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Abstract

We consider the problem of detecting and accounting for

the presence of occluders in a 3D scene based on silhouette

cues in video streams obtained from multiple, calibrated

views. While well studied and robust in controlled environ-

ments, silhouette-based reconstruction of dynamic objects

fails in general environments where uncontrolled occlusions

are commonplace, due to inherent silhouette corruption by

occluders. We show that occluders in the interaction space

of dynamic objects can be detected and their 3D shape fully

recovered as a byproduct of shape-from-silhouette analysis.

We provide a Bayesian sensor fusion formulation to process

all occlusion cues occurring in a multi-view sequence. Re-

sults show that the shape of static occluders can be robustly

recovered from pure dynamic object motion, and that this

information can be used for online self-correction and con-

solidation of dynamic object shape reconstruction.

1. Introduction

Silhouette-based approaches are popular in multi-view

environments, as they are relevant to many computer vision

problems such as 3D modeling, object detection, recogni-

tion, tracking, and are useful for a very wide range of ap-

plications such as 3D photography, virtual reality and real-

time human-computer interaction. Such techniques have

been shown particularly robust and successful in controlled,

unoccluded environments. A major challenge is to apply

silhouette-based approaches in uncontrolled, outdoor envi-

ronments where occlusions are common and unavoidable.

In this paper, we show that the shape of static occlud-

ers in the interaction space of moving objects can be recov-

ered online by accumulating occlusion cues from dynamic

object motion, using a Bayesian sensor fusion framework.

Moving objects and static occluders can then be estimated

cooperatively in an online process. The type of solutions

proposed here are immediately relevant to silhouette-based

techniques, but can also be useful for a wider range of multi-

view vision problems where such occlusion detection can

yield benefits.

Figure 1. Overview. (left) One of 9 observed views of a scene,

where a person walks occluded by pillars. (right) Occluder and

person shape retrieved cooperatively using our approach.

A popular approach to model the shapes of objects is

to learn the appearance of background images [3, 15], per-

form automatic silhouette extraction, and use Shape-from-

Silhouette techniques (SfS) [2, 13, 16]. However occlu-

sions with background objects whose appearance is also

recorded in background images have a negative impact

over silhouette-based modeling, because extracted silhou-

ettes can become incomplete. In particular the inclusive

property of visual hulls [11] with respect to the object it

models is no longer guaranteed. This limitation comes on

top of the usual sensitivities to noise, shadows, and lighting

conditions. Moving the problem outdoors greatly increases

the difficulty of dealing with silhouettes for all of the above

reasons. Improving the robustness of silhouette methods

has been explored, by using silhouette priors of multi-view

sets [9], spatio-temporal regularization [8], silhouette cue

integration using a sensor fusion paradigm [6] or a discrete

optimization scheme [7, 14]. While decreasing the various

sensitivities and failures arising from partial occlusions and

silhouette corruption, these works do not address explicit

detection of 3D occluders as proposed.

More generally detecting and accounting for occlusions

has attracted the attention of researchers for problems such

as structure from motion [5], motion and occlusion bound-

ary detection [1]. The scope of these works is however lim-

ited to extraction of sparse 2D features such as T-junctions

or edges to improve robustness of data estimation. A re-

cent method proposes a 2D solution in the form of occluder

maps and account for them in building the visual hull of dy-

namic objects [10]. To the best of our knowledge no method

has addressed the dense recovery of occluder shapes from
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Figure 2. Deterministic occlusion reasoning. By building a visual

hull based on incomplete silhouettes, we can deduce a conservative

free-space region (dark gray), free of static occluders.

multiple views as proposed in the present work.

1.1. Principle

We examine video sequences obtained from n fully cal-

ibrated cameras, observing a scene at discrete time steps

t ∈ {1, · · · , T} where people, and more generally dynamic,

moving objects can evolve. A set of background images of

the scene, free from any dynamic object, have previously

been observed for each camera. Static occluder objects,

whose appearance is recorded in the background images of

the scene, are present in the interaction space of dynamic

objects. They are thus liable to generate partial occlusions

of dynamic objects, with respect to one or several cameras.

