matching Constraints

Let us assume for the time being that we are given �
patches observed in� images, together with the correspond-
ing � � � matrices ��� and ��� defined as in Section 2 for
� � �� � � � �� and � � �� � � � � � (� and � serving respectively
as image and patch indices). We use these transformations
to derive in this section a set of geometric and algebraic con-
straints that must be satisfied by matching image patches.

A rectified patch can be thought of as a fictitious view of
the original surface patch (Figure 2), and the inverse mapping
��� can thus be decomposed into an inverse projection� � [3]
that maps the rectified patch onto the corresponding surface
patch, followed by a projection�� that maps that patch onto
its projection into image number �, i.e., � �� � ���� for
� � �� � � � �� and � � �� � � � � �. (This is an affine instance
of the characterization of homographies induced by planes
given in Faugeras, Luong and Papadopoulo [3, Prop. 5.1]. )

In particular, we can write
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and it follows that the ��� �� matrix �� has at most rank 4.
We have not taken into account (so far) the form of the

inverse projection matrix. As shown in the appendix, it can
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Figure 2: Geometric interpretation of the decomposition of the
mapping ��� into the product of a projection matrix �� and an
inverse projection matrix�� .

be written as

�� �

� ��
��� �� ��

�
�

where �� is a � � � matrix, and it satisfies the constraint
� �
� �� � �, where �� is the coordinate vector of the plane

�� that contains the patch. In addition, the columns of the
matrix �� admit in our case a geometric interpretation re-
lated to that of the matrix ��� : Namely, the first two are the
(non-homogeneous) coordinate vectors of the “horizontal”
and “vertical” axes of the surface patch, and the third one
is the (non-homogeneous) coordinate vector of its center � �

(see appendix).
To account for the form of �� , we construct a reduced

factorization of �� by picking, as in Tomasi and Kanade [23],
the center of mass of the observed patches’ centers as the ori-
gin of the world coordinate system, and the center of mass of
these points’ projections as the origin of every image coor-
dinate system: In this case, the projection matrices reduce to
�� � 	�� � 
, where�� is a ���matrix, and��� � ���� .
It follows that the reduced ��� �� matrix

�� � �� ��� where �� ���
�
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�
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 �

has at most rank 3, a fact that can be used as a matching
constraint when at least two matches are visible in at least
two views.

Alternatively, singular value decomposition can be used
as in Tomasi and Kanade [23] to factorize �� and compute
estimates of the matrices �� and �� that minimize the squared
Frobenius norm of the matrix ��	 �� ��. The residual (normal-
ized) Frobenius form 
 �� 	 �� ��
	���� of this matrix can be
interpreted geometrically as the average distance (in pixels)
between the center and normalized side points of the patches

observed in the image, and the center and normalized side
points predicted from the recovered matrices �� and ��.

3.2 Matching Strategy
Image matching requires two key ingredients: (a) a mea-

sure of appearance similarity between two images of the
same patch, and (b) a measure of geometric consistency be-
tween � matches 
�, � � �, 
� established across � images
(a match is an �-tuple of image patches). For the former we
use normalized correlation between rectified patches. For the
latter, we use the method described in the previous section to
estimate (when ��� � �) the matrices �� and ��, and de-
fine ��
�� � � � �
�� � 
 �� 	 �� ��
	���� as a measure of
inconsistency between the matches.

In our current implementation, we only match patches
across pairs of images (� � �), and follow a strategy similar
to that used in the range data domain by Johnson and Hebert
[7] with spin images. Given a patch in one image, we first se-
lect its� most promising matches in the second image based
on normalized correlation of the rectified patches. We then
find groups of consistent matches as follows: For each one of
the matches, we initialize the group� to that match
 . We
then find the match 
 � minimizing ����
 �� (naturally de-
fined as ��
�� � � � �
��


�� when � � �
�� � � � �
��). If
����
 �� � � , where � is a preset threshold, we add 
 � to
� and continue. This results in the construction of  groups.
Finally, we discard all groups smaller than some threshold�.
The remaining matches are judged to be correct. We then use
estimated projection matrices to predict additional matches.

The implementation of this matching strategy is deter-
mined by the choice of the three thresholds � , � , and �. In
the experiments presented in Section 5 we have used � � �,
and only group matches with correlation above 0.9. We de-
termine the other two thresholds from statistics on the data
itself.

