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Abstract. Following the success of Convolutional Neural Networks on

object recognition and image classification using 2D images; in this work

the framework has been extended to process 3D data. However, many

current systems require huge amount of computation cost for dealing

with large amount of data. In this work, we introduce an efficient 3D vol-

umetric representation for training and testing CNNs and we also build

several datasets based on the volumetric representation of 3D digits, dif-

ferent rotations along the x, y and z axis are also taken into account.

Unlike the normal volumetric representation, our datasets are much less

memory usage. Finally, we introduce a model based on the combina-

tion of CNN models, the structure of the model is based on the classical

LeNet. The accuracy result achieved is beyond the state of art and it can

classify a 3D digit in around 9 milliseconds.

Keywords: 3D object recognition, volumetric representation, 3D digit

dataset, CNN

1 Introduction

Object Recognition (OR) is widely used in our daily life for the purposes of
inspection, registration, and manipulation [1]. The well-known applications such
as Google, Facebook and Baidu are probably the most famous websites which
use OR on a large scale. Generally, object classification is performed using colour
based segmentation methods or from grayscale images using classification meth-
ods such as HoG[2]/SVM[3] or other classifiers. However, nowadays deep learning
is becoming ubiquitous. We are now able to solve some of the problems once con-
sidered impossible in fields such as computer vision, natural language processing,
and robotics with recent advancements in deep learning algorithms.

Machine learning techniques use data (images, signals, text) to train a model
(or machine) to perform image classification or object detection. Although clas-
sical machine learning techniques are still being used to solve challenging image
classification problems, they don’t work well when applied directly to images.
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This is because they ignore the structure and compositional nature of images.
The state-of-art CNN technique which is a specific type of deep learning algo-
rithm, addresses the gaps in traditional machine learning techniques. CNNs not
only perform classification, but they can also learn to extract features directly
from raw images which eliminates the need for manual feature extraction. The
performance of deep learning which uses CNNs has rapidly grown to over 95%
accuracy (GoogLeNet [4], VGG [5], AlexNet [6] etc.) in recent years with the
availability of large labelled datasets and powerful GPUs. These methods, while
appealing from an accuracy standpoint, are computationally extremely intensive
requiring up to hundreds and millions of multiplications per classification. Baidu
has achieved the best result to date in the ImageNet classification challenge [7]
with custom-built supercomputer called Minwa [8] . Minwa contains 72 powerful
processors and 144 GPUs, and it has 6.9TB of host memory, 1.7TB of device
memory. These high computational requirements for existing CNN models, such
as the Baidu winning model, makes it impossible to deploy CNNs onto mobile
devices without modification.

Following the success of CNNs on OR using 2D images [4,5,6]; in this work
we extended the framework to process 3D data. Although architectures with vol-
umetric convolutions have been successfully used in video analysis [9,10] where
time acts as the third dimension, the nature of our data is very different con-
ceptually. In our proposed approach, CNN classifiers are trained to recognize
3D objects from complete or partial 3D volumetric representations. Many online
catalogues of such information are already available which have been generated
using 3D scanning devices such as Microsoft’s Kinect, or designed using pack-
ages such as Blender, 3DMax, Maya or even Minecraft. Unlike the other existing
3D CNNs using 3D point cloud data as training data [11], our dataset is more
effective and efficient for training CNNs. The core-structure of our 3D objects is
called Volumetric Accelerator (VOLA) which uses a bit-per-voxel representation
where the bit corresponding to voxel would be 1 if the volume is occupied by the
object and 0 if it is free space. VOLA itself has been shown to offer substantial
memory savings compared to other common methods of representing volumetric
data, with savings up to 95% for realistic scenes. Based on this, VOLA represen-
tation offers the potential to drastically reduce the computational complexity of
a CNN as CNNs require huge numbers of multiplications and VOLA can make
them trivial as it only requires multiplications by 1 or 0. Therefore, our trained
CNN models will be much easier to deploy onto any embedded platform and the
computational requirement for classification will be incredible small. For low-
cost robotics, the computational complexity and speed of operation are essential
for safe interoperation with environments, humans and animals.