Theoretically occluder shapes can be accessed by care-

fully reasoning on the visual hull of incomplete silhouettes

(Fig. 2). Let St be the set of incomplete silhouettes obtained

at time t, and VHt the incomplete visual hull obtained us-

ing these silhouettes. These entities are said to be incom-

plete because the silhouettes used are potentially corrupt by

static occluders that mask the silhouette extraction process.

However the incomplete visual hull is a region that is ob-

served by all cameras as being both occupied by an object

and unoccluded from any view. Thus we can deduce an en-

tire region U t of points in space that are free from any static

occluder shape. U t is the set of points X ∈ R
3 for which a

view i exists, such that the viewing line of X from view i

hits the incomplete visual hull at a first visible point Ai, and

X ∈ OiAi, with Oi the optical center of view i (Fig. 2(a)).

The latter expresses the condition that X appears in front of

the visual hull with respect to view i. The region U t varies

with t, thus assuming static occluders and broad coverage

of the scene by dynamic object motion, the free space in

the scene can be deduced as the region U =
⋃T

t=1
U t. The

shape of occluders, including concavities if they were cov-

ered by object motion, can be recovered as the complement

of U in the common visibility region of all views (Fig. 2(b)).

However this deterministic approach would yield an im-

practical and non-robust solution, due to inherent silhou-

ette extraction sensitivities to noise and corruption that con-

tribute irreversibly to the result. It also suffers from the

limitation that only portions of objects that are seen by

all views can contribute to occlusion reasoning. Also, this

scheme only accumulates negative information, where oc-

cluders are certain not to be. However positive informa-

tion is also underlying to the problem: had we known or

taken a good guess at where the object shape was (which

current shape-from-silhouette methods are able to provide),

discrepancies between the object’s projection and the actual

silhouette recorded would tell us where an occlusion is pos-

itively happening. To lift these limitations and provide a

robust solution, we propose a probabilistic approach to oc-

clusion reasoning, in which all negative and positive cues

are fused and compete in a complementary way toward oc-

cluder shape estimation.

1.2. Probabilistic Approach

In this paper we formulate occlusion inference as the

separate Bayesian estimation, for each voxel in a 3D grid

sampling the acquisition space, of how likely it is occu-

pied by a static occluder object. We use the sensor fusion

paradigm, and borrow simplifications and semantics from

the occupancy grid framework of robotics [4, 12]. By mod-

eling the likely responses in images to a known state of the

scene through a generative sensor model, the strategy is then

to use Bayes’ Rule in order to solve the inverse problem,

and find the likely state of occluder occupancy given noisy

image data.

However, both the foreground and occluder object

shapes are unknowns in this setup. While it is theoreti-

cally possible to model the problem as a joint estimation of

these two shapes, this would translate in a global optimiza-

tion problem over the conjunction of both shape spaces, be-

cause estimation of a voxel’s state bares dependencies with

all other voxels on its viewing lines with respect to all cam-

eras. To benefit from the locality that makes occupancy grid

approaches practical and efficient, we break the estimation

into two steps: first estimating the occupancy of the visual

hull of dynamic object’s from silhouette information, using

earlier work from Franco & Boyer [6] robust to partial oc-

clusions, then estimate per-voxel occluder occupancy in a

second inference, using the result of the first estimation as

prior of dynamic object occupancy.

We first describe how this idea translates into a tractable

Bayesian formulation, by establishing the problem’s mean-

ingful variables (§2), considering the necessary dependen-

cies between them and decomposing their joint probabil-

ity distribution (§3). We then assign parametric forms to

each decomposition term that describe how silhouettes are

formed given the state of the scene. The occluder occu-

pancy at a given voxel can then be inferred using this model

(§3.3). We examine a set of extensions of the method as ap-

plied to the online estimation of occluder shapes (§4.1), and

refinement of dynamic objects estimation (§4.2).