3.3 Constructing an Integrated Model
The matching strategy outlined in the previous section can

be used in modeling tasks to match successive pairs of views
of the same object. The matching process provides as a side
benefit the affine structure of the scene: The planes �� are
the zero eigenvectors of the matrices� �

� , and the points � �

are the third columns of these matrices.
When some of the patches are only observed in some of

the frames (the usual case), the data can be split into over-
lapping blocks of two or more frames, using all the patches
visible in all images of the same block to run the factoriza-
tion technique, then using the points common to overlapping
blocks to register the successive reconstructions in a com-
mon frame. In principle, it is sufficient to have blocks that
overlap by four points. Once all blocks are registered, the
initial estimates of the variables �� and �� are refined by
minimizing

��

���

�
����


��� 	���� 
�, where �� denotes
the set of images where patch number � is visible. Given the
reasonable guesses available from the initial registration, this



non-linear least-squares process only takes (in general) a few
iterations to converge.

It is not possible to go from affine to Euclidean structure
and motion from two views only. When three or more views
are available, on the other hand, it is a simple matter to com-
pute the corresponding Euclidean weak-perspective projec-
tion matrices (assuming the aspect-ratios are known) and re-
cover the Euclidean structure [16, 23].

4 3D Object Recognition
We now assume that the technique described in Section 3

has been used to create a library of 3D object models, and
address the problem of identifying instances of these models
in a test image. As before, we start by deriving matching
constraints between model and image patches before using
these constraints to retain or discard groups of potential cor-
respondences.
4.1 Matching Constraints

We assume in the rest of this section that � � � affine-
invariant patches found in a test image have been putatively
matched to � patches from a single object model, and de-
rive consistency constraints that must be satisfied by these
matches. Let us assume that we have the rectification ma-
trices ��, � � �, �� associated with the corresponding patches
in the test image. As in Section 3, we can always pick the
center of mass of the � patch centers in the test image as the
origin of its coordinate system, and change the origin of the
world coordinate system so that it coincides with the center
of mass of their matches in the model.

With this convention, the projection matrix can be written
as � � 	� � 
 and we can write as before �� � ��� .
We have therefore � � �����

� for � � �� � � � � �. Note that
the value of �� is available from the modeling stage in the
coordinate system attached to the model. If � denotes the
(known) position of the center of mass of the patch centers in
the original coordinate system, it is easy to see that the value
of �� in the new coordinate frame is obtained by subtracting
���� �� �� from its old value. We can now write

��� � � � where � ���
�
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��
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and the least-squares solution of this equation is �� � �� �,
where �� denotes the pseudoinverse of �. An appropriate
measure of consistency in this case is (similar to the image
matching case) 
 � 	 ��� 
	���� that can once again be in-
terpreted in terms of image distances measured in pixels.
4.2 Matching Strategy

Our current implementation uses the affine matching con-
straints derived in Section 4.1. Normalized correlation be-
tween rectified patches is once again used as a measure of
appearance similarity between image patches. Note that a
representative image patch must be chosen for each patch in

the model. We pick the patch with the largest characteris-
tic scale. For geometric consistency, we use the method de-
scribed in the previous section to estimate (when � � �) the

matrices �� and use ���
�� � � � �
��
���
� 
 � 	 ��� 
	���

as a measure of inconsistency between the matches. Except
for these minor differences, the matching strategy remains
the same as in the modeling case.

5 Implementation
We have implemented the approach proposed in Sections

3 and 4 and present preliminary modeling and recognition
experiments. Since both the modeling and matching con-
straints are based on the inverse rectification matrices ��� , it
is important to estimate these matrices as accurately as possi-
ble. Initial estimates provided by the affine-invariant region
detector are improved as follows at every stage of the match-
ing/reconstruction process. Assuming that patch number �
is seen in �� views, we can adjust the inverse rectification
matrices ��� by maximizing the average normalized correla-
tion between the ����� 	 ��	� pairs of (inversely rectified)
images of this patch (see Figure 3).

Figure 3: Adjusting the rectifying transformations: Rectified
patches associated with a match in three views before (top) and after
applying the refinement process (bottom).