The rest of the paper is outlined as follows: Section 2 explains the several
datasets have been created for this project along with the CNN models devel-
oped based on the proposed datasets. Performance evaluation of CNN models
including their accuracy and classification run-time will be presented in Section
3. Finally, conclusions and feature works will be discussed in Section 4.
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2 Technical Content

In this section we introduce the datasets structure. A new way to represent
volumetric data is explained. The procedure required for generating the dataset
is also included.

2.1 Dataset Structure

There are several datasets used in this work in order to evaluate the performance
of the CNN models based on volumetric representation. The datasets have been
generated using several approaches.

3D MNIST datasets The 3D MNIST dataset has been built based on the
original well-known 2D MNIST dataset using MATLAB. It is built in order
to train the 3D CNN, performance of which can be compared to the existing
LeNet [12] trained on images. Different rotations of the 3D MNIST along x, y, z
axes respectively are also included in the dataset as in 3D space rotation is an
important component. The degree of rotations was randomly generated between
0 to 360 along 3 axes. Each of these datasets contains a training dataset and a
test dataset. Furthermore, the training dataset contains a total number of 59667
3D digits and the test dataset contains a total of 9957 3D digits.

3D-Fonts dataset The 3D Font dataset has been created based on the free
fonts available online using Blender. Some examples of the 3D digits are shown in
Fig. 1. Specifically, the training dataset contains 256 different fonts and the test
dataset contains 79 different fonts. The fonts in the training and test datasets
are completely different. The reason for building this dataset is to build a CNN
model which can recognize the artificial digits in the real world scenario i.e.
3D digit candles. Similar to the 3D MNIST dataset, separate datasets have
been created based on different rotations along the x, y, and z axes and the
step of every rotation used in this dataset is 10 . The training set contains a
total number of 91440 3D digits and test dataset contains 27000 3D digits. A
dataset of compound rotations between x, y and z axes are also created based
on 25 different fonts for training and 5 different fonts for testing. The rotation
step in the combined rotation dataset is 40 for x, y and z axes because the
3D digits with smaller rotation steps would create a huge dataset with similar
performance. This combined rotation dataset has a training set of 144000 3D
digits and a test set of 28800 3D digits. What is more, a CNN model based
on combinational rotation fonts have been trained to recognize the real world
3D digits. In order to test the CNN model based on these fonts, combinational
rotation around x&y, x&z and y&z axes respectively with 10 rotation step was
also created. Depth images of different resolutions were captured based on the 3D
font dataset. In addition, separate CNN models have been trained using depth
images to compare the performance of the 3D Font CNN model and details of
the accuracy are included in Section 3.
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Fig. 1. 3D digits based on different fonts and rotations.

2.2 Volumetric Accelerator (VOLA)

Unlike other existing 3D CNNs using 3D point cloud data as training data [11] or
RGB channel along with depth channel for building 3D CNNs [13,14,15,16,17],
CNNs in this study can be applied directly to recognize the 3D volumetric repre-
sentation of the 3D digits. The core-structure of the 3D objects is called Volumet-
ric Accelerator (VOLA). VOLA is a software library for creating, manipulating
and visualizing volumetric data. (It is under examination as a patent). More
specifically, VOLA deals with regular volumetric grids, also known as voxels and
VOLA stores only a single bit of information in each voxel. VOLA uses an octree
data structure to store the voxels.

Fig. 2. Steps require for generating VOLA representation.

2.3 Data Format for CNNs

In order to generate the VOLA representation a few steps are required, shown in
Fig. 2 below. Specifically, 3D digits with .stl format are converted into .binvox
format which is a program that reads a 3D models, rasterizes it into a 3D voxel
grid and generates the resulting voxel file. The reason for using VOLA as it only
requires 1 bit per voxel, and in .binvox format it requires 1 byte per voxel. VOLA
can save more memory usage then the .binvox representation.

Fig. 3. Digit 2 in binvox format along z-axis rotation with 0 , 40 , 80 and 100 rotation
respectively.

Regarding to the structure of the datasets in Section 2.1, different rotations
are considered for training and testing the CNN models. Fig. 3 and Fig. 4 show
the different rotations in .binvox format. Binvox represents the occupancy in a
grid and each voxel in the .binvox represents 1 byte.
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Fig. 4. Digit 0 in binvox format with combinational rotations along x, y and z axes.