2. Modeling

Consider a scene observed by n calibrated cameras. We

focus on the case of one scene voxel with 3D position X

among the possible coordinates in the lattice chosen for

scene discretization. The two possible states of occluder

occupancy at this voxel are expressed using a binary vari-

able O. This state is assumed to be fixed over the entire

experiment in this setup under the assumption that the oc-

cluder is static. Clearly, the regions of importance to infer

O are the n viewing lines Li, i ∈ {1, · · · , n}, as shown in

Fig. 3(a). Scene states are observed for a finite number of

time instants t ∈ {1, · · · , T}. In particular, dynamic visual

hull occupancies of voxel X at time t are expressed by a

binary statistical variable Gt, treated as an unobserved vari-

able to retain the probabilistic information given by [6].

2.1. Observed Variables

The voxel X projects to n image pixels xi, i ∈ 1, · · · , n,

whose color observed at time t in view i is expressed by

the variable It
i . We assume that static background im-

ages were observed free of dynamic objects, and that the

appearance and variability of background colors for pixels

xi was recorded and modeled using a set of parameters Bi.

Such observations can be used to infer the probability of dy-

namic object occupancy in the absence of background oc-

cluders. The problem of recovering occluder occupancy is

more complex because it requires modeling interactions be-

tween voxels on the same viewing lines. Relevant statistical

variables are shown in Fig. 3(b).

2.2. Viewing Line Modeling

Because of potential mutual occlusions, one must ac-

count for other occupancies along the viewing lines of X to

infer O. These can be either other static occluder states, or

dynamic object occupancies which vary across time. Sev-

eral such occluders or objects can be present along a view-

ing line, leading to a number of possible occupancy states

for voxels on the viewing line of X . Accounting for the

combinatorial number of possibilities for voxel states along

X’s viewing line is neither necessary nor meaningful: first

because occupancies of neighboring voxels are fundamen-

tally correlated to the presence or the absence of a single

common object, second because the main useful informa-

tion one needs to know to make occlusion decisions about

X is to know whether something is in front of it or behind

it, regardless of where along the viewing line.

With this in mind, we model each viewing line using

three components, that model the state of X , the state of

occlusion of X by anything in front, and the state of what

is at the back of X . We model the front and back compo-

nents by extracting the two most influential modes in front

and behind of X , that are given by two voxels X̂t
i and X̌t

i .

We select X̂t
i as the voxel at time t that most contributes to

the belief that X is obstructed by a dynamic object along

Li, and X̌t
i as the voxel most likely to be occupied by a

dynamic object behind X on Li at time t.

2.3. Viewing Line Unobserved Variables

With this three component modeling, comes a number

of related statistical variables illustrated in Fig. 3(b). The

occupancy of voxels X̂t
i and X̌t

i by the visual hull of a dy-

namic object at time t on Li is expressed by two binary state

variables, respectively Ĝt
i and Ǧt

i . Two binary state variables

Ôt
i and Ǒt

i express the presence or absence of an occluder

at voxels X̂t
i and X̌t

i respectively. Note the difference in se-

mantics between the two variable groups Ĝt
i , Ǧt

i and Ôt
i , Ǒt

i .

The former designates dynamic visual hull occupancies of

different time instants and chosen positions, while the latter

expresses static occluder occupancies, whose position only

was chosen in relation to t. Both need to be considered be-

cause they both influence the occupancy inference and are

not independent. For legibility, we occasionally refer to the

conjunction of a group of variables by dropping indices and

exponents, e.g. G = {G1, · · · ,GT }, B = {B1, · · · ,Bn}.

3. Joint Distribution

As a further step toward offering a tractable solution

to occlusion occupancy inference, we describe the noisy

interactions between the variables considered, through

the decomposition of their joint probability distribution

p(O,G , Ô, Ĝ , Ǒ, Ǧ , I ,B). We propose the following:

p(O)

T
∏

t=1

p(Gt|O)

n
∏

i=1

p(Ôt
i)p(Ĝt

i |Ô
t
i)p(Ǒt

i)p(Ǧt
i |Ǒ

t
i) (1)

p(It
i |Ô

t
i , Ĝ

t
i ,O,Gt, Ǒt

i , Ǧ
t
i ,Bi).

p(O), p(Ôt
i), and p(Ǒt

i) are priors of occluder occu-

pancy. We set them to a single constant distribution Po

which reflects the expected ratio between occluder and non-

occluder voxels in a scene. No particular region of space is

to be favored a priori.