We have applied the modeling approach described in Sec-
tion 3 to several different objects, four of which are shown
in Figure 4. For each object, the figure shows one sample in-
put picture from the set of input pictures. Each set contains
an average of 16 input pictures. Below each input picture,
the figure shows a rendering of the Euclidean model. The
models are rather sparse, but one should keep in mind that
they are intended for object recognition, not for image-based
rendering applications.

Figure 5 shows the results of some recognition experi-
ments. On top are the test pictures, with recognized patches
marked. Some of the pictures contain instances of two differ-
ent models. Below are the models rendered in their recovered
poses. The average re-projection error is small in all cases,
ranging from 2.8 pixels for the bear to 0.7 pixels for the salt,
for 2200x1700 images.

6 Discussion
We have proposed in this paper to revisit invariants as a

local object description that exploits the fact that smooth sur-
faces are always planar in the small. Combining this idea
with the affine-invariant patches of Mikolajczyk and Schmid



Figure 5: Recognition experiments. (Top) Test pictures, with recognized patches marked. (Bottom) Models rendered in their recovered
poses. (Left to right) Teddy bear, vase, salt and rubble together.

Figure 4: Object gallery. (Top) One of several input pictures for
each object. (Bottom) Rendering of each model, not necessarily in
same pose as input picture. (Left to right) Teddy bear, vase, plastic
model of a pile of rubble, Morton Salt container.

[12] has allowed us to construct a normalized representation
of local surface appearance that can be used to select promis-
ing matches in 3D object modeling and recognition tasks.
We have used multi-view geometric constraints to represent
the 3D surface structure in the large, retain groups of con-
sistent matches, and reject incorrect ones. We believe that
our preliminary experiments demonstrate the promise of the
proposed approach.

The current implementation is limited to affine viewing
conditions. As noted in Section 2, a match between � � �
images of the same affine invariant patches is equivalent to a
match between � triples of points, thus the machinery de-

veloped in the structure from motion [3, 5, 23] and pose
estimation [6, 8] literature can in principle be used to ex-
tend our approach to the perspective case. Perhaps more
interestingly, it might be possible to mix local affine con-
straints with global perspective/projective ones: Indeed, for
patches whose relief is small compared to the distance sepa-
rating them from the camera, the local projective distortions
associated with the perspective projection process are nor-
mally negligible, and the rectifying transformations can thus
be modeled as planar homographies that just happen to have
an affine form. As shown in [3] for example, planar homo-
graphies can also be written as the composition of a (per-
spective) projection and an inverse projection, although this
factorization is only defined up to an unknown scale factor,
preventing the straightforward use of singular value decom-
position techniques. Thus it would be interesting to com-
bine affine and perspective/projective matching constraints
in modeling and recognition tasks (as was done by Tuytelaars
and Van Gool [24] in the image matching domain). Another
problem that we feel has not been dealt with in a satisfactory
manner is the combinatorics of the matching process: What
is the best way (or at least a good way) to combine multiple
views of multiple objects with some patches visible in some
images but not in others? This remains an open question that
we plan to address in the future.
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Appendix: Inverse Projection Matrices
Consider a plane � with coordinate vector� in the world

coordinate system. For any point in this plane we can write
the affine projection in some image plane as � � �� and
��� � �. These two equations determine the homogeneous
coordinate vector � up to scale. To completely determine
it, we can impose that its fourth coordinate be 1, and the
corresponding equations become

��� �

�
���
�

�
� � where �� �

�
� �

�
�

��� �� �� ��

�
� �

Not surprisingly,�� is an affine transformation matrix.
So is its inverse, and if
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�
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we can write
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The ��� matrix��

�
is the inverse projection matrix [3]

associated with the plane �. Note that, for any point � in the
image plane, the point

� ���

�

�
�

�

�

lies in the plane �, thus ��� � �. Since this must be true
for all points �, we must have����

�
� �

� .

The matrix �� used in this paper is simply �	�
�

��

where

�	�
 is the matrix associated with the projection into the
(fictitious) rectified image plane. Note that �	�
 maps the
center �� of patch number � onto the origin of the rectified
image plane. It follows that the (non-homogeneous) coordi-
nate vector of this point is

�� � ��

�
� �
�
�

�
� �

or, equivalently, that� � is the third column of the matrix�� .
A similar reasoning shows that the “horizontal” and “verti-
cal” axes of the patch are respectively the first and second
columns of�� .
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