(a) (b) (c)

Fig. 5. 3D Same digit 0 with different resolution of binvox:(a) 8 8 8 voxel; (b)
16 16 16 voxel;(c) 32 32 32 voxel.

In this work, all 3D digits are based in a small volume of 16 16 16 voxels.
The reason for choosing 16 16 16 voxels is because it gives the best perfor-
mance in terms of computation and visualization. In Fig. 5, it shows the differ-
ent resolution of binvox and three different resolutions were tested. In 8 8 8
volumetric grid, most of the useful information of Digit 0 is missing. Although in
32 32 32 volumetric grid the binvox gives the best visualizing output, it would
increase the computational requirement for training the CNNs. With 16 16 16
voxels representation, the binvox contains enough useful information for it to be
recognized as a zero. Therefore, 16 16 16 volumetric grid was chosen in this
work.

After converting the 3D digits to binvox, VOLA can be applied directly to
the binvox files. VOLA outputs a binvox file into a single string of 1s and 0s.
VOLA starts at point (0, 0, 0) which corresponding to the circle shown in Fig. 6
it moves from right to left along the x axis, bottom to top along the y axis and
font to back along the z axis. The output of a single string from VOLA then
reshape into a VOLA image which shown in Fig. 6. The intensity of the image
contains only 1s and 0s. Each yellow box on the image represent 1 slice of the
binvox in X-y plane along the z axis. The size of these yellow boxes are 16 16
which is the size of the x and y dimension in the volumetric grid. These yellow
boxes form into a VOLA image which then be used as the training image.

2.4 CNN Architecture

In this work, a few CNN models have been designed based on the famous LeNet
model [12] shown in Fig. 7 using CNN framework Caffe [18]. However, the CNN
model in Fig. 7 only consists 1 rotation of the 3D digits, the combination rotation
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(a) (b)

Fig. 6. Binvox to VOLA conversion process:(a) Binvox representation visualization;
(b) VOLA representation.

CNN model is described in Section 2.5. Unlike the traditional LeNet model takes
in the input of size 28 28, this CNN takes in the input as VOLA image of size
64 64 without any resize, the VOLA image is based on the .binvox of size
16 16 16 3D digit. The first convolutional layer contains 20 kernels of size
5 5, and second convolutional layer contains 50 kernels of size 5 5. In the Pool
layers, max pooling of 2 2 is applied on each of the feature maps achieved from
the convolutional layers. After passing through multiple convolutional layers,
max pooling layers and fully connected layer, the 2D VOLA image has been
converted into a vector of size 10 contains the probability of the input belongs
to each class which can be used for 3D digit classification. All the trainable
parameters in each layer are initialized randomly and trained using online error
back-propagation algorithm described in [12].

(a)

(b)

Fig. 7. The CNN model layout for 1 rotation 3D digit recognition. (a) The architecture
contains 2 convolution layers, 2 max pooling layers, 2 fully connected layer; (b) The
architecture in details.

2.5 Model Combination

Based on the model description in Section 2.4, a combination CNN models is
designed for recognize the real world 3D digits. Four CNNs with the structure
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shown in Fig. 7 are trained based on X-rotation, y rotation, z rotation and
xyz rotation 3D digits respectively. Maximum output will be voted as the final
output. In real world 3D object contains different rotations, the selection of
optimal CNN model for a problem is difficult. Therefore, we construct multiple
models and combine the outputs from these models in order to make a best
prediction. This has been used in combining traditional neural networks [19].
The input to these models is the same VOLA image. Output results demonstrate
that the combination CNN models achieve good prediction on real 3D digit.