3.1. Dynamic Occupancy Priors

p(Gt|O), p(Ĝt
i |Ô

t
i), p(Ǧt

i |Ǒ
t
i) are priors of dynamic vi-

sual hull occupancy with identical semantics. This choice of

terms reflects the following modeling decisions. First, the

dynamic visual hull occupancies involved are considered in-

dependent of one another as they synthesize the information

of three distinct regions for each viewing line. However

they depend upon the knowledge of occluder occupancy at

the corresponding voxel position, because occluder and dy-

namic object occupancies are mutually exclusive at a given

scene location. Importantly however, we do not have direct
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Ĝ
1

n

Ĝ
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Figure 3. Problem overview. Statistical variables and their geometric/temporal meaning.

access to dynamic object occupancies but to the occupan-

cies of its visual hull. Fortunately this ambiguity can be ad-

equately modeled in a Bayesian framework, by introducing

a local hidden variable C expressing the correlation between

dynamic and occluder occupancy:

p(Gt|O) =
∑

C

p(C)p(Gt|C,O). (2)

We set p(C = 1) = Pc using a constant expressing our

prior belief about the correlation between visual hull and

occluder occupancy. The prior p(Gt|C,O) explains what

we expect to know about Gt given the state of C and O:

p(Gt = 1|C = 0,O = ω) = PGt ∀ω (3)

p(Gt = 1|C = 1,O = 0) = PGt (4)

p(Gt = 1|C = 1,O = 1) = Pgo, (5)

with PGt the prior dynamic object occupancy probability

as computed independently of occlusions [6], and Pgo set

close to 0, expressing that it is unlikely that the voxel is

occupied by dynamic object visual hulls when the voxel

is known to be occupied by an occluder and both dynamic

and occluder occupancy are known to be strongly correlated

(5). The probability of visual hull occupancy is given by

the previously computed occupancy prior, in case of non-

correlation (3), or when the states are correlated but oc-

cluder occupancy is known to be empty (4).

3.2. Image Sensor Model

The sensor model p(It
i |Ô

t
i , Ĝ

t
i ,O,Gt, Ǒt

i , Ǧ
t
i ,Bi) is gov-

erned by a hidden local per-pixel process S. The binary

variable S represents the hidden silhouette detection state

(0 or 1) at this pixel. It is unobserved information and can

be marginalized, given an adequate split into two subterms:

p(It
i |Ô

t
i , Ĝ

t
i ,O,Gt, Ǒt

i , Ǧ
t
i ,Bi) (6)

=
∑

S

p(It
i |S,Bi)p(S|Ôt

i , Ĝ
t
i ,O,Gt, Ǒt

i , Ǧ
t
i ).

p(It
i |S,Bi) indicates what color distribution we expect

to observe given the knowledge of silhouette detection and

background color model at this pixel. When S = 0, the sil-

houette is undetected and thus the color distribution is dic-

tated by the pre-observed background model Bi (considered

Gaussian in our experiments). When S = 1, a dynamic ob-

ject’s silhouette is detected, in which case our knowledge of

color is limited, thus we use a uniform distribution in this

case, favoring no dynamic object color a priori.

p(S|Ôt
i , Ĝ

t
i ,O,Gt, Ǒt

i , Ǧ
t
i ) is the second part of the sen-

sor model, which explicits what silhouette state is expected

to be observed given the three dominant occupancy state

variables of the corresponding viewing line. Since these are

encountered in the order of visibility X̂t
i , X , X̌t

i , the fol-

lowing relations hold:

p(S|{Ôt
i , Ĝ

t
i ,O,Gt, Ǒt

i , Ǧ
t
i}={o, g, k, l,m,n},Bi) (7)

=p(S|{Ôt
i , Ĝ

t
i ,O,Gt, Ǒt

i , Ǧ
t
i}={0, 0, o, g,p, q},Bi)

=p(S|{Ôt
i , Ĝ

t
i ,O,Gt, Ǒt

i , Ǧ
t
i}={0, 0, 0, 0, o, g},Bi)

=PS(S|o, g) ∀(o, g) 6= (0, 0) ∀(k, l,m,n,p, q).

These expressions convey two characteristics. First, that

the form of this distribution is given by the first non-empty

occupancy component in the order of visibility, regardless

of what is behind this component on the viewing line. Sec-

ond, that the form of the first non-empty component is given

by an identical sensor prior PS(S|o, g). We set the four

parametric distributions of PS(S|o, g) as following:

PS(S = 1|0, 0) = Pfa PS(S = 1|1, 0) = Pfa (8)

PS(S = 1|0, 1) = Pd PS(S = 1|1, 1) = 0.5, (9)

where Pfa ∈ [0, 1] and Pd ∈ [0, 1] are constants express-

ing the prior probability of false alarm and the probability

of detection, respectively. They can be chosen once for all

datasets as the method is not sensitive to the exact value

of these priors. Meaningful values for Pfa are close to 0,

while Pd is generally close to 1. (8) expresses the cases

where no silhouette is expected to be detected in images, i.e.

either when there are no objects at all on the viewing line,



or when the first encountered object is a static occluder, re-

spectively. (9) expresses two distinct cases. First, the case

where a dynamic object’s visual hull is encountered on the

viewing line, in which case we expect to detect a silhouette

at the matching pixel. Second, the case where both an oc-

cluder and dynamic visual hull are present at the first non-

free voxel. This is perfectly possible, because the visual

hull is an overestimate of the true dynamic object shape.

While the true shape of objects and occluders are naturally

mutually exclusive, the visual hull of dynamic objects can

overlap with occluder voxels. In this case we set the dis-

tribution to uniform, because the silhouette detection state

cannot be predicted: it can be caused by shadows casted by

dynamic objects on occluders in the scene, and noise.

3.3. Inference

Estimating the occluder occupancy at a voxel translates

to estimating p(O|IB) in Bayesian terms. Applying Bayes

rule to the modeled joint probability (1) leads to the follow-

ing expression, once hidden variable marginalizations are

appropriately factorized:

p(O|IB) =
1

z
p(O)

T
∏

t=1

(

∑

Gt

p(Gt|O)

(

n
∏

i=1

Pt
i

))

(10)

where Pt
i =

∑

Ǒt

i
,Ǧt

i

p(Ǒt
i)p(Ǧt

i |Ǒ
t
i)
∑

Ôt

i
,Ĝt

i

p(Ôt
i)p(Ĝt

i |Ô
t
i)

p(It
i |Ô

t
i , Ĝ

t
i ,O,Gt, Ǒt

i , Ǧ
t
i ,Bi). (11)

Pt
i expresses the contribution of view i at a time t.

The formulation therefore expresses Bayesian fusion over

the various observed time instants and available views, with

marginalization over unknown viewing line states (10). The

normalization constant z is easily obtained by ensuring

summation to 1 of the distribution.

4. Extensions and Applications

The proposed formulation performs a fusion of occlusion

cues across different views and time instants indifferently

of the order. This enables incremental updates of the in-

ference, and opens the prospect of online applications such

as cooperative estimation of occlusion and dynamic object

shape, which we examine in §4.2. However an occluder

estimation bias can occur in partially observed regions of

space, because the formulation implicitly assumes that oc-

clusion cues were well sampled by dynamic object motion

within the scene. It is thus necessary to determine when

enough occlusion cues have been accumulated for the esti-

mation to be reliable, in an online processing framework.