3 Experimental Results and Discussion

3.1 Accuracy

The test accuracy based on the test dataset of the individual trained CNNs based
on the 3D fonts with different rotations is shown in Table 1. The average accuracy
achieved for the 3D font CNN is 81.85%. The reason for having a lower accuracy
in z-rotation is due to the fact that Digit 6 and Digit 9 have similar features
when these 2 digits rotate in the z direction. Based the 3D MNIST dataset, the
average test accuracy reached to 89.14%. The VOLA input to the CNN models
are size 64 64 with only 1-bit representation for each pixel. Depth images of
size 16 16 with 4-bit representation (16 grayscale level) for each pixel achieved
only 63.05% accuracy and achieved 70.04% with 32 32, 6-bit representation per
pixel. The details are shown in Table 2. The reason for using this depth image
representation is to match the memory footprint with VOLA representation.
Low accuracy result for the depth images suggested the features from the 3D
shape are important in the recognition process. In order for the depth image
to reach the same accuracy level as the VOLA image, it requires image size of
64 64 with 8-bit representation for each pixel. This cause much more memory
usage compared to the VOLA image. A separate test was performed based on
the xy-plane projection of the 3D digits. However, the accuracy achieved for this
case is only 57.85%. This proves that for 3D digit recognition z plane information
is important and it also suggests that our proposed CNN models have a good
performance.

Table 1. Test accuracy and loss for 3D font CNNs & 3D MNIST CNNs with different
rotation.

3D font CNN Test Accuracy Test Loss

X-rotation 82.95% 0.757495
Y-rotation 84.70% 0.774017
Z-rotation 77.33% 1.0494

XYZ-rotation 82.43% 0.700333

3D MNIST CNN Test Accuracy Test Loss

X-rotation 91.80% 0.342894
Y-rotation 92.32% 0.322077
Z-rotation 83.31% 0.738499
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Table 2. Accuracy & Loss for depth image.

Depth images Accuracy Loss

16 16 4-bit representation for each pixel 63.05% 0.757495
32 32 6-bit representation for each pixel 70.04% 0.774017
64 64 8-bit representation for each pixel 90.56% 1.0494

3.2 Classification Run-time

We use a Titan-X GPU in the experiments. The performance for classification
based on the trained models are listed in Table 3. The results show that for
the original LeNet based on 2D MNIST dataset gives slowest classification. It
takes 13 msec when classifying 1 image. For the trained 3D digit CNNs, takes
around 9 msec to classify 1 3D digit. The results show that our implementation
of CNNs based on VOLA representation is fast for classification especially in
the convolutional layers. As the VOLA representation made the multiplications
more trivial.

Table 3. Classification time for CNN models.

Layers
3D MNIST

X-rotation

3D Fonts

X-rotation

3D Fonts

xyz-rotation
2D MNIST

Data 0.050 0.043 0.071 0.064
Conv1 2.207 2.147 2.245 3.343
Pool1 0.133 0.129 0.133 0.063
Conv2 5.841 5.721 5.824 9.759
Pool2 0.070 0.066 0.085 0.036
Ip1 0.379 0.361 0.392 0.157
Relu 0.011 0.009 0.013 0.012
Ip2 0.059 0.049 0.058 0.053
Loss 0.179 0.154 0.179 0.168

Average 0.992 0.964 1.000 1.517
Total 8.929 8.679 9.000 13.655

4 Conclusion

We developed CNN models for recognize 3D digits in this paper and we also
created several datasets based on the 3D digits using VOLA representation. The
final output of the CNN is obtained by combining the information from all the
CNN models based on different rotation of the 3D digits. We also analysis the
performance of the CNN models based on our VOLA volumetric representation.
The test accuracy we achieved is around 80%. In this paper we only tested the
performance based on the test dataset. We can also test our model with the real
world 3D digits which can be captured using Kinect or any other devices in the
future.
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17. N. Höft, H. Schulz, and S. Behnke, “Fast semantic segmentation of rgb-d scenes
with gpu-accelerated deep neural networks,” in KI 2014: Advances in Artificial
Intelligence. Springer, 2014, pp. 80–85.

18. Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick, S. Guadar-
rama, and T. Darrell, “Caffe: Convolutional architecture for fast feature embed-
ding,” in Proceedings of the ACM International Conference on Multimedia. ACM,
2014, pp. 675–678.

19. L. K. Hansen and P. Salamon, “Neural network ensembles,” IEEE Transactions
on Pattern Analysis & Machine Intelligence, no. 10, pp. 993–1001, 1990.