4.1. Online Incremental Computation

To determine the reliability of voxels, we model the intu-

ition that voxels whose occlusion cues arise from an abnor-

mally low number of views should not be trusted. Since this

clause involves all cameras and their observations jointly,

the inclusion of this constraint in our initial model would

break the symmetry in the inference formulated in (10) and

defeat the possibility for online updates. Instead, we opt to

use a second criterion in the form of a reliability measure

R ∈ [0, 1]. Small values indicate poor coverage of dynamic

objects, while large values indicate sufficient cue accumu-

lation. We define reliability using the following expression:

R =
1

n

n
∑

i=1

max
t

(1 − P
Ĝt

i

)PǦt

i

(12)

with P
Ĝt

i

and PǦt

i

the prior probabilities of dynamic visual

hull occupancy. R examines, for each camera i, the maxi-

mum occurrence across the examined time sequence of X to

be both unobstructed and in front of a dynamic object. This

determines how well a given view i was able to contribute

to the estimation across the sequence. R then averages these

values across views, to measure the overall quality of obser-

vation, and underlying coverage of dynamic object motion

for the purpose of occlusion inference.

The reliability R can be used online in conjunction to the

occlusion probability estimation to evaluate a conservative

occluder shape at all times, by only considering voxels for

which R exceeds a certain quality threshold. As shown in

§5, it can be used to reduce the sensitivity to noise in regions

of space that have only been observed marginally.

4.2. Accounting for Occlusion in SfS

As more data becomes available and reliable, the results

of occluder estimation can be accounted for when inferring

the occupancies of dynamic objects. This translates to the

evaluation of p(Gτ |IτB) for a given voxel X and time τ .

The difference with the classical single-frame formulation

of dynamic object occupancy [6] is that we now have a prior

over the occlusions at every voxel in the grid. For this infer-

ence Gτ is considered independent of Gt ∀t 6= τ , leading to

the following simplified joint probability distribution:

p(O)p(Gτ |O)

n
∏

i=1

p(Ôτ
i )p(Ĝτ

i |Ô
τ
i )p(Iτ

i |Ô
τ
i , Ĝτ

i ,O,Gτ ,Bi),

where Gτ and O are the dynamic and occluder occupancy at

the inferred voxel, Ôτ
i , Ĝτ

i the variables matching the most

influential component along Li, in front of X . This compo-

nent is selected as the voxel whose prior of being occupied

is maximal, as computed to date by occlusion inference. In

this inference, there is no need to consider voxels behind X ,

because knowledge about their occlusion occupancy has no

influence on the state of X .

The parametric forms of this distribution have identical

semantics as previously but different assignments because



of the nature of the inference. Naturally no prior informa-

tion about dynamic occupancy is assumed here. p(O) and

p(Ôτ
i ) are set using the result to date of expression (10) at

their respective voxels, as prior. p(Gτ |O) and p(Ĝτ
i |Ô

τ
i ) are

constant: p(Gτ =1|O=0)=0.5 expresses a uniform prior for

dynamic objects when the voxel is known to be occluder

free. p(Gτ=1|O=1)=Pgo expresses a low prior of dynamic

visual hull occupancy given the knowledge of occluder oc-

cupancy, as in (5). The term p(Iτ
i |Ô

τ
i , Ĝτ

i ,O,Gτ ,Bi) is set

identically to expression (7), only stripped of the influence

of Ǒτ
i , Ǧτ

i .

5. Results

5.1. Sensor Model Summary

The core of the occlusion formulation we present is con-

trolled by five parameters Po, Pgo, Pc, Pd and Pfa. If two

dynamic objects are perfectly known to occupy space in re-

gions Ω1 and Ω2 (Fig. 4), various regions of importance

appear in the occlusion inference, for a given camera and

time instant. N1 and N2 are regions where the current view

does not contribute and the inference reverts to the prior Po:

N1 because it is outside of the viewing cone of dynamic

objects, N2 because it is obstructed by an actual dynamic

object Ω1. E projects to a positive silhouette response area

in the image and the probability of occluder occupancy is

thus deduced to be low. D projects to an image area with

low silhouette response, despite being in front of Ω1, thus it

is deduced that an occluder is probably in this region. The

strength of the contribution in these regions depends on our

confidence in observations, as expressed by Pd and Pfa.

Finally, Ω1 and Ω2 also contribute directly to the estimation

through Pc and Pgo: a higher Pc and lower Pgo give more

weight to the mutual exclusivity constraint between occlud-

ers and dynamic objects and thus leads to lower occluder

probabilities in these regions.

Depending on the actual probabilities of silhouette re-

sponse and on the prior probabilities of the dynamic oc-

cupancy in regions Ω1 and Ω2, actual voxel contributions

exhibit a mixture of these different behaviors in practice,

which the model automatically integrates. Values given

to the model parameters could be learned using training

data. Nevertheless the inference has low sensitivity to

small changes of these parameters, and they are sufficiently

Positive silhouette
response

Possible underlying occluder

Ω1

Ω2

N1

N2

E

D

Figure 4. Regions of influence of a mono-camera sensor among

the various voxels of a scene, as described by our model.

generic and intuitive that setting them manually for a large

number of different sequences is possible. We use a single

set of parameters throughout our experiments: Po = 0.15,

Pgo = 0.001, Pc = 0.5, Pd = 0.8 and Pfa = 0.1.

5.2. Occlusion Inference Results

We have performed several multi-view acquisitions for

the purpose of validation, yielding three sequences: the

PILLARS and SCULPTURE sequences which are acquired

outdoors, and the CHAIR sequence, acquired indoors, with

combined artificial and natural light from large bay win-

dows. In all sequences 9 DV cameras surround the scene

of interest, background models are learned in the absence

of moving objects. One or several people then walk around

and through the occluder in each scene. The shape of the

people is estimated at each considered time step and used

as prior to occlusion inference. The data is used to compute

an estimate of the occluder’s shape using (10). Results are

presented in Fig. 5 and in the supplemental video.

The 9 cameras are geometrically calibrated, using

Bouguet’s toolbox based on [17], and recording at 30Hz.

Color calibration is unnecessary because the model uses sil-

houette information only. The background model is learned

per-view using a single Gaussian color model per pixel, and

training images. Although simple, the model proves suf-

ficient, even in outdoor sequences subject to background

motion, foreground object shadows, and substantial illu-

mination changes, illustrating the strong robustness of the

method to difficult real conditions. The method can cope

well with background misclassifications that do not lead to

large coherent false positive dynamic object estimations:

pedestrians are routinely seen in the background for the

SCULPTURE and PILLARS sequences (e.g. Fig. 5(a1)),

without any significant corruption of the inference.

Adjacent frames in the input videos contain largely re-

dundant information for occluder modeling, thus videos

can safely be subsampled. PILLARS was processed using

50% of the frames (1053 frames processed), SCULPTURE

and CHAIR with 10% (160 and 168 processed frames re-

spectively). Processing of both dynamic and occluder oc-

cupancy was handled on a 2.8 GHz PC at approximately

1 timestep per minute. The very strong locality inherent

to the algorithm and preliminary benchmarks suggest that

real-time performance could be achieved using a GPU im-

plementation. Occluder information does not need to be

processed for every frame because of adjacent frame redun-

dancy, opening the possibility for online, asynchronous co-

operative computation of occluder and dynamic objects at

interactive frame rates.

5.3. Online Computation Results

All experiments can be computed using incremental in-

ference updates. Fig. 6 depicts the inference’s progression,
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Figure 5. Occluder shape retrieval results (best viewed in color). Sequences: (a) PILLARS, (b) SCULPTURE, (c) CHAIR. 1) Scene overview.

Note the harsh light, difficult backgrounds for (a) and (b), and specularity of the sculpture, causing no significant modeling failure. 2-3)

Occluder inference according to (10). Blue: neutral regions (prior Po), red: high probability regions. Brighter/clear regions indicate the

inferred absence of occluders. Fine levels of detail are modeled, sometimes lost - mostly to calibration. In (a) the structure’s steps are

also detected. 4) Same inference with additional exclusion of zones with reliability under 0.8. Peripheral noise and marginally observed

regions are eliminated. The background protruding shape in (c3) is due to a single occlusion from view (c1). The supplemental video

shows extensive results with these datasets, including one or more people in the scene.

using the sensor fusion formulation alone or in combination

with the reliability criterion. For the purpose of this exper-

iment, we used the PILLARS sequence and manually seg-

mented the occluder in each view for a ground truth com-

parison, and focused on a subregion of the scene in which

the expected behaviors are well isolated. Fig. 6 shows that

both schemes converge reasonably close to the visual hull

of the considered pillar. In scenes with concave parts acces-

sible to dynamic objects, the estimation would carve into

concavities and reach a better estimate than the occluder’s

visual hull. A somewhat larger volume is reached with both

schemes in this example. This is attributable to calibra-

tion errors which overtightens the visual hull with respect

to the true silhouettes, and accumulation of errors in both

schemes toward the end of the sequence. We trace those

to the redundant, periodical poses contained in the video,

that sustain consistent noise. This suggests the existence of

an optimal finite number of frames to be used for process-

ing. Jolts can be observed in both volumes corresponding

to instants where the person walks behind the pillar, thereby

adding positive contributions to the inference. Use of the re-

liability criterion contributes to lower sensitivity to noise, as

well as a permanently conservative estimate of the occluder

volume as the curves show in frames 100-200. Raw infer-

ence (10) momentarily yields large hypothetical occluder

volumes when data is biased toward contributions of an ab-

normally low subset of views (frame 109).

5.4. Accounting for Occlusion in SfS

Our formulation (§4.2) can be used to account for the

accumulated occluder information in dynamic shape infer-

ence. We only use occlusion cues from reliable voxels

(R > 0.8) to minimize false positive occluder estimates,

whose excessive presence would lead to sustained errors.

While in many cases the original dynamic object formula-

tion [6] performs robustly, a number of situations benefit

from the additional occlusion knowledge (Fig. 7). Person

volume estimates can be obtained when accounting for oc-

cluders. These estimates appear on average to be a stable

multiple of the real volume of the person, which depends

mainly on camera configuration. This suggests a possible

biometrics application of the method, for disambiguation of

person recognition based on computed volumes.



0 100 200 300 400 500 600 700 800 900 1000
0

500

1000

1500

2000

2500

3000

Frame Number

N
u

m
b

e
r 

o
f 

V
o

x
e
ls

   binary visual hull of the occluder

   occluder inference > 99%

   occluder inference > 99%

   with reliability > 80%

Frame #109 Frame #400 Frame #1053

Pillar Dataset

Jolt

(a)

(b)

(c)

Figure 6. Online inference analysis and ground truth visual hull

comparison, using PILLARS dataset, focusing on a slice including

the middle pillar (best viewed in color). (a) Frames 109, 400 and

1053, inferred using (10). (b) Same frames, this time excluding

zones with reliability under 0.8 (reverted here to 0.5). (c) Number

of voxels compared to ground truth visual hull across time.
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Figure 7. (a) Person shape estimate from PILLARS sequence, as

occluded by the rightmost pillar and computed without account-

ing for occlusion. (b) Same situation accounting for occlusion,

showing better completeness of the estimate. (c) Volume plot in

both cases. Accounting for occlusion leads to more stable esti-

mates across time, decreases false positives and overestimates due

to shadows cast on occluders (I), increases estimation probabilities

in case of occlusion (II).

6. Discussion

We have presented a method to detect and build the dense

3D shape of occluders indirectly observed through the mo-

tion of dynamic objects in a scene, in calibrated videos ob-

tained from multiple views. The proposed Bayesian sensor

formulation provides a useful probabilistic occluder repre-

sentation, enabling detection and online accumulation of

occluder information, and cooperative estimation of oc-

cluder and dynamic object shapes. The provided frame-

work is robust to noise and avoids hard decisions about

scene state. This new approach can lead to promising

applications. Shape-from-occlusion could prove useful in

conditions where segmenting objects is difficult or doesn’t

make sense, and using a moving object is easier, when

all cameras don’t have a complete view of the occluder,

for example. Visual media such as infrared images ex-

hibiting cold static objects of interest, inseparable from a

broader cold background, could be used for modeling using

a third, warm moving object. Detecting occlusions using

this method can be helpful for a number of vision prob-

lems related to modeling, not limited to silhouette-based ap-

proaches. Many extensions are possible, such as automatic

detection of changes in occluder configuration, cooperative

background color model updates and occlusion estimation,

integration of other cues such as color and texture.
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